Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals
Abstract
:1. Introduction
2. Spectral Structure of the Bright Triplet
3. The Dark Ground Exciton State
4. Exciton Relaxation Dynamics and Coupling to Phonons
5. Other Charge Complexes
6. Perovskite Nanocrystals as Quantum Light Sources
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Krieg, F.; Caputo, R.; Hendon, C.H.; Yang, R.X.; Walsh, A.; Kovalenko, M.V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 2015, 15, 3692–3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovalenko, M.V.; Protesescu, L.; Bodnarchuk, M.I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, R.; Pavlovetc, I.M.; Aleshire, K.; Kuno, M. Single Semiconductor Nanostructure Extinction Spectroscopy. J. Phys. Chem. C 2018, 122, 16443–16463. [Google Scholar] [CrossRef]
- Hu, F.; Zhang, H.; Sun, C.; Yin, C.; Lv, B.; Zhang, C.; Yu, W.W.; Wang, X.; Zhang, Y.; Xiao, M. Superior Optical Properties of Perovskite Nanocrystals as Single Photon Emitters. ACS Nano 2015, 9, 12410–12416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponseca, C.S.; Savenije, T.J.; Abdellah, M.; Zheng, K.; Yartsev, A.; Pascher, T.; Harlang, T.; Chabera, P.; Pullerits, T.; Stepanov, A.; et al. Organometal Halide Perovskite Solar Cell Materials Rationalized: Ultrafast Charge Generation, High and Microsecond–Long Balanced Mobilities, and Slow Recombination. J. Am. Chem. Soc. 2014, 136, 5189–5192. [Google Scholar] [CrossRef] [PubMed]
- Krieg, F.; Ochsenbein, S.T.; Yakunin, S.; ten Brinck, S.; Aellen, P.; Süess, A.; Clerc, B.; Guggisberg, D.; Nazarenko, O.; Shynkarenko, Y.; et al. Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability. ACS Energy Lett. 2018, 3, 641–646. [Google Scholar] [CrossRef] [Green Version]
- Tong, Y.; Bohn, B.J.; Bladt, E.; Wang, K.; Müller–Buschbaum, P.; Bals, S.; Urban, A.S.; Polavarapu, L.; Feldmann, J. From Precursor Powders to CsPbX3 Perovskite Nanowires: One–Pot Synthesis, Growth Mechanism, and Oriented Self–Assembly. Angew. Chem. Int. Ed. 2017, 56, 13887–13892. [Google Scholar] [CrossRef]
- Zhang, F.; Zhong, H.; Chen, C.; Wu, X.-G.; Hu, X.; Huang, H.; Han, J.; Zou, B.; Dong, Y. Brightly Luminescent and Color–Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano 2015, 9, 4533–4542. [Google Scholar] [CrossRef]
- Park, Y.-S.; Guo, S.; Makarov, N.S.; Klimov, V.I. Room Temperature Single–Photon Emission from Individual Perovskite Quantum Dots. ACS Nano 2015, 9, 10386–10393. [Google Scholar] [CrossRef]
- Yakunin, S.; Protesescu, L.; Krieg, F.; Bodnarchuk, M.I.; Nedelcu, G.; Humer, M.; De Luca, G.; Fiebig, M.; Heiss, W.; Kovalenko, M.V. Low–threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun. 2015, 6, 8056. [Google Scholar] [CrossRef]
- Ahmadi, M.; Wu, T.; Hu, B. A Review on Organic–Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics. Adv. Mater. 2017, 29, 1605242. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Turyanska, L.; Cao, H.; Zhao, L.; Fay, M.W.; Temperton, R.; O’Shea, J.; Thomas, N.R.; Wang, K.; Luan, W.; et al. Hybrid light emitting diodes based on stable, high brightness all–inorganic CsPbI3 perovskite nanocrystals and InGaN. Nanoscale 2019, 11, 13450–13457. [Google Scholar] [CrossRef] [Green Version]
- Sutherland, B.R.; Sargent, E.H. Perovskite photonic sources. Nat. Photonics 2016, 10, 295. [Google Scholar] [CrossRef]
- Wang, H.; Kim, D.H. Perovskite–based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236. [Google Scholar] [CrossRef] [PubMed]
- Utzat, H.; Sun, W.; Kaplan, A.E.K.; Krieg, F.; Ginterseder, M.; Spokoyny, B.; Klein, N.D.; Shulenberger, K.E.; Perkinson, C.F.; Kovalenko, M.V.; et al. Coherent single–photon emission from colloidal lead halide perovskite quantum dots. Science 2019, 363, 1068–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rainò, G.; Becker, M.A.; Bodnarchuk, M.I.; Mahrt, R.F.; Kovalenko, M.V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moerner, W.E.; Orrit, M. Illuminating Single Molecules in Condensed Matter. Science 1999, 283, 1670–1676. [Google Scholar] [CrossRef]
- Fernée, M.J.; Tamarat, P.; Lounis, B. Cryogenic Single–Nanocrystal Spectroscopy: Reading the Spectral Fingerprint of Individual CdSe Quantum Dots. J. Phys. Chem. Lett. 2013, 4, 609–618. [Google Scholar] [CrossRef] [Green Version]
- Fernée, M.J.; Tamarat, P.; Lounis, B. Spectroscopy of single nanocrystals. Chem. Soc. Rev. 2014, 43, 1311–1337. [Google Scholar] [CrossRef]
- Sinito, C.; Fernée, M.J.; Goupalov, S.V.; Mulvaney, P.; Tamarat, P.; Lounis, B. Tailoring the Exciton Fine Structure of Cadmium Selenide Nanocrystals with Shape Anisotropy and Magnetic Field. ACS Nano 2014, 8, 11651–11656. [Google Scholar] [CrossRef]
- Louyer, Y.; Biadala, L.; Trebbia, J.B.; Fernée, M.J.; Tamarat, P.; Lounis, B. Efficient Biexciton Emission in Elongated CdSe/ZnS Nanocrystals. Nano Lett. 2011, 11, 4370–4375. [Google Scholar] [CrossRef]
- Fernée, M.J.; Sinito, C.; Louyer, Y.; Potzner, C.; Nguyen, T.-L.; Mulvaney, P.; Tamarat, P.; Lounis, B. Magneto–optical properties of trions in non–blinking charged nanocrystals reveal an acoustic phonon bottleneck. Nat. Commun. 2012, 3, 1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coolen, L.; Brokmann, X.; Spinicelli, P.; Hermier, J.P. Emission Characterization of a Single CdSe–ZnS Nanocrystal with High Temporal and Spectral Resolution by Photon–Correlation Fourier Spectroscopy. Phys. Rev. Lett. 2008, 100, 027403. [Google Scholar] [CrossRef]
- Fernée, M.J.; Plakhotnik, T.; Louyer, Y.; Littleton, B.N.; Potzner, C.; Tamarat, P.; Mulvaney, P.; Lounis, B. Spontaneous Spectral Diffusion in CdSe Quantum Dots. J. Phys. Chem. Lett. 2012, 3, 1716–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. Importance of Spin–Orbit Coupling in Hybrid Organic/Inorganic Perovskites for Photovoltaic Applications. J. Phys. Chem. Lett. 2013, 4, 2999–3005. [Google Scholar] [CrossRef] [Green Version]
- Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. DFT and k · p modelling of the phase transitions of lead and tin halide perovskites for photovoltaic cells. Phys. Status Solidi 2014, 8, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Even, J. Pedestrian Guide to Symmetry Properties of the Reference Cubic Structure of 3D All–Inorganic and Hybrid Perovskites. J. Phys. Chem. Lett. 2015, 6, 2238–2242. [Google Scholar] [CrossRef]
- Even, J.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Lauret, J.-S.; Sapori, D.; Deleporte, E. Solid–State Physics Perspective on Hybrid Perovskite Semiconductors. J. Phys. Chem. C 2015, 119, 10161–10177. [Google Scholar] [CrossRef] [Green Version]
- Ben Aich, R.; Saïdi, I.; Ben Radhia, S.; Boujdaria, K.; Barisien, T.; Legrand, L.; Bernardot, F.; Chamarro, M.; Testelin, C. Bright–Exciton Splittings in Inorganic Cesium Lead Halide Perovskite Nanocrystals. Phys. Rev. Appl. 2019, 11, 034042. [Google Scholar] [CrossRef]
- Fu, M.; Tamarat, P.; Huang, H.; Even, J.; Rogach, A.L.; Lounis, B. Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto–optical Spectroscopy. Nano Lett. 2017, 17, 2895–2901. [Google Scholar] [CrossRef]
- Nestoklon, M.O.; Goupalov, S.V.; Dzhioev, R.I.; Ken, O.S.; Korenev, V.L.; Kusrayev, Y.G.; Sapega, V.F.; de Weerd, C.; Gomez, L.; Gregorkiewicz, T.; et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B 2018, 97, 235304. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Chen, L.; Song, N.; Lv, Y.; Hu, F.; Sun, C.; Yu, W.W.; Zhang, C.; Wang, X.; Zhang, Y.; et al. Bright–Exciton Fine–Structure Splittings in Single Perovskite Nanocrystals. Phys. Rev. Lett. 2017, 119, 026401. [Google Scholar] [CrossRef] [Green Version]
- Becker, M.A.; Vaxenburg, R.; Nedelcu, G.; Sercel, P.C.; Shabaev, A.; Mehl, M.J.; Michopoulos, J.G.; Lambrakos, S.G.; Bernstein, N.; Lyons, J.L.; et al. Bright triplet excitons in caesium lead halide perovskites. Nature 2018, 553, 189. [Google Scholar] [CrossRef]
- Kepenekian, M.; Robles, R.; Katan, C.; Sapori, D.; Pedesseau, L.; Even, J. Rashba and Dresselhaus Effects in Hybrid Organic–Inorganic Perovskites: From Basics to Devices. ACS Nano 2015, 9, 11557–11567. [Google Scholar] [CrossRef] [PubMed]
- Sercel, P.C.; Lyons, J.L.; Wickramaratne, D.; Vaxenburg, R.; Bernstein, N.; Efros, A.L. Exciton Fine Structure in Perovskite Nanocrystals. Nano Lett. 2019, 19, 4068–4077. [Google Scholar] [CrossRef] [PubMed]
- Mosconi, E.; Etienne, T.; De Angelis, F. Rashba Band Splitting in Organohalide Lead Perovskites: Bulk and Surface Effects. J. Phys. Chem. Lett. 2017, 8, 2247–2252. [Google Scholar] [CrossRef] [PubMed]
- Rainò, G.; Nedelcu, G.; Protesescu, L.; Bodnarchuk, M.I.; Kovalenko, M.V.; Mahrt, R.F.; Stöferle, T. Single Cesium Lead Halide Perovskite Nanocrystals at Low Temperature: Fast Single–Photon Emission, Reduced Blinking, and Exciton Fine Structure. ACS Nano 2016, 10, 2485–2490. [Google Scholar] [CrossRef] [Green Version]
- Ramade, J.; Andriambariarijaona, L.M.; Steinmetz, V.; Goubet, N.; Legrand, L.; Barisien, T.; Bernardot, F.; Testelin, C.; Lhuillier, E.; Bramati, A.; et al. Fine structure of excitons and electron–hole exchange energy in polymorphic CsPbBr3 single nanocrystals. Nanoscale 2018, 10, 6393–6401. [Google Scholar] [CrossRef]
- Isarov, M.; Tan, L.Z.; Bodnarchuk, M.I.; Kovalenko, M.V.; Rappe, A.M.; Lifshitz, E. Rashba Effect in a Single Colloidal CsPbBr3 Perovskite Nanocrystal Detected by Magneto–Optical Measurements. Nano Lett. 2017, 17, 5020–5026. [Google Scholar] [CrossRef] [Green Version]
- Tamarat, P.; Hou, L.; Trebbia, J.-B.; Swarnkar, A.; Biadala, L.; Louyer, Y.; Bodnarchuk, M.I.; Kovalenko, M.V.; Even, J.; Lounis, B. The dark exciton ground state promotes photon–pair emission in individual perovskite nanocrystals. Nat. Commun. 2020, 11, 6001. [Google Scholar] [CrossRef]
- Lv, Y.; Yin, C.; Zhang, C.; Yu, W.W.; Wang, X.; Zhang, Y.; Xiao, M. Quantum Interference in a Single Perovskite Nanocrystal. Nano Lett. 2019, 19, 4442–4447. [Google Scholar] [CrossRef]
- Tamarat, P.; Bodnarchuk, M.I.; Trebbia, J.-B.; Erni, R.; Kovalenko, M.V.; Even, J.; Lounis, B. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 2019, 18, 717–724. [Google Scholar] [CrossRef]
- Pfingsten, O.; Klein, J.; Protesescu, L.; Bodnarchuk, M.I.; Kovalenko, M.V.; Bacher, G. Phonon Interaction and Phase Transition in Single Formamidinium Lead Bromide Quantum Dots. Nano Lett. 2018, 18, 4440–4446. [Google Scholar] [CrossRef]
- Fu, M.; Tamarat, P.; Trebbia, J.-B.; Bodnarchuk, M.I.; Kovalenko, M.V.; Even, J.; Lounis, B. Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near–infrared single photons. Nat. Commun. 2018, 9, 3318. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, R.; Xiao, C.; Zhang, F.; Pevere, F.; Shi, K.; Huang, H.; Zhong, H.; Sychugov, I. Size–Dependent Phase Transition in Perovskite Nanocrystals. J. Phys. Chem. Lett. 2019, 10, 5451–5457. [Google Scholar] [CrossRef]
- Liu, L.; Pevere, F.; Zhang, F.; Zhong, H.; Sychugov, I. Cation effect on excitons in perovskite nanocrystals from single–dot photoluminescence of CH3NH3PbI3. Phys. Rev. B 2019, 100, 195430. [Google Scholar] [CrossRef]
- Hirotsu, S.; Harada, J.; Iizumi, M.; Gesi, K. Structural Phase Transitions in CsPbBr3. J. Phys. Soc. Jpn. 1974, 37, 1393–1398. [Google Scholar] [CrossRef]
- Stoumpos, C.C.; Malliakas, C.D.; Peters, J.A.; Liu, Z.; Sebastian, M.; Im, J.; Chasapis, T.C.; Wibowo, A.C.; Chung, D.Y.; Freeman, A.J.; et al. Crystal Growth of the Perovskite Semiconductor CsPbBr3: A New Material for High–Energy Radiation Detection. Cryst. Growth Des. 2013, 13, 2722–2727. [Google Scholar] [CrossRef]
- Yu, Z.G. Effective–mass model and magneto–optical properties in hybrid perovskites. Sci. Rep. 2016, 6, 28576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canneson, D.; Shornikova, E.V.; Yakovlev, D.R.; Rogge, T.; Mitioglu, A.A.; Ballottin, M.V.; Christianen, P.C.M.; Lhuillier, E.; Bayer, M.; Biadala, L. Negatively Charged and Dark Excitons in CsPbBr3 Perovskite Nanocrystals Revealed by High Magnetic Fields. Nano Lett. 2017, 17, 6177–6183. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, B.; Zhang, C.; Huang, X.; Wang, X.; Xiao, M. Composition–Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals. Nano Lett. 2018, 18, 2074–2080. [Google Scholar] [CrossRef]
- Ben Aich, R.; Ben Radhia, S.; Boujdaria, K.; Chamarro, M.; Testelin, C. Multiband k·p Model for Tetragonal Crystals: Application to Hybrid Halide Perovskite Nanocrystals. J. Phys. Chem. Lett. 2020, 11, 808–817. [Google Scholar] [CrossRef]
- Sercel, P.C.; Lyons, J.L.; Bernstein, N.; Efros, A.L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 2019, 151, 234106. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.-H.; Raissa, R.; Abdu-Aguye, M.; Adjokatse, S.; Blake, G.R.; Even, J.; Loi, M.A. Photophysics of Organic–Inorganic Hybrid Lead Iodide Perovskite Single Crystals. Adv. Funct. Mater. 2015, 25, 2378–2385. [Google Scholar] [CrossRef]
- Wright, A.D.; Verdi, C.; Milot, R.L.; Eperon, G.E.; Pérez–Osorio, M.A.; Snaith, H.J.; Giustino, F.; Johnston, M.B.; Herz, L.M. Electron–phonon coupling in hybrid lead halide perovskites. Nat. Commun. 2016, 7, 11755. [Google Scholar] [CrossRef]
- Fang, H.-H.; Protesescu, L.; Balazs, D.M.; Adjokatse, S.; Kovalenko, M.V.; Loi, M.A. Exciton Recombination in Formamidinium Lead Triiodide: Nanocrystals versus Thin Films. Small 2017, 13, 1700673. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.-H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Antonietta Loi, M. Photoexcitation dynamics in solution–processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056. [Google Scholar] [CrossRef]
- Lee, J.; Koteles, E.S.; Vassell, M.O. Luminescence linewidths of excitons in GaAs quantum wells below 150 K. Phys. Rev. B 1986, 33, 5512–5516. [Google Scholar] [CrossRef]
- Gauthron, K.; Lauret, J.S.; Doyennette, L.; Lanty, G.; Al Choueiry, A.; Zhang, S.J.; Brehier, A.; Largeau, L.; Mauguin, O.; Bloch, J.; et al. Optical spectroscopy of two–dimensional layered (C6H5C2H4–NH3)2–PbI4 perovskite. Opt. Express 2010, 18, 5912–5919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyata, K.; Atallah, T.L.; Zhu, X.-Y. Lead halide perovskites: Crystal–liquid duality, phonon glass electron crystals, and large polaron formation. Sci. Adv. 2017, 3, e1701469. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.I.; Jacopin, G.; Meloni, S.; Mattoni, A.; Arora, N.; Boziki, A.; Zakeeruddin, S.M.; Rothlisberger, U.; Grätzel, M. Origin of unusual bandgap shift and dual emission in organic–inorganic lead halide perovskites. Sci. Adv. 2016, 2, e1601156. [Google Scholar] [CrossRef] [Green Version]
- Pérez–Osorio, M.A.; Milot, R.L.; Filip, M.R.; Patel, J.B.; Herz, L.M.; Johnston, M.B.; Giustino, F. Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First–Principles Calculations, and Low–Temperature Infrared Spectra. J. Phys. Chem. C 2015, 119, 25703–25718. [Google Scholar] [CrossRef]
- Ferreira, A.C.; Paofai, S.; Létoublon, A.; Ollivier, J.; Raymond, S.; Hehlen, B.; Rufflé, B.; Cordier, S.; Katan, C.; Even, J.; et al. Direct evidence of weakly dispersed and strongly anharmonic optical phonons in hybrid perovskites. Commun. Phys. 2020, 3, 48. [Google Scholar] [CrossRef]
- Yang, Z.; Surrente, A.; Galkowski, K.; Miyata, A.; Portugall, O.; Sutton, R.J.; Haghighirad, A.A.; Snaith, H.J.; Maude, D.K.; Plochocka, P.; et al. Impact of the Halide Cage on the Electronic Properties of Fully Inorganic Cesium Lead Halide Perovskites. ACS Energy Lett. 2017, 2, 1621–1627. [Google Scholar] [CrossRef] [Green Version]
- Galkowski, K.; Mitioglu, A.; Miyata, A.; Plochocka, P.; Portugall, O.; Eperon, G.E.; Wang, J.T.-W.; Stergiopoulos, T.; Stranks, S.D.; Snaith, H.J.; et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri–halide perovskite semiconductors. Energy Environ. Sci 2016, 9, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Ramade, J.; Andriambariarijaona, L.M.; Steinmetz, V.; Goubet, N.; Legrand, L.; Barisien, T.; Bernardot, F.; Testelin, C.; Lhuillier, E.; Bramati, A.; et al. Exciton–phonon coupling in a CsPbBr3 single nanocrystal. Appl. Phys. Lett. 2018, 112, 072104. [Google Scholar] [CrossRef]
- Labeau, O.; Tamarat, P.; Lounis, B. Temperature Dependence of the Luminescence Lifetime of Single CdSe/ZnS Quantum Dots. Phys. Rev. Lett. 2003, 90, 257404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khaetskii, A.V.; Nazarov, Y.V. Spin–flip transitions between Zeeman sublevels in semiconductor quantum dots. Phys. Rev. B 2001, 64, 125316. [Google Scholar] [CrossRef] [Green Version]
- Khaetskii, A.V.; Nazarov, Y.V. Spin relaxation in semiconductor quantum dots. Phys. Rev. B 2000, 61, 12639–12642. [Google Scholar] [CrossRef] [Green Version]
- Golovach, V.N.; Khaetskii, A.; Loss, D. Phonon–Induced Decay of the Electron Spin in Quantum Dots. Phys. Rev. Lett. 2004, 93, 016601. [Google Scholar] [CrossRef] [Green Version]
- Makarov, N.S.; Guo, S.; Isaienko, O.; Liu, W.; Robel, I.; Klimov, V.I. Spectral and Dynamical Properties of Single Excitons, Biexcitons, and Trions in Cesium–Lead–Halide Perovskite Quantum Dots. Nano Lett. 2016, 16, 2349–2362. [Google Scholar] [CrossRef]
- Ashner, M.N.; Shulenberger, K.E.; Krieg, F.; Powers, E.R.; Kovalenko, M.V.; Bawendi, M.G.; Tisdale, W.A. Size–Dependent Biexciton Spectrum in CsPbBr3 Perovskite Nanocrystals. ACS Energy Lett. 2019, 4, 2639–2645. [Google Scholar] [CrossRef]
- Park, Y.-S.; Bae, W.K.; Pietryga, J.M.; Klimov, V.I. Auger Recombination of Biexcitons and Negative and Positive Trions in Individual Quantum Dots. ACS Nano 2014, 8, 7288–7296. [Google Scholar] [CrossRef]
- Yarita, N.; Tahara, H.; Ihara, T.; Kawawaki, T.; Sato, R.; Saruyama, M.; Teranishi, T.; Kanemitsu, Y. Dynamics of Charged Excitons and Biexcitons in CsPbBr3 Perovskite Nanocrystals Revealed by Femtosecond Transient–Absorption and Single–Dot Luminescence Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 1413–1418. [Google Scholar] [CrossRef]
- Hu, F.; Yin, C.; Zhang, H.; Sun, C.; Yu, W.W.; Zhang, C.; Wang, X.; Zhang, Y.; Xiao, M. Slow Auger Recombination of Charged Excitons in Nonblinking Perovskite Nanocrystals without Spectral Diffusion. Nano Lett. 2016, 16, 6425–6430. [Google Scholar] [CrossRef] [Green Version]
- Galland, C.; Ghosh, Y.; Steinbrück, A.; Hollingsworth, J.A.; Htoon, H.; Klimov, V.I. Lifetime blinking in nonblinking nanocrystal quantum dots. Nat. Commun. 2012, 3, 908. [Google Scholar] [CrossRef]
- Bayer, M.; Ortner, G.; Stern, O.; Kuther, A.; Gorbunov, A.A.; Forchel, A.; Hawrylak, P.; Fafard, S.; Hinzer, K.; Reinecke, T.L.; et al. Fine structure of neutral and charged excitons in self–assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 2002, 65, 195315. [Google Scholar] [CrossRef]
- Lounis, B.; Orrit, M. Single–photon sources. Rep. Prog. Phys. 2005, 68, 1129. [Google Scholar] [CrossRef]
- Brokmann, X.; Bawendi, M.; Coolen, L.; Hermier, J.-P. Photon–correlation Fourier spectroscopy. Opt. Express 2006, 14, 6333–6341. [Google Scholar] [CrossRef] [Green Version]
- Coolen, L.; Brokmann, X.; Hermier, J.P. Modeling coherence measurements on a spectrally diffusing single–photon emitter. Phys. Rev. A 2007, 76, 033824. [Google Scholar] [CrossRef]
- Htoon, H.; Cox, P.J.; Klimov, V.I. Structure of Excited–State Transitions of Individual Semiconductor Nanocrystals Probed by Photoluminescence Excitation Spectroscopy. Phys. Rev. Lett. 2004, 93, 187402. [Google Scholar] [CrossRef]
- Biadala, L.; Louyer, Y.; Tamarat, P.; Lounis, B. Direct Observation of the Two Lowest Exciton Zero–Phonon Lines in Single CdSe/ZnS Nanocrystals. Phys. Rev. Lett. 2009, 103, 037404. [Google Scholar] [CrossRef] [Green Version]
- Fernée, M.J.; Sinito, C.; Louyer, Y.; Tamarat, P.; Lounis, B. The ultimate limit to the emission linewidth of single nanocrystals. Nanotechnology 2013, 24, 465703. [Google Scholar] [CrossRef] [Green Version]
- Louyer, Y.; Biadala, L.; Tamarat, P.; Lounis, B. Spectroscopy of neutral and charged exciton states in single CdSe/ZnS nanocrystals. Appl. Phys. Lett. 2010, 96, 203111. [Google Scholar] [CrossRef] [Green Version]
- Biadala, L.; Louyer, Y.; Tamarat, P.; Lounis, B. Band–Edge Exciton Fine Structure of Single CdSe/ZnS Nanocrystals in External Magnetic Fields. Phys. Rev. Lett. 2010, 105, 157402. [Google Scholar] [CrossRef]
- Rodina, A.V.; Efros, A.L. Radiative recombination from dark excitons in nanocrystals: Activation mechanisms and polarization properties. Phys. Rev. B 2016, 93, 155427. [Google Scholar] [CrossRef] [Green Version]
- Biadala, L.; Shornikova, E.V.; Rodina, A.V.; Yakovlev, D.R.; Siebers, B.; Aubert, T.; Nasilowski, M.; Hens, Z.; Dubertret, B.; Efros, A.L.; et al. Magnetic polaron on dangling–bond spins in CdSe colloidal nanocrystals. Nat. Nanotechnol. 2017, 12, 569–574. [Google Scholar] [CrossRef]
- Kolaric, B.; Maes, B.; Clays, K.; Durt, T.; Caudano, Y. Strong Light–Matter Coupling as a New Tool for Molecular and Material Engineering: Quantum Approach. Adv. Quantum Technol. 2018, 1, 1800001. [Google Scholar] [CrossRef]
NCs | RBohr (nm) | (eV) | εeff [64,65] | L (nm) | Red-Shifts of the Main LO Phonon Sidebands (meV) | Exciton–Phonon Coupling Parameters | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
LO1 | LO2 | LO3 | γac (µeV/K) | γLO (meV) | ELO (meV) | Ref. | |||||
CsPbBr3 | 3.06 | 2.25 | ~7 | 5~10 | 3.7 | 6.3 | 18.9 | 8 ± 3 | 42 ± 15 | 16 | [30,40,66] |
CsPbI3 | 4.64 | 1.72 | ~10 | 11.2 ± 1.2 | ~3.4 | ~5.5 | 15 | <8 | 37 | 16.7 | [40] |
FAPbBr3 | 3.87 | 2.23 | 8.4 | 9.2 ± 0.7 | 4.3 ± 0.5 | 8.6 ± 0.9 | 13.2 ± 1.1 | 5 ± 5 | 52 | 15.2 | [42,43] |
FAPbI3 | 5.49 | 1.5 | 9.4 | 10~15 | 3.2 | 7.8 | 15.4 | <5 | 27 | 10.7 | [44] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, L.; Tamarat, P.; Lounis, B. Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals. Nanomaterials 2021, 11, 1058. https://doi.org/10.3390/nano11041058
Hou L, Tamarat P, Lounis B. Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals. Nanomaterials. 2021; 11(4):1058. https://doi.org/10.3390/nano11041058
Chicago/Turabian StyleHou, Lei, Philippe Tamarat, and Brahim Lounis. 2021. "Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals" Nanomaterials 11, no. 4: 1058. https://doi.org/10.3390/nano11041058
APA StyleHou, L., Tamarat, P., & Lounis, B. (2021). Revealing the Exciton Fine Structure in Lead Halide Perovskite Nanocrystals. Nanomaterials, 11(4), 1058. https://doi.org/10.3390/nano11041058