Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Instruments
3. Results and Discussion
3.1. Characterisation Studies
3.1.1. Morphological Analysis
3.1.2. Crystal Analysis
3.2. Comparative Studies
3.2.1. Stability Analysis
3.2.2. Optical Analysis
3.2.3. Electrochemical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giraldo, S.; Placidi, M.; Saucedo, E. Kesterite: New Progress Toward Earth-Abundant Thin-Film Photovoltaic. In Advanced Micro- and Nanomaterials for Photovoltaics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 93–120. ISBN 9780128145029. [Google Scholar]
- Siebentritt, S.; Schorr, S. Kesterites-a challenging material for solar cells. Prog. Photovolt. Res. Appl. 2012, 20, 512–519. [Google Scholar] [CrossRef]
- Repins, I.; Vora, N.; Beall, C.; Wei, S.H.; Yan, F.; Romero, M.; Teeter, G.; Du, H.; To, B.; Young, M.; et al. Kesterites and chalcopyrites: A comparison of close cousins. In Proceedings of the Materials Research Society Symposium Proceedings, San Franscisco, CA, USA, 25–29 April 2011; Volume 1324, pp. 97–108. [Google Scholar]
- Ramasamy, K.; Malik, M.A.; O’Brien, P. Routes to copper zinc tin sulfide Cu2ZnSnS4 a potential material for solar cells. Chem. Commun. 2012, 48, 5703–5714. [Google Scholar] [CrossRef]
- Todorov, T.K.; Reuter, K.B.; Mitzi, D.B. High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv. Mater. 2010, 22, E156–E159. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Gunawan, O.; Todorov, T.K.; Wang, K.; Guha, S. The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 2011, 95, 1421–1436. [Google Scholar] [CrossRef]
- Su, Z.; Tan, J.M.R.; Li, X.; Zeng, X.; Batabyal, S.K.; Wong, L.H. Cation Substitution of Solution-Processed Cu2ZnSnS4 Thin Film Solar Cell with over 9% Efficiency. Adv. Energy Mater. 2015, 5, 2–8. [Google Scholar] [CrossRef]
- Lafond, A.; Guillot-Deudon, C.; Vidal, J.; Paris, M.; La, C.; Jobic, S. Substitution of Li for Cu in Cu2ZnSnS4: Toward Wide Band Gap Absorbers with Low Cation Disorder for Thin Film Solar Cells. Inorg. Chem. 2017, 56, 2712–2721. [Google Scholar] [CrossRef]
- Dhawale, D.S.; Ali, A.; Lokhande, A.C. Impact of various dopant elements on the properties of kesterite compounds for solar cell applications: A status review. Sustain. Energy Fuels 2019, 3, 1365–1383. [Google Scholar] [CrossRef]
- Siebentritt, S. Why are kesterite solar cells not 20% efficient? Thin Solid Film. 2013, 535, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ilari, G.M.; Fella, C.M.; Ziegler, C.; Uhl, A.R.; Romanyuk, Y.E.; Tiwari, A.N. Cu 2ZnSnSe 4 solar cell absorbers spin-coated from amine-containing ether solutions. Sol. Energy Mater. Sol. Cells 2012. [Google Scholar] [CrossRef]
- Walker, B.C.; Negash, B.G.; Szczepaniak, S.M.; Brew, K.W.; Agrawal, R. CZTSe devices fabricated from CZTSSe nanoparticles. In Proceedings of the Conference Record of the IEEE Photovoltaic Specialists Conference, Tampa, FL, USA, 16–21 June 2013. [Google Scholar]
- Volobujeva, O.; Raudoja, J.; Mellikov, E.; Grossberg, M.; Bereznev, S.; Traksmaa, R. Cu2ZnSnSe4 films by selenization of Sn-Zn-Cu sequential films. J. Phys. Chem. Solids 2009. [Google Scholar] [CrossRef]
- Wang, W.; Winkler, M.T.; Gunawan, O.; Gokmen, T.; Todorov, T.K.; Zhu, Y.; Mitzi, D.B. Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 2014. [Google Scholar] [CrossRef]
- Chen, S.; Gong, X.G.; Walsh, A.; Wei, S.H. Crystal and electronic band structure of Cu2 ZnSn X4 (X=S and Se) photovoltaic absorbers: First-principles insights. Appl. Phys. Lett. 2009. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Persson, C. Band gap change induced by defect complexes in Cu2ZnSnS4. Thin Solid Film. 2013, 535, 265–269. [Google Scholar] [CrossRef]
- Podsiadlo, S.; Bialoglowski, M.; Fadaghi, M.; Matyszczak, G.; Kardas, K.; Dluzewski, P.; Data, P.; Lapkowski, M. Synthesis of kesterite nanopowders with bandgap tuning ligands. Cryst. Res. Technol. 2015. [Google Scholar] [CrossRef]
- Parasyuk, O.V.; Piskach, L.V.; Romanyuk, Y.E.; Olekseyuk, I.D.; Zaremba, V.I.; Pekhnyo, V.I. Phase relations in the quasi-binary Cu2GeS3-ZnS and quasi-ternary Cu2S-Zn(Cd)S-GeS2 systems and crystal structure of Cu2ZnGeS4. J. Alloys Compd. 2005, 397, 85–94. [Google Scholar] [CrossRef]
- Zhu, T.; Huhn, W.P.; Wessler, G.C.; Shin, D.; Saparov, B.; Mitzi, D.B.; Blum, V. I2-II-IV-VI4 (I = Cu, Ag; II = Sr, Ba; IV = Ge, Sn; VI = S, Se): Chalcogenides for Thin-Film Photovoltaics. Chem. Mater. 2017, 29, 7868–7879. [Google Scholar] [CrossRef]
- Chen, D.; Ravindra, N.M. Electronic and optical properties of Cu2ZnGeX4 (X = S, Se and Te) quaternary semiconductors. J. Alloys Compd. 2013, 579, 468–472. [Google Scholar] [CrossRef]
- Lin, S.; Li, W.; Chen, Z.; Shen, J.; Ge, B.; Pei, Y. Te as a high-performance elemental thermoelectric. Nat. Commun. 2016. [Google Scholar] [CrossRef]
- Chivers, T.; Laitinen, R.S. Te: A maverick among the chalcogens. Chem. Soc. Rev. 2015, 44, 1725–1739. [Google Scholar] [CrossRef]
- Lepiller, C.; Cowache, P.; Guillemoles, J.F.; Gibson, N.; Özsan, E.; Lincot, D. Fast electrodeposition route for cadmium telluride solar cells. Thin Solid Film. 2000. [Google Scholar] [CrossRef]
- Lee, T.D.; Ebong, A.U. A review of thin film solar cell technologies and challenges. Renew. Sustain. Energy Rev. 2017, 70, 1286–1297. [Google Scholar] [CrossRef]
- Babula, P.; Adam, V.; Opatrilova, R.; Zehnalek, J.; Havel, L.; Kizek, R. Uncommon heavy metals, metalloids and their plant toxicity: A review. Environ. Chem. Lett. 2008, 6, 189–213. [Google Scholar] [CrossRef]
- Zhang, R.; Szczepaniak, S.M.; Carter, N.J.; Handwerker, C.A.; Agrawal, R. A versatile solution route to efficient Cu 2 ZnSn(S,Se) 4 thin-film solar cells. Chem. Mater. 2015, 27, 2114–2120. [Google Scholar] [CrossRef]
- Van Embden, J.; Chesman, A.S.R.; Della Gaspera, E.; Duffy, N.W.; Watkins, S.E.; Jasieniak, J.J. Cu2ZnSnS4 xSe4(1- x) solar cells from polar nanocrystal inks. J. Am. Chem. Soc. 2014, 136, 5237–5240. [Google Scholar] [CrossRef] [PubMed]
- Todorov, T.; Hillhouse, H.W.; Aazou, S.; Sekkat, Z.; Vigil-Galán, O.; Deshmukh, S.D.; Agrawal, R.; Bourdais, S.; Valdés, M.; Arnou, P.; et al. Solution-based synthesis of kesterite thin film semiconductors. J. Phys. Energy 2020, 2, 012003. [Google Scholar] [CrossRef]
- Dong, H.; Schnabel, T.; Ahlswede, E.; Feldmann, C. Polyol-mediated synthesis of Cu2ZnSn(S,Se)4 kesterite nanoparticles and their use in thin-film solar cells. Solid State Sci. 2014, 29, 52–57. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J. Morphology Study by Using Scanning Electron Microscopy. Education 2010, 3, 1781–1792. [Google Scholar]
- Kim, D.; Kim, M.; Shim, J.; Kim, D.; Choi, W.; Park, Y.S.; Choi, Y.; Lee, J. Synthesis of CZTS Nanoparticles for Low-Cost Solar Cells. J. Nanosci. Nanotechnol. 2016, 16, 5082–5086. [Google Scholar] [CrossRef]
- Sharma, S.K.; Verma, D.S.; Khan, L.U.; Kumar, S.; Khan, S.B. Handbook of Materials Characterization; Sharma, S.K., Ed.; Springer International Publishing: New York, NY, USA, 2018; ISBN 978-3-319-92954-5. [Google Scholar]
- Schnablegger, H.; Singh, Y. The SAXS Guide. Ant. Paar GmbH 2013. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. Characterization of nanophase materials. Part. Part. Syst. Charact. 2001. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470405840. [Google Scholar]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008; ISBN 9780470405888. [Google Scholar]
- Haass, S.G.; Diethelm, M.; Werner, M.; Bissig, B.; Romanyuk, Y.E.; Tiwari, A.N. 11.2% Efficient Solution Processed Kesterite Solar Cell with a Low Voltage Deficit. Adv. Energy Mater. 2015. [Google Scholar] [CrossRef]
- Regulacio, M.D.; Ye, C.; Lim, S.H.; Bosman, M.; Ye, E.; Chen, S.; Xu, Q.H.; Han, M.Y. Colloidal nanocrystals of wurtzite-type Cu 2ZnSnS 4: Facile noninjection synthesis and formation mechanism. Chem. Eur. J. 2012, 18, 3127–3131. [Google Scholar] [CrossRef]
- Yang, W.C.; Miskin, C.K.; Hages, C.J.; Hanley, E.C.; Handwerker, C.; Stach, E.A.; Agrawal, R. Kesterite Cu2ZnSn(S,Se)4 absorbers converted from metastable, wurtzite-derived Cu2ZnSnS4 nanoparticles. Chem. Mater. 2014, 26, 3530–3534. [Google Scholar] [CrossRef]
- Schorr, S.; Gonzalez-Aviles, G. In-situ investigation of the structural phase transition in kesterite. Phys. Status Solidi Appl. Mater. Sci. 2009. [Google Scholar] [CrossRef]
- Pareek, D.; Balasubramaniam, K.R.; Sharma, P. Synthesis and characterization of kesterite Cu2ZnSnTe4: Via ball-milling of elemental powder precursors. RSC Adv. 2016, 6, 68754–68759. [Google Scholar] [CrossRef]
- Gray, T.; Whitby, M.; Mann, N. Technical Data for the Element Te in the Periodic Table. Available online: https://periodictable.com/Elements/052/data.html (accessed on 9 January 2021).
- Technical Data for the Element S in the Periodic Table. Available online: https://periodictable.com/Elements/016/data.html (accessed on 9 January 2021).
- Albury, B.A. Why Thermal Conductivity Matters. Available online: http://www.puretemp.com/stories/why-thermal-conductivity-matters (accessed on 11 January 2021).
- Kumar, S.; Lal, B.; Aghamkar, P.; Husain, M. Influence of S, selenium and Te doping on optical, electrical and structural properties of thin films of lead salts. J. Alloys Compd. 2009, 488, 334–338. [Google Scholar] [CrossRef]
- Ilahi, S.; Almosni, S.; Chouchane, F.; Perrin, M.; Zelazna, K.; Yacoubi, N.; Kudrawiec, R.; Râle, P.; Lombez, L.; Guillemoles, J.F.; et al. Optical absorption and thermal conductivity of GaAsPN absorbers grown on GaP in view of their use in multijunction solar cells. Sol. Energy Mater. Sol. Cells 2015, 141, 291–298. [Google Scholar] [CrossRef]
- Asha, A.B.; Narain, R. Nanomaterials properties. In Polymer Science and Nanotechnology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 343–359. [Google Scholar]
- Roduner, E. Size matters: Why nanomaterials are different. Chem. Soc. Rev. 2006, 35, 583–592. [Google Scholar] [CrossRef] [PubMed]
- Link, S.; El-Sayed, M.A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Mittal, A.K.; Banerjee, U.C. Current status and future prospects of nanobiomaterials in drug delivery. In Nanobiomaterials in Drug Delivery: Applications of Nanobiomaterials; Elsevier Inc.: Amsterdam, The Netherlands, 2016; pp. 147–170. ISBN 9780323428897. [Google Scholar]
- Singh, R.; Soni, R.K. Laser-Induced Heating Synthesis of Hybrid Nanoparticles. In Noble Metal-Metal Oxide Hybrid Nanoparticles: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 195–238. ISBN 9780128141359. [Google Scholar]
- Stauffer, D.; Aharony, A. Percolation. In Encyclopedia of Physical Science and Technology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 655–669. [Google Scholar]
- Mutiso, R.M.; Winey, K.I. Electrical Conductivity of Polymer Nanocomposites. In Polymer Science: A Comprehensive Reference, 10 Volume Set; Elsevier: Amsterdam, The Netherlands, 2012; Volume 7, pp. 327–344. ISBN 9780080878621. [Google Scholar]
- Dang, Z.M.; Zheng, M.S. Multiphase/multicomponent dielectric polymer materials with high permittivity and high breakdown strength. In Dielectric Polymer Materials for High-Density Energy Storage; Elsevier: Amsterdam, The Netherlands, 2018; pp. 247–287. ISBN 9780128132159. [Google Scholar]
- Aksu, S.; Doyle, F.M. Electrochemistry of copper in aqueous ethylenediamine solutions. J. Electrochem. Soc. 2002. [Google Scholar] [CrossRef]
- Teo, W.Z.; Ambrosi, A.; Pumera, M. Direct electrochemistry of copper oxide nanoparticles in alkaline media. Electrochem. Commun. 2013. [Google Scholar] [CrossRef]
- Bouroushian, M. Electrochemistry of the Chalcogens BT—Electrochemistry of Metal Chalcogenides. Electrochem. Met. Chalcogenides Monogr. Electrochem. 2010. [Google Scholar] [CrossRef]
- Bouroushian, M. Electrochemistry of the Chalcogens. In Electrochemistry of Metal Chalcogenides; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Luque, A.; Martí, A. Electron-phonon energy transfer in hot-carrier solar cells. Sol. Energy Mater. Sol. Cells 2010. [Google Scholar] [CrossRef] [Green Version]
- Man, M.K.L.; Margiolakis, A.; Deckoff-Jones, S.; Harada, T.; Wong, E.L.; Krishna, M.B.M.; Madéo, J.; Winchester, A.; Lei, S.; Vajtai, R.; et al. Imaging the motion of electrons across semiconductor heterojunctions. Nat. Nanotechnol. 2017. [Google Scholar] [CrossRef]
- Jadreško, D.; Zelić, M. Cyclic multipulse voltammetric techniques. Part I: Kinetics of electrode processes. J. Electroanal. Chem. 2013, 707, 20–30. [Google Scholar] [CrossRef]
Material | k | λ (Å) | β (rad) | θ (rad) | D (Å) |
---|---|---|---|---|---|
CZTS | 0.89 | 1.54058 | 0.0130 | 0.2483 | 106.6 |
CZTSTe | 0.89 | 1.54058 | 0.00442 | 0.2484 | 310.2 |
Sample | Rct (kΩ) | Rs (kΩ) | −θpeak (°) | νpeak (Hz) | Z (kΩ) |
---|---|---|---|---|---|
CZTS | 9.8 | 0.106 | 67.5 | 45.71 | 16.6 |
CZTSTe | 3.9 | 0.107 | 60.0 | 21.38 | 5.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwambaekwe, K.C.; Masikini, M.; Mathumba, P.; Ramoroka, M.E.; Duoman, S.; John-Denk, V.S.; Iwuoha, E.I. Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial. Nanomaterials 2021, 11, 794. https://doi.org/10.3390/nano11030794
Nwambaekwe KC, Masikini M, Mathumba P, Ramoroka ME, Duoman S, John-Denk VS, Iwuoha EI. Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial. Nanomaterials. 2021; 11(3):794. https://doi.org/10.3390/nano11030794
Chicago/Turabian StyleNwambaekwe, Kelechi C., Milua Masikini, Penny Mathumba, Morongwa E. Ramoroka, Samantha Duoman, Vivian Suru John-Denk, and Emmanuel I. Iwuoha. 2021. "Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial" Nanomaterials 11, no. 3: 794. https://doi.org/10.3390/nano11030794
APA StyleNwambaekwe, K. C., Masikini, M., Mathumba, P., Ramoroka, M. E., Duoman, S., John-Denk, V. S., & Iwuoha, E. I. (2021). Electronics of Anion Hot Injection-Synthesized Te-Functionalized Kesterite Nanomaterial. Nanomaterials, 11(3), 794. https://doi.org/10.3390/nano11030794