Sulvanites: The Promise at the Nanoscale
Abstract
:1. Introduction
2. Sulvanites Structure
3. Preparation of Cu3MX4
3.1. Solid-State Synthesis
3.2. Pulsed Laser Deposition
3.3. Solution-Phase Synthesis
4. Electronic Structure and Properties of Sulvanites
5. Optical Properties
6. Elastic Properties
7. Thermodynamic Properties
8. Recent Developments
8.1. Cu3TaS4, Cu3TaSe4, and Cu3VS4 Thin-Films
8.2. Cu3VS4 and Cu3VSe4 Nanocrystals
8.3. Cu3VSe4 Nanosheets
8.4. Cu3TaS4, and Cu3TaSe4 Nanocrystals
8.5. Photocatalysts and Photoelectrodes from Cu3MS4
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arribart, H.; Sapoval, B.; Gorochov, O.; LeNagard, N. Fast ion transport at room temperature in the mixed conductor Cu3VS4. Solid State Commun. 1978, 26, 435–439. [Google Scholar] [CrossRef]
- Arribart, H.; Sapoval, B. Theory of mixed conduction due to cationic interstitials in the p-type semiconductor Cu3VS4. Electrochim. Acta 1979, 24, 751–754. [Google Scholar] [CrossRef]
- Espinosa-García, W.F.; Pérez-Walton, S.; Osorio-Guillén, J.M.; Moyses Araujo, C. The electronic and optical properties of the sulvanite compounds: A many-body perturbation and time-dependent density functional theory study. J. Phys. Condens. Matter 2018, 30, 035502. [Google Scholar] [CrossRef]
- Lv, X.S.; Deng, Z.H.; Miao, F.X.; Gu, G.X.; Sun, Y.L.; Zhang, Q.L.; Wan, S.M. Fundamental optical and electrical properties of nano-Cu3VS4 thin film. Opt. Mater. (Amst.) 2012, 34, 1451–1454. [Google Scholar] [CrossRef]
- Kehoe, A.B.; Scanlon, D.O.; Watson, G.W. The electronic structure of sulvanite structured semiconductors Cu3MCh4 (M = V, Nb, Ta; Ch = S, Se, Te): Prospects for optoelectronic applications. J. Mater. Chem. C 2015, 3, 12236–12244. [Google Scholar] [CrossRef] [Green Version]
- Kehoe, A.B.; Scanlon, D.O.; Watson, G.W. Modelling potential photovoltaic absorbers Cu3MCh4 ( M = V, Nb, Ta; Ch = S, Se, Te) using density functional theory. J. Phys. Condens. Matter 2016, 28, 175801. [Google Scholar] [CrossRef]
- Newhouse, P.F.; Hersh, P.A.; Zakutayev, A.; Richard, A.; Platt, H.A.S.; Keszler, D.A.; Tate, J. Thin film preparation and characterization of wide band gap Cu3TaQ4 (Q = S or Se) p-type semiconductors. Thin Solid Films 2009, 517, 2473–2476. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Zhang, M.; Radu, D.R. Cascade synthesis and optoelectronic applications of intermediate bandgap Cu3VSe4 nanosheets. Sci. Rep. 2020, 10, 21679. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Selopal, G.S.; Radu, D.R. Synthesis and optoelectronic properties of Cu3VSe4 nanocrystals. PLoS ONE 2020, 15, e0232184. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Chang, C.-Y.; Radu, D.R. Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals 2021, 11, 51. [Google Scholar] [CrossRef]
- Ikeda, S.; Aono, N.; Iwase, A.; Kobayashi, H.; Kudo, A. Cu3MS4 (M=V, Nb, Ta) and its Solid Solutions with Sulvanite Structure for Photocatalytic and Photoelectrochemical H2 Evolution under Visible-Light Irradiation. ChemSusChem 2019, 12, 1977–1983. [Google Scholar] [CrossRef]
- Mantella, V.; Ninova, S.; Saris, S.; Loiudice, A.; Aschauer, U.; Buonsanti, R. Synthesis and Size-Dependent Optical Properties of Intermediate Band Gap Cu3VS4 Nanocrystals. Chem. Mater. 2019, 31, 532–540. [Google Scholar] [CrossRef] [Green Version]
- Pauling, L.; Hultgren, R. The Crystal Structure of Sulvanite, Cu3VS4. Z. Krist. Cryst. Mater. 1933, 84, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Hulliger, F. New semiconductor compounds of the sulvanite type. Helv. Phys. Acta 1961, 34, 379–382. [Google Scholar]
- Van Arkel, A.E.; Crevecoeur, C. Quelques sulfures et séléniures complexes. J. Less Common Met. 1963, 5, 177–180. [Google Scholar] [CrossRef]
- Trojer, F. Refinement of the Structure of Sulvanite. Am. Mineral. 1966, 51, 890–894. [Google Scholar]
- Lu, Y.-J.; Ibers, J.A. Synthesis and Characterization of Cu3NbSe4 and KCu2TaSe4. J. Solid State Chem. 1993, 107, 58–62. [Google Scholar] [CrossRef]
- Klepp, K.O.; Gurtner, D. Crystal structure of tricopper tetraselenidovanadate(V), Cu3VSe4. Z. Krist. New Cryst. Struct. 2000, 215, 4. [Google Scholar] [CrossRef]
- Kars, M.; Rebbah, A.; Rebbah, H. Cu3NbS4. Acta Crystallogr. Sect. E Struct. Rep. Online 2005, 61. [Google Scholar] [CrossRef]
- Delgado, G.E.; Mora, A.J.; Durán, S.; Muñoz, M.; Grima-Gallardo, P. Structural characterization of the ternary compound Cu3TaSe4. J. Alloys Compd. 2007, 439, 346–349. [Google Scholar] [CrossRef]
- Delgado, G.E.; Mora, A.J.; Grima-Gallardo, P.; Durán, S.; Muñoz, M.; Quintero, M. Synthesis and characterization of the ternary Chalcogenide compound Cu3NbTe4. Chalcogenide Lett. 2009, 6, 335–338. [Google Scholar]
- Schleich, D.M.; Rosso, M. Li + insertion studies in Cu3VS4. Solid State Ion. 1981, 5, 383–385. [Google Scholar] [CrossRef]
- Liu, X.-P.; Feng, Z.-Z.; Guo, S.-P.; Xia, Y.; Zhang, Y. Promising thermoelectric materials of Cu3VX4 (X=S, Se, Te): A Cu-V-X framework plus void tunnels. Int. J. Mod. Phys. C 2019, 30, 1950045. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, T.; Luo, X.; Li, Y.; Long, J.; Wu, K. Tuning Intermediate-Band Cu3VS4 Nanocrystals from Plasmonic-like to Excitonic via Shell-Coating. Chem. Mater. 2020, 32, 224–233. [Google Scholar] [CrossRef]
- Petritis, D.; Martinez, G.; Levy-Clement, C.; Gorochov, O. Investigation of the vibronic properties of Cu3VS4, CU3NbS4, and Cu3TaS4 compounds. Phys. Rev. B 1981, 23, 6773–6786. [Google Scholar] [CrossRef]
- Peralta, J.; Valencia-Balvín, C. Vibrational properties of Cu3XY4 sulvanites (X = Nb, Ta, and V; and Y = S, and Se) by ab initio molecular dynamics. Eur. Phys. J. B 2017, 90. [Google Scholar] [CrossRef]
- Ali, M.A.; Jahan, N.; Islam, A.K.M.A. Sulvanite Compounds Cu3TMS4 (TM = V, Nb and Ta): Elastic, Electronic, Optical and Thermal Properties using First-principles Method. J. Sci. Res. 2014, 6, 407–419. [Google Scholar] [CrossRef] [Green Version]
- Omloo, W.P.F.A.M.; Jellinek, F. Spectra of some tetrathiometallates and tetraselenometallates. Recl. Trav. Chim. Pays Bas 1969, 88, 1205–1212. [Google Scholar] [CrossRef]
- Osorio-Guillén, J.M.; Espinosa-García, W.F. A first-principles study of the electronic structure of the sulvanite compounds. Phys. B Condens. Matter 2012, 407, 985–991. [Google Scholar] [CrossRef]
- Mujica, C.; Carvajal, G.; Llanos, J.; Wittke, O. Redetermination of the crystal structure of copper(I) tetrathiovanadate (sulvanite), CU3VS4. Z. Krist. New Cryst. Struct. 1998, 213, 12. [Google Scholar] [CrossRef] [Green Version]
- Bougherara, K.; Litimein, F.; Khenata, R.; Uçgun, E.; Ocak, H.Y.; Uğur, Ş.; Uğur, G.; Reshak, A.; Soyalp, F.; Omran, S. Bin Structural, Elastic, Electronic and Optical Properties of Cu3TMSe4 (TM = V, Nb and Ta) Sulvanite Compounds via First-Principles Calculations. Sci. Adv. Mater. 2013, 5, 97–106. [Google Scholar] [CrossRef] [Green Version]
- Hong, A.J.; Yuan, C.L.; Gu, G.; Liu, J.-M. Novel p-type thermoelectric materials Cu3MCh4 (M = V, Nb, Ta; Ch = Se, Te): High band-degeneracy. J. Mater. Chem. A 2017, 5, 9785–9792. [Google Scholar] [CrossRef]
- Golub, A.; Allali, N.; Guyomard, D.; Danot, M. Lithium intercalation-deintercalation reactions using matrixes with the sulvanite structure: Dimensionality lowering of the host-structure. Mater. Res. Bull. 1995, 30, 959–966. [Google Scholar] [CrossRef]
- Chen, E.M.; Stoyko, S.S.; Aitken, J.A.; Poudeu, P.F.P. Tuning the optical, electronic and thermal properties of Cu3NbS4−xSex through chemical substitution. Inorg. Chem. Front. 2017, 4, 1493–1500. [Google Scholar] [CrossRef]
- Delgado, G.E.; Contreras, J.E.; Mora, A.J.; Durán, S.; Muñoz, M.; Grima-Gallardo, P. Structure Refinement of the Semiconducting Compound Cu3TaS4 from X-Ray Powder Diffraction Data. Acta Phys. Pol. A 2011, 120, 468–472. [Google Scholar] [CrossRef]
- Zitter, K.; Schmand, J.; Wagner, K.; Schöllhorn, R. Isomer shifts of the 6.2 keV nuclear transition of Ta-181 in sulvanite type ternary phases Cu3TaX4 (X=S,Se,Te). Mater. Res. Bull. 1984, 19, 801–805. [Google Scholar] [CrossRef]
- Ali, S.I.; van Smaalen, S. Single Crystal X-ray Structure of Cu3TaSe4 and a Comparative Study of Cu3MX4 (M = V, Nb, Ta; X = S, Se, Te). Z. Anorg. Allg. Chem. 2014, 640, 931–934. [Google Scholar] [CrossRef]
- Li, J.; Guo, H.-Y.; Proserpio, D.M.; Sironi, A. Exploring Tellurides: Synthesis and Characterization of New Binary, Ternary, and Quaternary Compounds. J. Solid State Chem. 1995, 117, 247–255. [Google Scholar] [CrossRef]
- Nitsche, R.; Wild, P. Crystal growth and electro-optic effect of copper-tantalum-selenide, Cu3TaSe4. J. Appl. Phys. 1967, 38, 5413–5414. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, X.; Peng, H.-C. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products. J. Am. Chem. Soc. 2015, 137, 7947–7966. [Google Scholar] [CrossRef] [PubMed]
- Takayama, T.; Tsuji, I.; Aono, N.; Harada, M.; Okuda, T.; Iwase, A.; Kato, H.; Kudo, A. Development of Various Metal Sulfide Photocatalysts Consisting of d 0, d 5, and d 10 Metal Ions for Sacrificial H 2 Evolution under Visible Light Irradiation. Chem. Lett. 2017, 46, 616–619. [Google Scholar] [CrossRef] [Green Version]
- Tate, J.; Newhouse, P.F.; Kykyneshi, R.; Hersh, P.A.; Kinney, J.; McIntyre, D.H.; Keszler, D.A. Chalcogen-based transparent conductors. Thin Solid Films 2008, 516, 5795–5799. [Google Scholar] [CrossRef]
- Mourdikoudis, S.; Liz-Marzán, L.M. Oleylamine in nanoparticle synthesis. Chem. Mater. 2013, 25, 1465–1476. [Google Scholar] [CrossRef]
- Chen, C.-C.; Stone, K.H.; Lai, C.-Y.; Dobson, K.D.; Radu, D. Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics. Mater. Lett. 2018, 211, 179–182. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, D.; Swihart, M.T. Valence Selectivity of Cation Incorporation into Covellite CuS Nanoplatelets. Chem. Mater. 2018, 30, 1399–1407. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, M.; Swihart, M.T. Plasmonic Copper Sulfide-Based Materials: A Brief Introduction to Their Synthesis, Doping, Alloying, and Applications. J. Phys. Chem. C 2017, 121, 13435–13447. [Google Scholar] [CrossRef]
- Wang, Q.; Li, J.; Li, J. Enhanced thermoelectric performance of Cu3SbS4 flower-like hierarchical architectures composed of Cl doped nanoflakes via an in situ generated CuS template. Phys. Chem. Chem. Phys. 2018, 20, 1460–1475. [Google Scholar] [CrossRef]
- Wang, Q.; Fang, Y.; Yin, H.; Li, J. Inhomogenous doping induced the imperfect self-assembly of nanocrystals for the synthesis of porous AgPb10BiTe12 nanosheets and their thermoelectric transport properties. Chem. Commun. 2015, 51, 1594–1596. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, P.; Kim, M.; Ra, H.-S.; Kim, J.; Lee, J.-S. Bandgap tunable colloidal Cu-based ternary and quaternary chalcogenide nanosheets via partial cation exchange. Nanoscale 2016, 8, 7906–7913. [Google Scholar] [CrossRef] [PubMed]
- van Embden, J.; Chesman, A.S.R.; Jasieniak, J.J. The Heat-Up Synthesis of Colloidal Nanocrystals. Chem. Mater. 2015, 27, 2246–2285. [Google Scholar] [CrossRef]
- Webber, D.H.; Buckley, J.J.; Antunez, P.D.; Brutchey, R.L. Facile dissolution of selenium and tellurium in a thiol–amine solvent mixture under ambient conditions. Chem. Sci. 2014, 5, 2498. [Google Scholar] [CrossRef]
- Ntholeng, N.; Mojela, B.; Gqoba, S.; Airo, M.; Govindraju, S.; Moloto, M.J.; Van Wyk, J.; Moloto, N. Colloidal synthesis of pure CuInTe2 crystallites based on the HSAB theory. New J. Chem. 2016, 40, 10259–10266. [Google Scholar] [CrossRef] [Green Version]
- Grima-Gallardo, P.; Salas, M.; Contreras, O.; Power, C.; Quintero, M.; Cabrera, H.; Zumeta-Dubé, I.; Rodríguez, A.; Aitken, J.; Brämer-Escamilla, W. Cu3TaSe4 and Cu3NbSe4: X-ray diffraction, differential thermal analysis, optical absorption and Raman scattering. J. Alloys Compd. 2016, 658, 749–756. [Google Scholar] [CrossRef]
- Espinosa-García, W.; Aramburo, A.M.; Guillén, J.M.O. Electronic properties of the sulvanite compounds: Cu3TMS4 (TM = V, Nb, Ta). Rev. Colomb. Fis. 2008, 40, 4–7. [Google Scholar]
- Hersh, P.A. Wide Band Gap Semiconductors and Insulators: Synthesis, Processing and Characterization; Oregon State University: Corvallis, OR, USA, 2007. [Google Scholar]
- Taghizade, N.; Firouzian, A.H.; Nouri, A.; Faghihnasiri, M. Mechanical, thermal, electronic and optical properties of Cu3NbS4: An ab-initio study. Mater. Res. Express 2019, 6, 96528. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Zhang, T.; Qi, X.; Ming, G.; Wang, G.; Quan, X.; Yang, D. Natural sulvanite Cu3MX4 (M = Nb, Ta; X = S, Se): Promising visible-light photocatalysts for water splitting. Comput. Mater. Sci. 2019, 165, 137–143. [Google Scholar] [CrossRef]
- Lévy, C.; Caye, R.; Cervelle, B.; Gouet, G. Détermination par microspectrométrie en réflexion de bandes d’absorption sélective dans la sulvanite Cu3VS4. Bull. Minér. 1981, 104, 172–176. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1954; ISBN 9780198503699. [Google Scholar]
- Espinosa-García, W.F.; Ruiz-Tobón, C.M.; Osorio-Guillén, J.M. The elastic and bonding properties of the sulvanite compounds: A first-principles study by local and semi-local functionals. Phys. B Condens. Matter 2011, 406, 3788–3793. [Google Scholar] [CrossRef]
- Söderlind, P.; Eriksson, O.; Wills, J.M.; Boring, A.M. Theory of elastic constants of cubic transition metals and alloys. Phys. Rev. B 1993, 48, 5844–5851. [Google Scholar] [CrossRef] [PubMed]
- Hill, R. The Elastic Behaviour of a Crystalline Aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Pugh, S.F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1954, 45, 823–843. [Google Scholar] [CrossRef]
- Frantsevich, I.N.; Voronov, F.F.; Bokuta, S.A. Elastic Constants and Elastic Moduli of Metals and Insulators Handbook; Frantsevich, I.N., Ed.; Naukova Dumka: Kiev, Ukraine, 1983. [Google Scholar]
- Espinosa-García, W.F.; Valencia-Balvín, C.; Osorio-Guillén, J.M. Phononic and thermodynamic properties of the sulvanite compounds: A first-principles study. Comput. Mater. Sci. 2016, 113, 275–279. [Google Scholar] [CrossRef]
- Deng, D.; Chen, X.; Yu, L.; Wu, X.; Liu, Q.; Liu, Y.; Yang, H.; Tian, H.; Hu, Y.; Du, P.; et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 2015, 1, e1500462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1. [Google Scholar] [CrossRef]
- Wei, Z.; Janczarek, M.; Wang, K.; Zheng, S.; Kowalska, E. Morphology-Governed Performance of Plasmonic Photocatalysts. Catalysts 2020, 10, 1070. [Google Scholar] [CrossRef]
a [Å] | a [Å] | |||||
---|---|---|---|---|---|---|
Experimental | PBE | PBEsol | HSE06 | Other | ||
Cu3VS4 | 5.36 [24] | 5.391 [25] | 5.41 [23] | 5.31 [26] | 5.46 [6] | |
5.37 [13] | 5.3912 [16] | 5.4213 [27] | 5.358 [5] * | |||
5.384 [28] | 5.3918 [4] | 5.4374 [29] | ||||
5.39 [15] | 5.393 [30] | |||||
5.391 [14] | 5.4675 [4] | |||||
Cu3VSe4 | 5.569 [14] | 5.62 [23] | 5.51 [26] | 5.672 [6] | 5.53 [31] † | |
5.559 [28] | 5.65 [32] | 5.557 [5] * | ||||
5.5636 [18] | ||||||
5.57 [15] | ||||||
Cu3VTe4 | 5.859 [14] | 5.93 [23] | 5.838 [5] * | 5.988 [6] | ||
5.95 [32] | ||||||
Cu3NbS4 | 5.494 [28] | 5.5292 [27] | 5.41 [26] | 5.572 [6] | ||
5.495 [33] | 5.5492 [29] | 5.472 [5] * | ||||
5.5 [14,15,25] | ||||||
5.5001 [19] | ||||||
5.501 [34] | ||||||
Cu3NbSe4 | 5.654 [14] | 5.73 [32] | 5.59 [26] | 5.746 [6] | 5.6372 [31] † | |
5.638 [17] | 5.641 [5] * | |||||
5.65 [15] | ||||||
5.655 [34] | ||||||
5.657 [28] | ||||||
Cu3NbTe4 | 5.923 [14] | 5.525 [25] | 6.00 [32] | 5.902 [5] * | 6.03 [6] | |
5.9217 [21] | ||||||
Cu3TaS4 | 5.514 [14] | 5.5588 [29] | 5.43 [26] | 5.584 [6] | ||
5.506 [28] | 5.5622 [27] | 5.480 [5] * | ||||
5.5145 [35] | ||||||
5.5185 [36] | ||||||
5.52 [15] | ||||||
Cu3TaSe4 | 5.664 [14] | 5.688 [28] | 5.74 [32] | 5.59 [26] | 5.753 [6] | 5.641 [31] † |
5.66 [20] | 5.650 [5] * | |||||
5.6613 [37] | ||||||
5.6625 [36] | ||||||
5.67 [15] | ||||||
Cu3TaTe4 | 5.928 [14] | 6.01 [32] | 5.906 [5] * | 6.033 [6] | ||
5.9283 [36] | ||||||
5.93 [38] |
Compound | |||||||
---|---|---|---|---|---|---|---|
Experimental | PBE | PBEsol | PBEsol + U | HSE06 | Other | ||
Cu3VS4 | 1.3 [25] | 1.02 [29,54] | 1.04 [3] | 1.13 [5] | 2.05 [6] | 1.04 [11] | |
1.35 [4] | 1.03 [23] | 2.07 [3] | 2.26 [3] † | ||||
1.55 [11] | 1.041 [27] | ||||||
Cu3VSe4 | 1.81 [9] | 0.82 [23] | 0.81 [3] | 0.87 [5] | 1.73 [3] | 0.820 [31] α | 1.086 [31] * |
1.80 [8] | 0.829 [32] | 1.76 [6] | 0.96 [31] β | 1.91 [3] † | |||
1.061 [32] * | |||||||
Cu3VTe4 | - | 0.57 [23] | 0.53 [5] | 1.23 [6] | 0.769 [32] * | ||
0.592 [32] | |||||||
Cu3NbS4 | 2.50 [11] | 1.64 [54] | 1.64 [3] | 1.82 [5] | 2.66 [3,6] | 1.69 [11] | |
2.56 [55] | 1.66 [29] | 1.65 [56] | 3.01 [3] † | ||||
2.6 [34] | 1.667 [27] | ||||||
Cu3NbSe4 | 2.13 [55] | 1.376 [32] | 1.32 [3] | 1.45 [5] | 2.20 [3] | 1.36 [31] α | 1.53 [31] * |
2.14 [53] | 2.24 [6] | 1.52 [31] β | 2.24 [3] † | ||||
2.2 [34] | 1.520 [32] * | ||||||
Cu3NbTe4 | - | 0.976 [32] | 0.92 [5] | 1.62 [6] | 1.086 [32] * | ||
Cu3TaS4 | 2.54 [10] | 1.815 [27] | 1.88 [3] | 2.10 [5] | 2.94 [3] | 1.84 [11] | |
2.70 [7] | 1.94 [29] | 2.97 [6] | 3.19 [3] † | ||||
2.75 [55] | 1.91 [54] | ||||||
2.83 [11] | |||||||
Cu3TaSe4 | 2.32 [10] | 1.611 [32] | 1.54 [3] | 1.71 [5] | 2.47 [3] | 1.581 [31] α | 1.845 [31] * |
2.35 [7] | 2.52 [6] | 1.798 [31] β | 2.38 [3] † | ||||
2.36 [55] | 1.828 [32] * | ||||||
2.43 [53] | |||||||
Cu3TaTe4 | - | 1.171 [32] | 1.11 [5] | 1.84 [6] | 1.323 [32] * |
Compound | C11 | C12 | C44 | B | G | E | B/G | ν | |
---|---|---|---|---|---|---|---|---|---|
Cu3VS4 | PBE | 92.1 [60] | 17.3 [60] | 20.4 [60] | 42.2 [60] | 27.08 [60] | 66.92 [60] | 1.56 [60] | 0.20 [27] |
92.4 [27] | 16.0 [27] | 26.2 [27] | 41.4 [27] | 30.5 [27] | 73.40 [27] | 1.36 [27] | |||
PBEsol | 104.8 [60] | 20.4 [60] | 21.0 [60] | 48.6 [26,60] | 27.85 [60] | 70.14 [60] | 1.74 [60] | ||
Other | 115.7 [60] * | 23.7 [60] * | 22.3 [60] * | 54.4 [60] * | 29.93 [60] * | 75.88 [60] * | 1.82 [60] * | ||
Cu3NbS4 | PBE | 90.81 [57] | 11.98 [57] | 17.95 [57] | |||||
91.6 [60] | 12.0 [60] | 17.9 [60] | 38.5 [60] | 24.54 [60] | 60.72 [60] | 1.57 [60] | |||
97.8 [27] | 15.6 [27] | 22.3 [27] | 43.0 [27] | 28.5 [27] | 70.00 [27] | 1.51 [27] | 0.22 [27] | ||
PBEsol | 107.0 [60] | 15.1 [60] | 20.7 [60] | 45.7 [60] | 28.66 [60] | 71.11 [60] | 1.59 [60] | ||
105.77 [56] | 14.33 [56] | 20.05 [56] | 44.81 [56] | 28.08 [56] | 69.68 [56] | 1.59 [56] | 0.24 [56] | ||
45.2 [26] | |||||||||
Other | 118.0 [60] * | 18.2 [60] * | 22.1 [60] * | 51.5 [60] * | 30.86 [60] * | 77.18 [60] * | 1.66 [60] * | ||
Cu3TaS4 | PBE | 88.40 [57] | 12.49 [57] | 17.83 [57] | |||||
89.0 [60] | 12.6 [60] | 17.5 [60] | 38.1 [60] | 24.06 [60] | 59.62 [60] | 1.58 [60] | |||
96.2 [27] | 11.0 [27] | 23.6 [27] | 39.4 [27] | 30.0 [27] | 71.70 [27] | 1.31 [27] | 0.19 [27] | ||
PBEsol | 104.6 [60] | 15.2 [60] | 20.4 [60] | 45.0 [60] | 28.12 [60] | 69.82 [60] | 1.60 [60] | ||
44.4 [26] | |||||||||
Other | 115.8 [60] * | 18.4 [60] * | 21.9 [60] * | 50.9 [60] * | 30.39 [60] * | 76.03 [60] * | 1.67 [60] * | ||
Cu3VSe4 | PBE | 69.8 [60] | 16.3 [60] | 19.1 [60] | 34.3 [60] | 21.10 [60] | 52.54 [60] | 1.63 [60] | 0.24 [32] |
109.52 [32] | 52.83 [32] | 57.80 [32] | 71.73 [32] | 43.42 [32] | |||||
PBEsol | 81.1 [60] | 20.2 [60] | 18.8 [60] | 40.5 [60] | 22.80 [60] | 57.59 [60] | 1.77 [60] | ||
40.6 [26] | |||||||||
Other | 83.46 [31] † | 25.69 [31] † | 29.98 [31] † | 44.94 [31] † | 29.54 [31] † | 72.68 [31] † | 1.52 [31] † | ||
92.1 [60] * | 24.2 [60] * | 21.7 [60] * | 46.8 [60] * | 26.02 [60] * | 65.88 [60] * | 1.80 [60] * | 0.23 [60] † | ||
Cu3NbSe4 | PBE | 73.20 [57] | 12.90 [57] | 17.50 [57] | |||||
74.6 [60] | 13.5 [60] | 18.3 [60] | 33.9 [60] | 22.50 [60] | 55.26 [60] | 1.50 [60] | |||
116.31 [32] | 52.25 [32] | 53.54 [32] | 73.60 [32] | 43.52 [32] | 0.25 [32] | ||||
PBEsol | 85.9 [60] | 16.4 [60] | 19.9 [60] | 39.6 [60] | 24.91 [60] | 61.76 [60] | 1.59 [60] | ||
40.2 [26] | |||||||||
Other | 95.7 [60] *89.28 [31] † | 19.5 [60] *21.89 [31] † | 19.9 [60] *32.05 [31] † | 44.9 [60] *43.44 [31] † | 25.88 [60] *32.70 [31] † | 65.14 [60] *78.38 [31] † | 1.73 [60] *1.33 [31] † | 0.20 [31] † | |
Cu3TaSe4 | PBE | 70.40 [57] | 13.20 [57] | 17.40 [57] | |||||
72.4 [60] | 14.1 [60] | 18.2 [60] | 33.6 [60] | 21.99 [60] | 54.14 [60] | 1.53 [60] | |||
116.44 [32] | 55.89 [32] | 54.87 [32] | 76.08 [32] | 43.22 [32] | 0.26 [32] | ||||
PBEsol | 83.5 [60] | 16.9 [60] | 20.0 [60] | 39.1 [60]39.3 [26] | 24.57 [60] | 60.94 [60] | 1.59 [60] | - | |
Other | 90.70 [31] † | 19.2 [31] † | 33.54 [31] † | 43.03 [31] † | 34.41 [31] † | 81.5 [31] † | 1.25 [31] † | 0.18 [31] † | |
93.2 [60] * | 19.7 [60] * | 22.2 [60] * | 44.2 [60] * | 27.23 [60] * | 67.76 [60] * | 1.62 [60] * | |||
Cu3VTe4 | PBE | 86.59 [32] | 47.35 [32] | 53.42 [32] | 60.43 [32] | 35.76 [32] | 0.25 [32] | ||
Cu3NbTe4 | PBE | 94.26 [32] | 47.84 [32] | 52.50 [32] | 63.31 [32] | 37.83 [32] | 0.25 [32] | ||
Cu3TaTe4 | PBE | 93.81 [32] | 50.82 [32] | 53.69 [32] | 65.15 [32] | 37.19 [32] | 0.26 [32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prado-Rivera, R.; Chang, C.-Y.; Liu, M.; Lai, C.-Y.; Radu, D.R. Sulvanites: The Promise at the Nanoscale. Nanomaterials 2021, 11, 823. https://doi.org/10.3390/nano11030823
Prado-Rivera R, Chang C-Y, Liu M, Lai C-Y, Radu DR. Sulvanites: The Promise at the Nanoscale. Nanomaterials. 2021; 11(3):823. https://doi.org/10.3390/nano11030823
Chicago/Turabian StylePrado-Rivera, Roberto, Chen-Yu Chang, Mimi Liu, Cheng-Yu Lai, and Daniela R. Radu. 2021. "Sulvanites: The Promise at the Nanoscale" Nanomaterials 11, no. 3: 823. https://doi.org/10.3390/nano11030823
APA StylePrado-Rivera, R., Chang, C. -Y., Liu, M., Lai, C. -Y., & Radu, D. R. (2021). Sulvanites: The Promise at the Nanoscale. Nanomaterials, 11(3), 823. https://doi.org/10.3390/nano11030823