An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables
Abstract
:1. Introduction
2. Rechargeable Magnesium-Ion Batteries: State of Art
3. Magnesium Metal as Anode
4. Strategies beyond Elemental Magnesium Anodes
- Cheap, ubiquitous, eco-friendly and safe materials;
- Highly reversible alloying–dealloying process;
- Sufficiently fast magnesium diffusion, or phase propagation, within the base metal;
- High energy density;
- The voltage difference between alloying-dealloying processes must be as small as possible;
- Compatibility with inert components, such as conducting additives, binders and current collectors must be assured.
4.1. Bismuth-Based Anodes
4.2. Tin-Based Anodes
4.3. Biphasic Bismuth–Tin Alloy Anodes
4.4. Titanium-Based Anodes
4.5. Other Materials
5. Conclusions
Funding
Conflicts of Interest
References
- Wunderling, N.; Willeit, M.; Donges, J.F.; Winkelmann, R. Global warming due to loss of large ice masses and Arctic summer sea ice. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Guzmán, A.; Pinto-Gutiérrez, C.; Trujillo, M.A. Attention to global warming and the success of envi-ronmental initial coin offerings: Empirical evidence. Sustainability 2020, 12, 9885. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.E.; Kim, D. Searching for the Next New Energy in Energy Transition: Comparing the Impacts of Economic Incentives on Local Acceptance of Fossil Fuels, Renewable, and Nuclear Energies. Sustain. J. Rec. 2019, 11, 2037. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.; Felgueiras, C.; Smitkova, M.; Caetano, N. Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. Energies 2019, 12, 964. [Google Scholar] [CrossRef] [Green Version]
- Hanif, I. Impact of fossil fuels energy consumption, energy policies, and urban sprawl on carbon emissions in East Asia and the Pacific: A panel investigation. Energy Strat. Rev. 2018, 21, 16–24. [Google Scholar] [CrossRef]
- Chang, C.-L.; Ilomäki, J.; Laurila, H.; McAleer, M. Market timing with moving averages for fossil fuel and renewable energy stocks. Energy Rep. 2020, 6, 1798–1810. [Google Scholar] [CrossRef]
- Zeppini, P.; Bergh, J.C.V.D. Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model. Energy Policy 2020, 136, 110907. [Google Scholar] [CrossRef]
- Brockway, P.E.; Owen, A.; Brand-Correa, L.I.; Hardt, L. Estimation of global final-stage ener-gy-return-on-investment for fossil fuels with comparison to renewable energy sources. Nat. Energy 2019, 4, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Saha, P.; Datta, M.K.; Velikokhatnyi, O.I.; Manivannan, A.; Alman, D.; Kumta, P.N. Rechargeable mag-nesium battery: Current status and key challenges for the future. Prog. Mater. Sci. 2014, 66, 1–86. [Google Scholar] [CrossRef]
- Jithendranath, J.; Das, D.; Guerrero, J.M. Probabilistic optimal power flow in islanded microgrids with load, wind and solar uncertainties including intermittent generation spatial correlation. Energy 2021, 222, 119847. [Google Scholar] [CrossRef]
- McCormick, P.G.; Suehrcke, H. The effect of intermittent solar radiation on the performance of PV sys-tems. Sol. Energy 2018, 171, 667–674. [Google Scholar] [CrossRef]
- Piscitelli, M.S.; Brandi, S.; Capozzoli, A.; Xiao, F. A data analytics-based tool for the detection and di-agnosis of anomalous daily energy patterns in buildings. Build. Simul. 2021, 14, 131–147. [Google Scholar] [CrossRef]
- Andersen, A.N.; Østergaard, P.A. Analytic versus solver-based calculated daily operations of district energy plants. Energy 2019, 175, 333–344. [Google Scholar] [CrossRef]
- Esmaeili, A.; Nagadehi, S.S. Construction and optimization of polyethylene membrane with polyamides to remove pollutants and investigate their efficiency solar system. Int. J. Environ. Sci. Technol. 2020, 17, 3691–3704. [Google Scholar] [CrossRef]
- Regalado-Pérez, E.; Mathews, N.; Mathew, X. Eu(III) complex-polymer composite luminescence down-shifting layers for reducing the blue-losses in thin film solar cells. Sol. Energy 2020, 199, 82–91. [Google Scholar] [CrossRef]
- Zeng, Q.; Lai, Y.; Jiang, L.; Liu, F.; Hao, X.; Wang, L.; Green, M.A. Integrated Photorechargeable Energy Storage System: Next-Generation Power Source Driving the Future. Adv. Energy Mater. 2020, 10, 1903930. [Google Scholar] [CrossRef]
- Latini, A.; Quaranta, S.; Menchini, F.; Lisi, N.; Di Girolamo, D.; Tarquini, O.; Colapietro, M.; Barba, L.; Demitri, N.; Cassetta, A. A novel water-resistant and thermally stable black lead halide perovskite, phenyl viologen lead iodide C22H18N2(PbI3)2. Dalton Trans. 2020, 49, 2616–2627. [Google Scholar] [CrossRef]
- Ali, M.; Riaz, R.; Bae, S.; Lee, H.-S.; Jeong, S.H.; Ko, M.J. Layer-by-Layer Self-Assembly of Hollow Nitrogen-Doped Carbon Quantum Dots on Cationized Textured Crystalline Silicon Solar Cells for an Efficient Energy Down-Shift. ACS Appl. Mater. Interfaces 2020, 12, 10369–10381. [Google Scholar] [CrossRef]
- Pulli, E.; Rozzi, E.; Bella, F. Transparent photovoltaic technologies: Current trends towards upscaling. Energy Convers. Manag. 2020, 219, 112982. [Google Scholar] [CrossRef]
- Carella, A.; Centore, R.; Borbone, F.; Toscanesi, M.; Trifuoggi, M.; Bella, F.; Gerbaldi, C.; Galliano, S.; Schiavo, E.; Massaro, A.; et al. Tuning optical and electronic properties in novel carbazole photosensitizers for p-type dye-sensitized solar cells. Electrochim. Acta 2018, 292, 805–816. [Google Scholar] [CrossRef]
- Bella, F.; Porcarelli, L.; Mantione, D.; Gerbaldi, C.; Barolo, C.; Grätzel, M.; Mecerreyes, D. A wa-ter-based and metal-free dye solar cell exceeding 7% efficiency using a cationic poly(3,4-ethylenedioxythiophene) derivative. Chem. Sci. 2020, 11, 1485–1493. [Google Scholar] [CrossRef] [Green Version]
- Ajaz, W.; Bernell, D. California’s adoption of microgrids: A tale of symbiotic regimes and energy tran-sitions. Renew. Sustain. Energy Rev. 2021, 138, 110568. [Google Scholar] [CrossRef]
- Wang, L.; Morabito, M.; Payne, C.T.; Robinson, G. Identifying institutional barriers and policy impli-cations for sustainable energy technology adoption among large organizations in California. Energy Policy 2020, 146, 111768. [Google Scholar] [CrossRef]
- Patel, P.N. Developments in energy storage could spell the end of the duck curve. Power 2018, 162. [Google Scholar]
- Radermacher, R. Building energy research and the “duck curve”. Sci. Technol. Built Environ. 2017, 23, 1079. [Google Scholar] [CrossRef] [Green Version]
- California Independent System Operator. What the Duck Curve Tells Us about Managing a Green Grid. 2013. Available online: http://large.stanford.edu/courses/2015/ph240/burnett2/docs/flexible.pdf (accessed on 1 February 2021).
- Burnett, M. Energy Storage and the California "Duck Curve". 2016. Available online: http://large.stanford.edu/courses/2015/ph240/burnett2/ (accessed on 1 February 2021).
- IFP Energies Nouvelles, Quelle Criticité du Lithium Dans un Contexte D’électrification du Parc Automobile Mondial? 2018. Available online: https://www.ifpenergiesnouvelles.fr/article/quelle-criticite-du-lithium-contexte-delectrification-du-parc-automobile-mondial (accessed on 1 February 2021).
- Fagiolari, L.; Bonomo, M.; Cognetti, A.; Meligrana, G.; Gerbaldi, C.; Barolo, C.; Bella, F. Photoanodes for Aqueous Solar Cells: Exploring Additives and Formulations Starting from a Commercial TiO 2 Paste. ChemSusChem 2020, 13, 6562–6573. [Google Scholar] [CrossRef]
- Baiano, C.; Schiavo, E.; Gerbaldi, C.; Bella, F.; Meligrana, G.; Talarico, G.; Maddalena, P.; Pavone, M.; Muñoz-García, A.B. Role of surface defects in CO2 adsorption and activation on CuFeO2 delafossite oxide. Mol. Catal. 2020, 496, 111181. [Google Scholar] [CrossRef]
- Mariotti, N.; Bonomo, M.; Fagiolari, L.; Barbero, N.; Gerbaldi, C.; Bella, F.; Barolo, C. Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chem. 2020, 22, 7168–7218. [Google Scholar] [CrossRef]
- Galliano, S.; Bella, F.; Bonomo, M.; Viscardi, G.; Gerbaldi, C.; Boschloo, G.; Barolo, C. Hydrogel Electrolytes Based on Xanthan Gum: Green Route Towards Stable Dye-Sensitized Solar Cells. Nanomaterials 2020, 10, 1585. [Google Scholar] [CrossRef]
- Dokouzis, A.; Bella, F.; Theodosiou, K.; Gerbaldi, C.; Leftheriotis, G. Photoelectrochromic devices with cobalt redox electrolytes. Mater. Today Energy 2020, 15, 100365. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Jin, H.S.; Lee, D.-H.; Choi, J.; Jo, W.; Noh, H.; Lee, J.; Chu, H.; Kwack, H.; Ye, F.; et al. Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes. ChemElectroChem 2018, 5, 3169–3175. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, L.; Yan, X.; Ding, X. Recent Advances of Cellulose-Based Materials and Their Promising Application in Sodium-Ion Batteries and Capacitors. Small 2018, 14, e1802444. [Google Scholar] [CrossRef]
- Kim, J.I.; Chung, K.Y.; Park, J.H. Design of a porous gel polymer electrolyte for sodium ion batteries. J. Membr. Sci. 2018, 566, 122–128. [Google Scholar] [CrossRef]
- Wang, S.; Liu, X.; Wang, A.; Wang, Z.; Chen, J.; Zeng, Q.; Wang, X.; Zhang, L. An ionic liquid crystal-based solid polymer electrolyte with desirable ion-conducting channels for superior performance ambient-temperature lithium batteries. Polym. Chem. 2018, 9, 4674–4682. [Google Scholar] [CrossRef]
- Singh, S.; Arora, N.; Paul, K.; Kumar, R.; Kumar, R. FTIR and rheological studies of PMMA-based nano-dispersed gel polymer electrolytes incorporated with LiBF4 and SiO2. Ionics 2018, 25, 1495–1503. [Google Scholar] [CrossRef]
- Wafi, N.I.B.; Daud, W.R.W.; Ahmad, A.; Majlan, E.H.; Somalu, M.R. Effect of lithium hexafluorophosphate LiPF6 and 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [Bmim][TFSI] immobilized in poly(2-hydroxyethyl methacrylate) PHEMA. Polym. Bull. 2018, 76, 3693–3707. [Google Scholar] [CrossRef]
- Mukkabla, R.; Killi, K.; Shivaprasad, S.M.; Deepa, M. Metal oxide interlayer for long-lived lithium–selenium batteries. Chem. Eur. J. 2018, 24, 17327–17338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, H.; Khan, M.A.; Zou, W.; Xu, J.; Zhang, L.; Zhang, J. Recent progress in advanced electrode materials, separators and electrolytes for lithium batteries. J. Mater. Chem. A 2018, 6, 20564–20620. [Google Scholar] [CrossRef]
- Ma, Q.; Chakrabarti, A.; Mei, X.; Yue, Z.; Dunya, H.; Filler, R.; Mandal, B.K. New oligoether plasticizers for poly(ethylene oxide)-based solid polymer electrolytes. Ionics 2018, 25, 1633–1643. [Google Scholar] [CrossRef]
- Shan, L.; Yurong, C.; Jing, Y.; Feixia, R.; Jun, W.; Babu, S.; Xin, Y.; Junkuo, G.; Juming, Y. Entrapment of polysulfides by a Ketjen Black & mesoporous TiO2 modified glass fiber separator for high performance lithium-sulfur batteries. J. Alloy. Compd. 2019, 779, 412–419. [Google Scholar] [CrossRef]
- Liu, T.; Sun, X.; Sun, S.; Niu, Q.; Liu, H.; Song, W.; Cao, F.; Li, X.; Ohsaka, T.; Wu, J. A robust and low-cost biomass carbon fiber@SiO2 interlayer for reliable lithium-sulfur batteries. Electrochim. Acta 2019, 295, 684–692. [Google Scholar] [CrossRef]
- Zhou, B.; Zuo, C.; Xiao, Z.; Zhou, X.; He, D.; Xie, X.; Xue, Z. Self-Healing Polymer Electrolytes Formed via Dual-Networks: A New Strategy for Flexible Lithium Metal Batteries. Chem. A Eur. J. 2018, 24, 19200–19207. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, G.; Liu, X.; Pan, Q.; Zhang, Y.; Zeng, D.; Sun, Y.; Ke, H.; Cheng, H. A gel single ion conducting polymer electrolyte enables durable and safe lithium ion batteries via graft polymerization. RSC Adv. 2018, 8, 39967–39975. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kim, S.; Kim, W.; Kim, S.; Ahn, S. All-solid-state lithium batteryworking without an additional separator in a polymeric electrolyte. Polymers 2018, 10, 1364. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Fu, J.; Chen, L.; Shang, D.; Li, M.; Xu, Y.; Jia, R.; Yuan, S.; Shi, L. Polymeric polyhedral oligomeric silsesquioxane ionic liquids based solid polymer electrolytes for lithium ion batteries. J. Power Sources 2019, 414, 31–40. [Google Scholar] [CrossRef]
- Liu, R.; Wu, Z.; He, P.; Fan, H.; Huang, Z.; Zhang, L.; Chang, X.; Liu, H.; Wang, C.-A.; Li, Y. A self-standing, UV-cured semi-interpenetrating polymer network reinforced composite gel electrolytes for dendrite-suppressing lithium ion batteries. J. Materiomics 2019, 5, 185–194. [Google Scholar] [CrossRef]
- Dixit, A.; Middya, S.; Mitra, S.; Maity, S.; Bhattacharjee, M.; Bandyopadhyay, D. Unexplored Pathways To Charge Storage in Supercapacitors. J. Phys. Chem. C 2018, 123, 195–204. [Google Scholar] [CrossRef]
- Xiao, Q.; Deng, C.; Wang, Q.; Zhang, Q.; Yue, Y.; Ren, S. In Situ Cross-Linked Gel Polymer Electrolyte Membranes with Excellent Thermal Stability for Lithium Ion Batteries. ACS Omega 2019, 4, 95–103. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Feng, F.; Yin, Y.; Lizo, X.; Ma, Z. Plastic crystal polymer electrolytes containing boron based anion acceptors for room temperature all-solid-state sodium-ion batteries. Energy Storage Mater. 2019, 22, 57–65. [Google Scholar] [CrossRef]
- Wu, N.; Qiao, X.; Shen, J.; Liu, G.; Sun, T.; Wu, H.; Hou, H.; Liu, X.; Zhang, Y.; Ji, X. Anatase inverse opal TiO2-x@N-doped C induced the dominant pseudocapacitive effect for durable and fast lithium/sodium storage. Electrochim. Acta 2019, 299, 540–548. [Google Scholar] [CrossRef]
- Siahroodi, H.J.; Mojallali, H.; Mohtavipour, S.S. Scenario-based stochastic framework for harmonic power markets using plug-in electric vehicles. J. Energy Storage 2021, 35, 102290. [Google Scholar] [CrossRef]
- Ardeshiri, A.; Rashidi, T.H. Willingness to pay for fast charging station for electric vehicles with limited market penetration making. Energy Policy 2020, 147, 111822. [Google Scholar] [CrossRef]
- Gong, B.; Liu, R.; Zhang, X. Market acceptability assessment of electric vehicles based on an improved stochastic multicriteria acceptability analysis-evidential reasoning approach. J. Clean. Prod. 2020, 269, 121990. [Google Scholar] [CrossRef]
- Cho, J.; Jeong, S.; Kim, Y. Commercial and research battery technologies for electrical energy storage applications. Prog. Energy Combust. Sci. 2015, 48, 84–101. [Google Scholar] [CrossRef]
- Koohi-Fayegh, S.; Rosen, M. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Akinyele, D.; Belikov, J.; Levron, Y. Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems. Energies 2017, 10, 1760. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Luo, G.; Liang, J.; Cheng, F.; Zhang, W.; Chen, J. Self-assembly synthesis of solid polymer electrolyte with carbonate terminated poly(ethylene glycol) matrix and its application for solid state lithium battery. J. Energy Chem. 2019, 38, 55–59. [Google Scholar] [CrossRef] [Green Version]
- Nie, K.; Hong, Y.; Qiu, J.; Li, Q.; Yu, X.; Li, H.; Chen, L. Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives. Front. Chem. 2018, 6, 616. [Google Scholar] [CrossRef] [Green Version]
- Fei, Y.; Liu, S.; Long, Y.; Lu, L.; He, Y.; Ma, X.; Deng, Y. New single lithium ion conducting polymer electrolyte derived from delocalized tetrazolate bonding to polyurethane. Electrochim. Acta 2019, 299, 902–913. [Google Scholar] [CrossRef]
- Jeong, K.; Park, S.; Lee, S.-Y. Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries. J. Mater. Chem. A 2018, 7, 1917–1935. [Google Scholar] [CrossRef]
- Banitaba, S.N.; Semnani, D.; Rezaei, B.; Ensafi, A.A. Evaluating the electrochemical properties of PEO-based nanofibrous electrolytes incorporated with TiO2nanofiller applicable in lithium-ion batteries. Polym. Adv. Technol. 2019, 30, 1234–1242. [Google Scholar] [CrossRef]
- Huang, S.; Cui, Z.; Qiao, L.; Xu, G.; Zhang, J.; Tang, K.; Liu, X.; Wang, Q.; Zhou, X.; Zhang, B.; et al. An in-situ polymerized solid polymer electrolyte enables excellent interfacial compatibility in lithium batteries. Electrochim. Acta 2019, 299, 820–827. [Google Scholar] [CrossRef]
- Ma, L.; Fu, C.; Li, L.; Mayilvahanan, K.S.; Watkins, T.; Perdue, B.R.; Zavadil, K.R.; Helms, B.A. Nanoporous Polymer Films with a High Cation Transference Number Stabilize Lithium Metal Anodes in Light-Weight Batteries for Electrified Transportation. Nano Lett. 2019, 19, 1387–1394. [Google Scholar] [CrossRef]
- Hadjichristov, G.B.; Ivanov, T.E.; Marinov, Y.G.; Koduru, H.K.; Scaramuzza, N. PEO-PVP-NaIO4 ion-conducting polymer electrolyte: Inspection for ionic space charge polarization and charge trapping. Phys. Status Solidi A 2019, 216, 1800739. [Google Scholar] [CrossRef]
- Froboese, L.; Van Der Sichel, J.F.; Loellhoeffel, T.; Helmers, L.; Kwade, A. Effect of Microstructure on the Ionic Conductivity of an All Solid-State Battery Electrode. J. Electrochem. Soc. 2019, 166, A318–A328. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Lin, D.; Wang, D.W.; Li, B.; Lv, W.; Sun, S.; He, Y.B.; Kang, F.; Yang, Q.H.; et al. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes. Nat. Commun. 2019, 10, 725. [Google Scholar] [CrossRef]
- Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291–1311. [Google Scholar] [CrossRef]
- Munoz, S.; Greenbaum, S. Review of Recent Nuclear Magnetic Resonance Studies of Ion Transport in Polymer Electrolytes. Membranes 2018, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Saadiah, M.; Zhang, D.; Nagao, Y.; Muzakir, S.; Samsudin, A. Reducing crystallinity on thin film based CMC/PVA hybrid polymer for application as a host in polymer electrolytes. J. Non-Crystalline Solids 2019, 511, 201–211. [Google Scholar] [CrossRef]
- Qiu, Z.; Shi, L.; Wang, Z.; Mindemark, J.; Zhu, J.; Edström, K.; Zhao, Y.; Yuan, S. Surface activated polyethylene separator promoting Li+ ion transport in gel polymer electrolytes and cycling stability of Li-metal anode. Chem. Eng. J. 2019, 368, 321–330. [Google Scholar] [CrossRef]
- Lin, L.; Lei, W.; Zhang, S.; Liu, Y.; Wallace, G.G.; Chen, J. Two-dimensional transition metal dichalcogenides in supercapacitors and secondary batteries. Energy Storage Mater. 2019, 19, 408–423. [Google Scholar] [CrossRef]
- Ma, F.; Zhang, Z.-Q.; Yan, W.; Ma, X.; Sun, D.; Jin, Y.; Chen, X.; He, K. Solid Polymer Electrolyte Based on Polymerized Ionic Liquid for High Performance All-Solid-State Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2019, 7, 4675–4683. [Google Scholar] [CrossRef]
- Rosendahl, K.E.; Rubiano, D.R. How effective is lithium recycling as a remedy for resource scarcity? Environ. Resour. Econ. 2019, 74, 985–1010. [Google Scholar] [CrossRef] [Green Version]
- Calisaya-Azpilcueta, D.; Herrera-Leon, S.; Lucay, F.A.; Cisternas, L.A. Assessment of the Supply Chain under Uncertainty: The Case of Lithium. Minerals 2020, 10, 604. [Google Scholar] [CrossRef]
- Schiavi, P.G.; Altimari, P.; Zanoni, R.; Pagnanelli, F. Full recycling of spent lithium ion batteries with production of core-shell nanowires//exfoliated graphite asymmetric supercapacitor. J. Energy Chem. 2021, 58, 336–344. [Google Scholar] [CrossRef]
- Bustos-Gallardo, B.; Bridge, G.; Prieto, M. Harvesting Lithium: Water, brine and the industrial dynamics of production in the Salar de Atacama. Geoforum 2021, 119, 177–189. [Google Scholar] [CrossRef]
- Kosai, S.; Takata, U.; Yamasue, E. Natural resource use of a traction lithium-ion battery production based on land disturbances through mining activities. J. Clean. Prod. 2021, 280, 124871. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, W.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C.M.; Xie, H.; Liu, J. Cross-linking network based on Poly(ethylene oxide): Solid polymer electrolyte for room temperature lithium battery. J. Power Sources 2019, 420, 63–72. [Google Scholar] [CrossRef]
- Forsyth, M.; Porcarelli, L.; Wang, X.; Goujon, N.; Mecerreyes, D. Innovative Electrolytes Based on Ionic Liquids and Polymers for Next-Generation Solid-State Batteries. Accounts Chem. Res. 2019, 52, 686–694. [Google Scholar] [CrossRef]
- Patel, S.; Kumar, R. Synthesis and characterization of magnesium ion conductivity in PVDF based nanocomposite polymer electrolytes disperse with MgO. J. Alloys Compd. 2019, 789, 6–14. [Google Scholar] [CrossRef]
- Zhu, Y.; Cao, J.; Chen, H.; Yu, Q.; Li, B. High electrochemical stability of a 3D cross-linked network PEO@nano-SiO2 composite polymer electrolyte for lithium metal batteries. J. Mater. Chem. A 2019, 7, 6832–6839. [Google Scholar] [CrossRef]
- Edison Investment Research Limited. Available online: https://www.youtube.com/watch?v=rQ6U5DtxEOw (accessed on 1 February 2021).
- Xu, J.; Dou, S.; Cui, X.; Liu, W.; Zhang, Z.; Deng, Y.; Hu, W.; Chen, Y. Potassium-based electro-chemical energy storage devices: Development status and future prospect. Energy Storage Mater. 2021, 34, 85–106. [Google Scholar] [CrossRef]
- Zhou, M.; Bai, P.; Ji, X.; Yang, J.; Wang, C.; Xu, Y. Electrolytes and Interphases in Potassium Ion Batteries. Adv. Mater. 2021, 33, e2003741. [Google Scholar] [CrossRef]
- Jin, T.; Han, Q.; Jiao, L. Binder-free electrodes for advanced sodium-ion batteries. Adv. Mater. 2020, 32, 1806304. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. Adv. Mater. 2019, 31, e1808393. [Google Scholar] [CrossRef]
- Sångeland, C.; Younesi, R.; Mindemark, J.; Brandell, D. Towards room temperature operation of all-solid-state Na-ion batteries through polyester–polycarbonate-based polymer electrolytes. Energy Storage Mater. 2019, 19, 31–38. [Google Scholar] [CrossRef]
- Guo, Q.; Zeng, W.; Liu, S.-L.; Li, Y.-Q.; Xu, J.-Y.; Wang, J.-X.; Wang, Y. Recent developments on anode materials for magnesium-ion batteries: A review. Rare Met. 2021, 40, 290–308. [Google Scholar] [CrossRef]
- Pei, C.; Xiong, F.; Yin, Y.; Liu, Z.; Tang, H.; Sun, R.; An, Q.; Mai, L. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries. Small 2021, 17, e2004108. [Google Scholar] [CrossRef]
- Liu, F.; Wang, T.; Liu, X.; Fan, L. Challenges and Recent Progress on Key Materials for Rechargeable Magnesium Batteries. Adv. Energy Mater. 2021, 11, 2000787. [Google Scholar] [CrossRef]
- You, C.; Wu, X.; Yuan, X.; Chen, Y.; Liu, L.; Zhu, Y.; Fu, L.; Wu, Y.; Guo, Y.-G.; Van Ree, T. Advances in rechargeable Mg batteries. J. Mater. Chem. A 2020, 8, 25601–25625. [Google Scholar] [CrossRef]
- Li, D.; Yuan, Y.; Liu, J.; Fichtner, M.; Pan, F. A review on current anode materials for rechargeable Mg batteries. J. Magnes. Alloy. 2020, 8, 963–979. [Google Scholar] [CrossRef]
- Shi, J.; Zhang, J.; Guo, J.; Lu, J. Interfaces in rechargeable magnesium batteries. Nanoscale Horizons 2020, 5, 1467–1475. [Google Scholar] [CrossRef]
- Shuai, H.; Xu, J.; Huang, K. Progress in retrospect of electrolytes for secondary magnesium batteries. Co-ord. Chem. Rev. 2020, 422, 213478. [Google Scholar] [CrossRef]
- Rubio, S.; Medina, A.; Cabello, M.; LaVela, P.; Alcántara, R.; Vicente, C.P.; Ortiz, G.F.; Tirado, J.L. Inorganic solids for dual magnesium and sodium battery electrodes. J. Solid State Electrochem. 2020, 24, 1–9. [Google Scholar] [CrossRef]
- Tan, S.; Xiong, F.; Wang, J.; An, Q.; Mai, L. Crystal regulation towards rechargeable magnesium battery cathode materials. Mater. Horizons 2020, 7, 1971–1995. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, Z.; Aurbach, D. Alloy Anode Materials for Rechargeable Mg Ion Batteries. Adv. Energy Mater. 2020, 10, 2000697. [Google Scholar] [CrossRef]
- Yoo, H.D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279. [Google Scholar] [CrossRef]
- Aurbach, D.; Weissman, I.; Gofer, Y.; Levi, E. Nonaqueous magnesium electrochemistry and its appli-cation in secondary batteries. Chem. Rec. 2003, 3, 61–73. [Google Scholar] [CrossRef]
- Castelletti, M. Verso la Fine dell’Economia: Apice e Collasso del Consumismo; Fuoco Edizioni: Rome, Italy, 2013. [Google Scholar]
- Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Recent Advances in Rechargeable Magnesium-Based Batteries for High-Efficiency Energy Storage. Adv. Energy Mater. 2020, 10, 1903591. [Google Scholar] [CrossRef]
- Anderson, D.L. Chemical composition of the mantle. J. Geophys. Res. Space Phys. 1983, 88, B41–B52. [Google Scholar] [CrossRef]
- Witte, F. The history of biodegradable magnesium implants: A review. Acta Biomater. 2010, 6, 1680–1692. [Google Scholar] [CrossRef]
- Ehrenberger, S.; Friedrich, H.E. Life-cycle assessment of the recycling of magnesium vehicle compo-nents. JOM 2013, 65, 1303–1309. [Google Scholar] [CrossRef]
- UNEP. Recycling Rates of Metals. 2011. Available online: www.unep.org (accessed on 1 February 2021).
- Attias, R.; Salama, M.; Hirsch, B.; Goffer, Y.; Aurbach, D. Anode-Electrolyte Interfaces in Secondary Magnesium Batteries. Joule 2019, 3, 27–52. [Google Scholar] [CrossRef] [Green Version]
- Shimokawa, K.; Ichitsubo, T. Spinel–rocksalt transition as a key cathode reaction toward high-energy-density magnesium rechargeable batteries. Curr. Opin. Electrochem. 2020, 21, 93–99. [Google Scholar] [CrossRef]
- Park, B.; Schaefer, J.L. Review-polymer electrolytes for magnesium batteries: Forging away from ana-logs of lithium polymer electrolytes and towards the rechargeable magnesium metal polymer battery. J. Electrochem. Soc. 2020, 167, 070545. [Google Scholar] [CrossRef]
- Deivanayagam, R.; Ingram, B.J.; Shahbazian-Yassar, R. Progress in development of electrolytes for magnesium batteries. Energy Storage Mater. 2019, 21, 136–153. [Google Scholar] [CrossRef]
- Li, Z.; Han, L.; Wang, Y.; Li, X.; Lu, J.; Hu, X. Microstructure Characteristics of Cathode Materials for Rechargeable Magnesium Batteries. Small 2019, 15, e1900105. [Google Scholar] [CrossRef]
- Li, G.; Huang, B.; Pan, Z.; Su, X.; Shao, Z.; An, L. Advances in three-dimensional graphene-based ma-terials: Configurations, preparation and application in secondary metal (Li, Na, K, Mg, Al)-ion batteries. Energy Environ. Sci. 2019, 12, 2030–2053. [Google Scholar] [CrossRef]
- Zhang, Y.; Geng, H.; Wei, W.; Ma, J.; Chen, L.; Li, C.C. Challenges and recent progress in the design of advanced electrode materials for rechargeable Mg batteries. Energy Storage Mater. 2019, 20, 118–138. [Google Scholar] [CrossRef]
- Zhao-Karger, Z.; Fichtner, M. Beyond Intercalation Chemistry for Rechargeable Mg Batteries: A Short Review and Perspective. Front. Chem. 2019, 6, 656. [Google Scholar] [CrossRef]
- Li, L.; Lu, Y.; Zhang, Q.; Zhao, S.; Hu, Z.; Chou, S. Recent Progress on Layered Cathode Materials for Nonaqueous Rechargeable Magnesium Batteries. Small 2021, 17, e1902767. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Fervent hype behind magnesium batteries: An open call to syn-thetic chemists-electrolytes and cathodes needed. Angew. Chem. Int. Ed. 2017, 56, 12064–12084. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Nielson, K.V.; Luo, J.; Liu, T.L. Recent advances on MgCl2 based electrolytes for rechargeable Mg batteries. Energy Storage Mater. 2017, 8, 184–188. [Google Scholar] [CrossRef]
- Park, M.-S.; Kim, J.-G.; Kim, Y.-J.; Choi, N.-S.; Kim, J.-S. Recent Advances in Rechargeable Magnesium Battery Technology: A Review of the Field’s Current Status and Prospects. Isr. J. Chem. 2015, 55, 570–585. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Quest for nonaqueous multivalent secondary batteries: Magne-sium and beyond. Chem. Rev. 2014, 114, 11683–11720. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Schechter, A.; Moshkovich, M.; Aurbach, D. On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. J. Electroanal. Chem. 1999, 466, 203–217. [Google Scholar] [CrossRef]
- Zhou, X.; Luo, X.; Wang, H.; Yang, J.; Xu, H.; Jia, M.; Tang, J. Reduced graphene oxide@CoSe2 interlayer as anchor of polysulfides for high properties of lithium–sulfur battery. J. Mater. Sci. 2019, 54, 9622–9631. [Google Scholar] [CrossRef]
- Xiaoman, L.; Qinglin, Z.; Weimin, G.; Qinghua, L. The catalytic activity of manganese dioxide supported on graphene promoting the electrochemical performance of lithium-sulfur batteries. J. Electroanal. Chem. 2019, 840, 144–152. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, S.; Huang, Z.; Wei, Z.; Shen, L.; Gu, H.; Xu, X.; Yao, X. High conductivity polymer electrolyte with comb-like structure via a solvent-free UV-cured method for large-area ambient all-solid-sate lithium batteries. J. Materiomics 2019, 5, 195–203. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, J.; Liu, X. Carbon-decorated flower-like ZnO as high-performance anode materials for Li-ion batteries. Ionics 2019, 25, 4129–4136. [Google Scholar] [CrossRef]
- Delaporte, N.; Guerfi, A.; Demers, H.; Lorrmann, H.; Paolella, A.; Zaghib, K. Facile protection of lithium metal for all-solid-state batteries. ChemistryOpen 2019, 8, 192–195. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Jeong, G.; Kim, Y.-U.; Kim, J.-H.; Park, C.-M.; Sohn, H.-J. Metallic anodes for next generation secondary batteries. Chem. Soc. Rev. 2013, 42, 9011–9034. [Google Scholar] [CrossRef]
- Falco, M.; Simari, C.; Ferrara, C.; Nair, J.R.; Meligrana, G.; Bella, F.; Nicotera, I.; Mustarelli, P.; Winter, M.; Gerbaldi, C. Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 2019, 35, 8210–8219. [Google Scholar] [CrossRef]
- Piana, G.; Ricciardi, M.; Bella, F.; Cucciniello, R.; Proto, A.; Gerbaldi, C. Poly(glycidyl ether)s recy-cling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem. Eng. J. 2020, 382, 122934. [Google Scholar] [CrossRef]
- Piana, G.; Bella, F.; Geobaldo, F.; Meligrana, G.; Gerbaldi, C. PEO/LAGP hybrid solid polymer elec-trolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J. Energy Storage 2019, 26, 100947. [Google Scholar] [CrossRef]
- Falco, M.; Castro, L.; Nair, J.R.; Bella, F.; Bardé, F.; Meligrana, G.; Gerbaldi, C. UV-Cross-Linked Composite Polymer Electrolyte for High-Rate, Ambient Temperature Lithium Batteries. ACS Appl. Energy Mater. 2019, 2, 1600–1607. [Google Scholar] [CrossRef]
- Ouhib, F.; Meabe, L.; Mahmoud, A.; Eshraghi, N.; Grignard, B.; Thomassin, J.-M.; Aqil, A.; Boschini, F.; Jerome, C.; Mecerreyes, D.; et al. CO2-sourced polycarbonates as solid electrolytes for room temperature operating lithium batteries. J. Mater. Chem. A 2019, 7, 9844–9853. [Google Scholar] [CrossRef]
- Wu, Z.; Xie, Z.; Yoshida, A.; Wang, Z.; Hao, X.; Abudula, A.; Guan, G. Utmost limits of various solid electrolytes in all-solid-state lithium batteries: A critical review. Renew. Sustain. Energy Rev. 2019, 109, 367–385. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, Y.; Zhang, N.; Liu, J.; Cong, L.; Liu, J.; Sun, L.; Mauger, A.; Julien, C.M.; Xie, H.; et al. Synthesis and interface stability of polystyrene-poly(ethylene glycol)-polystyrene triblock copolymer as solid-state electrolyte for lithium-metal batteries. J. Power Sources 2019, 428, 93–104. [Google Scholar] [CrossRef]
- Son, J.; Oh, S.; Bae, S.; Nam, S.; Oh, I. A Pair of NiCo 2 O 4 and V 2 O 5 Nanowires Directly Grown on Carbon Fabric for Highly Bendable Lithium-Ion Batteries. Adv. Energy Mater. 2019, 9, 1900477. [Google Scholar] [CrossRef]
- Li, J.; Chen, H.; Shen, Y.; Hu, C.; Cheng, Z.; Lu, W.; Qiu, Y.; Chen, L. Covalent interfacial coupling for hybrid solid-state Li ion conductor. Energy Storage Mater. 2019, 23, 277–283. [Google Scholar] [CrossRef]
- Wang, M.; Yagi, S. Redox behavior of VS2 nanosheets in Grignard reagent-based electrolyte. Mater. Lett. 2020, 273, 127914. [Google Scholar] [CrossRef]
- Lee, B.; Cho, J.H.; Seo, H.R.; Na, S.B.; Kim, J.H.; Cho, B.W.; Yim, T.; Oh, S.H. Strategic combination of Grignard reagents and allyl-functionalized ionic liquids as an advanced electrolyte for rechargeable mag-nesium batteries. J. Mater. Chem. A 2018, 6, 3126–3133. [Google Scholar] [CrossRef]
- Pedico, A.; Lamberti, A.; Gigot, A.; Fontana, M.; Bella, F.; Rivolo, P.; Cocuzza, M.; Pirri, C.F. High-Performing and Stable Wearable Supercapacitor Exploiting rGO Aerogel Decorated with Copper and Molybdenum Sulfides on Carbon Fibers. ACS Appl. Energy Mater. 2018, 1, 4440–4447. [Google Scholar] [CrossRef]
- Nair, J.R.; Colò, F.; Kazzazi, A.; Moreno, M.; Bresser, D.; Lin, R.; Bella, F.; Meligrana, G.; Fantini, S.; Simonetti, E.; et al. Room temperature ionic liquid (RTIL)-based electrolyte cocktails for safe, high working potential Li-based polymer batteries. J. Power Sources 2019, 412, 398–407. [Google Scholar] [CrossRef]
- Radzir, N.N.M.; Abu Hanifah, S.; Ahmad, A.; Hassan, N.H.; Bella, F. Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J. Solid State Electrochem. 2015, 19, 3079–3085. [Google Scholar] [CrossRef]
- Suriyakumar, S.; Gopi, S.; Kathiresan, M.; Bose, S.; Gowd, E.B.; Nair, J.R.; Angulakshmi, N.; Meligrana, G.; Bella, F.; Gerbaldi, C.; et al. Metal organic framework laden poly(ethylene oxide) based composite electrolytes for all-solid-state Li-S and Li-metal polymer batteries. Electrochim. Acta 2018, 285, 355–364. [Google Scholar] [CrossRef]
- Scalia, A.; Bella, F.; Lamberti, A.; Gerbaldi, C.; Tresso, E. Innovative multipolymer electrolyte mem-brane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 2019, 166, 789–795. [Google Scholar] [CrossRef]
- Matsui, M. Study on electrochemically deposited Mg metal. J. Power Sources 2011, 196, 7048–7055. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.F.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V.K.; Williams, V.E.; et al. Liquid crystalline lithium-ion electrolytes derived from biodegradable cyclodextrin. J. Mater. Chem. A 2019, 7, 12201–12213. [Google Scholar] [CrossRef]
- Luo, G.; Yuan, B.; Guan, T.; Cheng, F.; Zhang, W.; Chen, J. Synthesis of Single Lithium-Ion Conducting Polymer Electrolyte Membrane for Solid-State Lithium Metal Batteries. ACS Appl. Energy Mater. 2019, 2, 3028–3034. [Google Scholar] [CrossRef]
- Long, M.-C.; Xia, L.-T.; Lyu, T.-B.; Wang, T.; Huang, T.; Chen, L.; Wu, G.; Wang, X.-L.; Wang, Y.-Z. A green and facile way to prepare methylcellulose-based porous polymer electrolytes with high lithium-ion conductivity. Polymer 2019, 176, 256–263. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, S.; Mai, Y.; Zhang, S.; Zhou, Y. A single-ion conducting hyperbranched polymer as a high performance solid-state electrolyte for lithium ion batteries. Chem. Commun. 2019, 55, 6715–6718. [Google Scholar] [CrossRef]
- Attias, R.; Salama, M.; Hirsch, B.; Gofer, Y.; Aurbach, D. Solvent Effects on the Reversible Intercalation of Magnesium-Ions into V2 O5 Electrodes. ChemElectroChem 2018, 5, 3514–3524. [Google Scholar] [CrossRef]
- Kamphaus, E.P.; Balbuena, P.B. Effects of Dimethyl Disulfide Cosolvent on Li–S Battery Chemistry and Performance. Chem. Mater. 2019, 31, 2377–2389. [Google Scholar] [CrossRef]
- Betz, J.; Brinkmann, J.P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M.C.; Winter, M.; Placke, T. Cross talk between transition metal cathode and Li metal anode: Unraveling its influence on the deposition/dissolution behavior and morphology of lithium. Adv. Energy Mater. 2019, 9, 1900574. [Google Scholar] [CrossRef]
- Lopez, J.; Mackanic, D.G.; Cui, Y.; Bao, Z. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 2019, 4, 312–330. [Google Scholar] [CrossRef] [Green Version]
- Gunday, S.T.; Kamal, A.Z.; Almessiere, M.A.; Çelik, S.Ü.; Bozkurt, A. An investigation of lithium ion conductivity of copolymers based on P(AMPS-co-PEGMA). J. Appl. Polym. Sci. 2019, 136, 47798. [Google Scholar] [CrossRef]
- Ganesan, V. Ion transport in polymeric ionic liquids: Recent developments and open questions. Mol. Syst. Des. Eng. 2019, 4, 280–293. [Google Scholar] [CrossRef]
- Arthur, T.S.; Singh, N.; Matsui, M. Electrodeposited Bi, Sb and Bi1-xSbx alloys as anodes for Mg-ion batteries. Electrochem. Commun. 2012, 16, 103–106. [Google Scholar] [CrossRef]
- Di Leo, R.A.; Zhang, Q.; Marschilok, A.C.; Takeuchi, K.J.; Takeuchi, E.S. Composite anodes for sec-ondary magnesium ion batteries prepared via electrodeposition of nanostructured bismuth on carbon nanotube substrates. ECS Electrochem. Lett. 2015, 4, A10–A14. [Google Scholar] [CrossRef]
- Barnes, A.C.; Guo, C.; Howells, W.S. Fast-ion conduction and the structure of beta -Mg3Bi2. J. Physics: Condens. Matter 1994, 6, L467–L471. [Google Scholar] [CrossRef]
- Shao, Y.; Gu, M.; Li, X.; Nie, Z.; Zuo, P.; Li, G.; Liu, T.; Xiao, J.; Cheng, Y.; Wang, C.; et al. Highly Reversible Mg Insertion in Nanostructured Bi for Mg Ion Batteries. Nano Lett. 2014, 14, 255–260. [Google Scholar] [CrossRef]
- Murgia, F.; Stievano, L.; Monconduit, L.; Berthelot, R. Insight into the electrochemical behavior of micrometric Bi and Mg3Bi2 as high performance negative electrodes for Mg batteries. J. Mater. Chem. A 2015, 3, 16478–16485. [Google Scholar] [CrossRef]
- Vestfried, Y.; Chusid, O.; Goffer, Y.; Aped, P.; Aurbach, D. Structural Analysis of Electrolyte Solutions Comprising Magnesium−Aluminate Chloro−Organic Complexes by Raman Spectroscopy. Organometallics 2007, 26, 3130–3137. [Google Scholar] [CrossRef]
- Jin, W.; Li, Z.; Wang, Z.; Fu, Y.Q. Mg ion dynamics in anode materials of Sn and Bi for Mg-ion bat-teries. Mater. Chem. Phys. 2016, 182, 167–172. [Google Scholar] [CrossRef]
- Singh, N.; Arthur, T.S.; Ling, C.; Matsui, M.; Mizuno, F. A high energy-density tin anode for re-chargeable magnesium-ion batteries. Chem. Commun. 2013, 49, 149–151. [Google Scholar] [CrossRef]
- Parent, L.R.; Cheng, Y.; Sushko, P.V.; Shao, Y.; Liu, J.; Wang, C.-M.; Browning, N.D. Realizing the Full Potential of Insertion Anodes for Mg-Ion Batteries Through the Nanostructuring of Sn. Nano Lett. 2015, 15, 1177–1182. [Google Scholar] [CrossRef]
- Cheng, Y.; Shao, Y.; Parent, L.R.; Sushko, M.L.; Li, G.; Sushko, P.V.; Browning, N.D.; Wang, C.; Liu, J. Interface Promoted Reversible Mg Insertion in Nanostructured Tin-Antimony Alloys. Adv. Mater. 2015, 27, 6598–6605. [Google Scholar] [CrossRef]
- Wang, Z.; Su, Q.; Shi, J.; Deng, H.; Yin, G.Q.; Guan, J.; Wu, M.P.; Zhou, Y.L.; Lou, H.L.; Fu, Y.Q. Comparison of Tetragonal and Cubic Tin as Anode for Mg Ion Batteries. ACS Appl. Mater. Interfaces 2014, 6, 6786–6789. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, D.-T.; Tran, X.M.; Kang, J.; Song, S.-W. Magnesium Storage Performance and Surface Film Formation Behavior of Tin Anode Material. ChemElectroChem 2016, 3, 1813–1819. [Google Scholar] [CrossRef]
- Niu, J.; Gao, H.; Ma, W.; Luo, F.; Yin, K.; Peng, Z.; Zhang, Z. Dual phase enhanced superior electro-chemical performance of nanoporous bismuth-tin alloy anodes for magnesium-ion batteries. Energy Storage Mater. 2018, 14, 351–360. [Google Scholar] [CrossRef]
- Massaro, A.; Muñoz-García, A.B.; Maddalena, P.; Bella, F.; Meligrana, G.; Gerbaldi, C.; Pavone, M. First-principles study of Na insertion at TiO2 anatase surfaces: New hints for Na-ion battery design. Nanoscale Adv. 2020, 2, 2745–2751. [Google Scholar] [CrossRef]
- Bella, F.; Muñoz-García, A.B.; Colò, F.; Meligrana, G.; Lamberti, A.; Destro, M.; Pavone, M.; Gerbaldi, C. Combined structural, chemometric, and electrochemical investigation of vertically aligned TiO2 nano-tubes for Na-ion batteries. ACS Omega 2018, 3, 8440–8450. [Google Scholar] [CrossRef] [Green Version]
- Thimmappa, R.; Gautam, M.; Aralekallu, S.; Devendrachar, M.I.C.; Kottaichamy, A.R.; Bhat, Z.M.; Thotiyl, M.O. A Rechargeable Aqueous Sodium-Ion Battery. ChemElectroChem 2019, 6, 2095–2099. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, X.; Duan, Y.; Chen, L.; Zhang, X.; Feng, X.; Chen, W.; Zhao, Y. Stable cross-linked gel terpolymer electrolyte containing methyl phosphonate for sodium ion batteries. J. Membr. Sci. 2019, 583, 163–170. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Chai, J.; Liu, T.; Hu, R.; Zhang, Z.; Li, G.; Cui, G. A novel single-ion conducting gel polymer electrolyte based on polymeric sodium tartaric acid borate for elevated-temperature sodium metal batteries. Solid State Ionics 2019, 337, 140–146. [Google Scholar] [CrossRef]
- Luo, L.; Zhen, Y.; Lu, Y.; Zhou, K.; Huang, J.; Huang, Z.; Mathur, S.; Hong, Z. Structural evolution from layered Na2Ti3O7 to Na2Ti6O13 nanowires enabling a highly reversible anode for Mg-ion batteries. Nanoscale 2020, 12, 230–238. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, F.; Lei, X.; Zheng, Y.; Zhao, G.; Tang, Y.; Lee, C.S. Pseudocapacitive Ti-doped ni-obium pentoxide nanoflake structure design for a fast kinetics anode toward a high-performance Mg-ion-based dual-ion battery. ACS Appl. Mater. Interfaces 2020, 12, 47539–47547. [Google Scholar] [CrossRef]
- Imperiyka, M.; Ahmad, A.; Hanifah, S.A.; Bella, F. A UV-prepared linear polymer electrolyte mem-brane for dye-sensitized solar cells. Physica B 2014, 450, 151–154. [Google Scholar] [CrossRef]
- Sacco, A.; Bella, F.; De La Pierre, S.; Castellino, M.; Bianco, S.; Bongiovanni, R.; Pirri, C.F. Elec-trodes/electrolyte interfaces in the presence of a surface-modified photopolymer electrolyte: Application in dye-sensitized solar cells. ChemPhysChem 2015, 16, 960–969. [Google Scholar] [CrossRef]
- Bella, F.; Galliano, S.; Piana, G.; Giacona, G.; Viscardi, G.; Grätzel, M.; Barolo, C.; Gerbaldi, C. Boosting the efficiency of aqueous solar cells: A photoelectrochemical estimation on the effectiveness of TiCl4 treatment. Electrochimica Acta 2019, 302, 31–37. [Google Scholar] [CrossRef]
- Bella, F.; Sacco, A.; Massaglia, G.; Chiodoni, A.; Pirri, C.F.; Quaglio, M. Dispelling clichés at the nanoscale: The true effect of polymer electrolytes on the performance of dye-sensitized solar cells. Nanoscale 2015, 7, 12010–12017. [Google Scholar] [CrossRef]
- Bella, F.; Chiappone, A.; Nair, J.R.; Meligrana, G.; Gerbaldi, C. Effect of different green cellulosic matrices on the performance of polymeric dye-sensitized solar cells. Chem. Eng. Trans. 2014, 41, 211–216. [Google Scholar]
- Zhang, H.; Cao, D.; Bai, X. High rate performance of aqueous magnesium-ion batteries based on the δ-MnO2@carbon molecular sieves composite as the cathode and nanowire VO2 as the anode. J. Power Sources 2019, 444, 227299. [Google Scholar] [CrossRef]
- Shakerzadeh, E.; Kazemimoghadam, F. Magnesiation of bare and halides encapsulated B40 fullerenes for their potential application as promising anode materials for Mg-ion batteries. Appl. Surf. Sci. 2021, 538, 148060. [Google Scholar] [CrossRef]
- Wu, D.; Yang, B.; Chen, H.; Ruckenstein, E. Mechanical deformation induced charge redistribution to promote the high performance of stretchable magnesium-ion batteries based on two-dimensional C2N an-odes. Nanoscale 2019, 11, 15472–15478. [Google Scholar] [CrossRef] [PubMed]
- Murgia, F.; Weldekidan, E.T.; Stievano, L.; Monconduit, L.; Berthelot, R. First investigation of in-dium-based electrode in Mg battery. Electrochem. Commun. 2015, 60, 56–59. [Google Scholar] [CrossRef]
- Blondeau, L.; Surblé, S.; Foy, E.; Khodja, H.; Gauthier, M. Electrochemical reactivity of In-Pb solid solution as a negative electrode for rechargeable Mg-ion batteries. J. Energy Chem. 2021, 55, 124–128. [Google Scholar] [CrossRef]
- Periyapperuma, K.; Tran, T.T.; Purcell, M.; Obrovac, M. The Reversible Magnesiation of Pb. Electrochim. Acta 2015, 165, 162–165. [Google Scholar] [CrossRef]
- Bella, F.; Pugliese, D.; Nair, J.R.; Sacco, A.; Bianco, S.; Gerbaldi, C.; Barolo, C.; Bongiovanni, R. A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent ef-ficiency and durability. Phys. Chem. Chem. Phys. 2013, 15, 3706–3711. [Google Scholar] [CrossRef]
- Bella, F.; Imperiyka, M.; Ahmad, A. Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 2014, 289, 73–80. [Google Scholar] [CrossRef]
- Bella, F.; Vlachopoulos, N.; Nonomura, K.; Zakeeruddin, S.M.; Grätzel, M.; Gerbaldi, C.; Hagfeldt, A. Direct light-induced polymerization of cobalt-based redox shuttles: An ultrafast way towards stable dye-sensitized solar cells. Chem. Commun. 2015, 51, 16308–16311. [Google Scholar] [CrossRef] [Green Version]
- Bella, F.; Lamberti, A.; Bianco, S.; Tresso, E.; Gerbaldi, C.; Pirri, C.F. Floating, flexible polymeric dye-sensitized solar-cell architecture: The way of near-future photovoltaics. Adv. Mater. Technol. 2016, 1, 1600002. [Google Scholar] [CrossRef]
Battery Type | Specific Energy—Gravimetric (Wh kg−1) | Cycle Life (Lifetime) | Advantages | Technical and Cost Barriers |
---|---|---|---|---|
Lead acid [58] | 30–50 | 500–1000 | Low cost, mature and readily available, reliable and easily replaced, suitable for power quality, UPS and spinning reserve applications. | Short cycling capability, low power and energy density, slow charge. Low weight-to-energy ratio, thermal management requirement, environmental hazards, but fully recyclable. |
Ni-Cd sealed [59] | 30–45 | 500–800 | Relatively high energy density, relatively low cycling capability, high mechanical resistance, low maintenance requirement, suitable for power tools, emergency lighting, generator starting, telecoms and portable devices. | High cost, environmental hazards, memory effect. |
Ni-MH [59] | 40–80 | 600–1200 | Hybrid electric vehicles, portable electronic devices. | High self-discharge rate, low-temperature performance of the metal-hydride anode. |
Na-S [58] | 150–240 | 2500 | Relatively high power and energy density, efficient, economical for power quality and peak shaving purposes. | High operating temperature (≈ 300–350 °C). Heat source requirement, high cost. |
NaNiCl ZEBRA [59] | 85–140 | ≈ 2500 | Ability to withstand limited overcharge and discharge, relatively high electrochemical cell voltage (2.58 V), suitable for load-levelling applications | High operating temperature (≈ 270–350 °C), limited energy density. Lower power and energy density compared to NaS. |
Vanadium redox flow battery [58] | 10–30 | 12,000 | Energy and power independent, long life cycle, low self-discharge rates. Useful for large-scale applications. | High cost, complex standardization, low energy and power density, toxic remains. |
Lithium ion [10,59,60] | 100–300 | > 5000 | Relatively high power and density, almost 100% efficient, higher cycling capacity, fast response to charge and discharge operations. Useful for laptop computers, mobile devices, hybrid electric vehicles. | Reduced first-cycle capacity loss and volumetric expansion of intermetallic electrodes. High cost, degrades at high temperatures. |
Element | Average Abundancy (ppm) | Element | Average Abundancy (ppm) |
---|---|---|---|
Aluminium | 84,249 | Sulphur | 404 |
Iron | 52,157 | Chromium | 320 |
Magnesium | 28,104 | Zinc | 72 |
Sodium | 22,774 | Copper | 27 |
Titanium | 4136 | Cobalt | 26.6 |
Manganese | 774 | Nickel | 26.6 |
Phosphorus | 567 | Lanthanum | 20 |
Barium | 456 | Lithium | 16 |
Maximum Specific Capacity (mAh g−1) | Specific Capacity at the 100th Cycle (mAh g−1) | |
---|---|---|
Bi | 257 | 222 |
Bi0.88Sb0.12 | 298 | 215 |
Contribution of Bi (mAh g−1) | Contribution of Sn (mAh g−1) | |
---|---|---|
NP-Bi4Sn6 | 202 | 280 |
NP-Bi6Sn4 | 246 | 188 |
Contribution of Bi to Initial Specific Capacity | Contribution of Bi to Specific Capacity at the 200th Cycle | Percentage of Capacity Fading of Bi | Contribution of Sn to Initial Specific Capacity | Contribution of Sn to Specific Capacity at the 200th Cycle | Percentage of Capacity Fading of Sn |
---|---|---|---|---|---|
248 mAh g−1 | 154 mAh g−1 | 37.9% | 164 mAh g−1 | 126 mAh g−1 | 22.7% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bella, F.; De Luca, S.; Fagiolari, L.; Versaci, D.; Amici, J.; Francia, C.; Bodoardo, S. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials 2021, 11, 810. https://doi.org/10.3390/nano11030810
Bella F, De Luca S, Fagiolari L, Versaci D, Amici J, Francia C, Bodoardo S. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials. 2021; 11(3):810. https://doi.org/10.3390/nano11030810
Chicago/Turabian StyleBella, Federico, Stefano De Luca, Lucia Fagiolari, Daniele Versaci, Julia Amici, Carlotta Francia, and Silvia Bodoardo. 2021. "An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables" Nanomaterials 11, no. 3: 810. https://doi.org/10.3390/nano11030810
APA StyleBella, F., De Luca, S., Fagiolari, L., Versaci, D., Amici, J., Francia, C., & Bodoardo, S. (2021). An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables. Nanomaterials, 11(3), 810. https://doi.org/10.3390/nano11030810