Nano-Photocatalytic Materials: Possibilities and Challenges
Funding
Acknowledgments
Conflicts of Interest
References
- Enesca, A.; Andronic, L. The Influence of Photoactive Heterostructures on the Photocatalytic Removal of Dyes and Pharmaceutical Active Compounds: A Mini-Review. Nanomaterials 2020, 10, 1766. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, M.; Qin, X. Photocatalytic Activity of TiO2 Nanofibers: The Surface Crystalline Phase Matters. Nanomaterials 2019, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaqoob, A.A.; Mohd Noor, N.H.B.; Serrà, A.; Mohamad Ibrahim, M.N. Advances and Challenges in Developing Efficient Graphene Oxide-Based ZnO Photocatalysts for Dye Photo-Oxidation. Nanomaterials 2020, 10, 932. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.-C.; Liu, Y.-C. Microstructures and Photodegradation Performance toward Methylene Orange of Sputtering-Assisted Decoration of ZnFe2O4 Crystallites onto TiO2 Nanorods. Nanomaterials 2019, 9, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murcia, J.J.; Ávila-Martínez, E.G.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O.H. Powder and Nanotubes Titania Modified by Dye Sensitization as Photocatalysts for the Organic Pollutants Elimination. Nanomaterials 2019, 9, 517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Du, J.; Li, X.; Liu, Y.; Jiang, C.; Qi, W.; Zhang, K.; Gong, C.; Li, R.; Luo, M.; et al. Highly Hydrophilic TiO2 Nanotubes Network by Alkaline Hydrothermal Method for Photocatalysis Degradation of Methyl Orange. Nanomaterials 2019, 9, 526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.; Endo-Kimura, M.; Wang, K.; Colbeau-Justin, C.; Kowalska, E. Influence of Semiconductor Morphology on Photocatalytic Activity of Plasmonic Photocatalysts: Titanate Nanowires and Octahedral Anatase Nanoparticles. Nanomaterials 2019, 9, 1447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wafi, A.; Szabó-Bárdos, E.; Horváth, O.; Pósfai, M.; Makó, É.; Juzsakova, T.; Fónagy, O. The Photocatalytic and Antibacterial Performance of Nitrogen-Doped TiO2: Surface-Structure Dependence and Silver-Deposition Effect. Nanomaterials 2020, 10, 2261. [Google Scholar] [CrossRef] [PubMed]
- Belet, A.; Wolfs, C.; Mahy, J.G.; Poelman, D.; Vreuls, C.; Gillard, N.; Lambert, S.D. Sol-gel Syntheses of Photocatalysts for the Removal of Pharmaceutical Products in Water. Nanomaterials 2019, 9, 126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.; Singh, A.K.; Carabineiro, S.A.C. Assessing the Photocatalytic Degradation of Fluoroquinolone Norfloxacin by Mn:ZnS Quantum Dots: Kinetic Study, Degradation Pathway and Influencing Factors. Nanomaterials 2020, 10, 964. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J.; He, X.; Liu, B. Preparation of a g-C3N4/UiO-66-NH2/CdS Photocatalyst with Enhanced Visible Light Photocatalytic Activity for Tetracycline Degradation. Nanomaterials 2020, 10, 1824. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.; Rashid, M.; Cai, Y.; Yoshinaga, M.; Dionysiou, D.D.; O’Shea, K. Removal of As(III) from Water Using the Adsorptive and Photocatalytic Properties of Humic Acid-Coated Magnetite Nanoparticles. Nanomaterials 2020, 10, 1604. [Google Scholar] [CrossRef] [PubMed]
- Zuo, G.; Zhang, Y.; Liu, S.; Guo, Z.; Zhao, Q.; Saianand, G.; Feng, L.; Li, L.; Li, W.; Zhang, N.; et al. A β-cyclodextrin Modified Graphitic Carbon Nitride with Au Co-Catalyst for Efficient Photocatalytic Hydrogen Peroxide Production. Nanomaterials 2020, 10, 1969. [Google Scholar] [CrossRef] [PubMed]
- Hernández Rodríguez, M.J.; Pulido Melián, E.; Araña, J.; Navío, J.A.; González Díaz, O.M.; Santiago, D.E.; Doña Rodríguez, J.M. Influence of Water on the Oxidation of NO on Pd/TiO2 Photocatalysts. Nanomaterials 2020, 10, 2354. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Liu, H.; Li, W.; Lyu, X. Automobile Exhaust Removal Performance of Pervious Concrete with Nano TiO2 under Photocatalysis. Nanomaterials 2020, 10, 2088. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doña-Rodríguez, J.M.; Pulido Melián, E. Nano-Photocatalytic Materials: Possibilities and Challenges. Nanomaterials 2021, 11, 688. https://doi.org/10.3390/nano11030688
Doña-Rodríguez JM, Pulido Melián E. Nano-Photocatalytic Materials: Possibilities and Challenges. Nanomaterials. 2021; 11(3):688. https://doi.org/10.3390/nano11030688
Chicago/Turabian StyleDoña-Rodríguez, José M., and Elisenda Pulido Melián. 2021. "Nano-Photocatalytic Materials: Possibilities and Challenges" Nanomaterials 11, no. 3: 688. https://doi.org/10.3390/nano11030688
APA StyleDoña-Rodríguez, J. M., & Pulido Melián, E. (2021). Nano-Photocatalytic Materials: Possibilities and Challenges. Nanomaterials, 11(3), 688. https://doi.org/10.3390/nano11030688