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Abstract

:

The recent technique of molecular beam-thermal desorption spectrometry was used here for monitoring hydrogen uptake and release from carbon nanotube networks, after electrochemical hydrogen uptake. This way, an accurate determination of the hydrogen mass absorbed in electrodes made from those assemblies can be achieved by significantly improving the signal-to-noise ratio. The hydrogen desorption mass spectra account for the enhanced surface capability for hydrogen adsorption in the electrodes and enable a comparison with the performance of a palladium electrode in similar conditions. A comparative study involving different carbon nanotube electrodes, in similar hydrogen uptake/desorption conditions, clearly confirmed the expectations about their enhanced hydrogen storage capacity and points to the great potential of carbon nanotube assemblies in replacing the heavier metal alloys as electrocatalysts.
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1. Introduction


Hydrogen technology is expected to boost the efficiency of natural resources management, with fuel cells as one of the most promising technologies to reduce the emissions of greenhouse gases. Looking for lighter and cheaper electrodes and safer hydrogen storage media are relevant requirements to allow a widespread use of hydrogen as fuel, which is a recognized and promising sustainable energy source. Amongst the various problems that exist in the successful materialization of a hydrogen fuel-based economy, the formulation of a safe, economical, and efficient hydrogen storage method poses a relevant challenge. Keeping hydrogen within solid media assures high safety operation conditions and has several other advantages compared with pressurized or liquified techniques of transportation. To date, many studies have been conducted on the use of hydrogen storage solids as active materials for use in fuel cells and as a means of periodically mitigating energy supplies to achieve the urgent goals of carbon neutrality and clean renewable energy. An optimum hydrogen storage sponge material must display high hydrogen capacity per unit mass and unit volume (determining the amount of available energy), low dissociation temperature, low heat of formation (minimizing the energy necessary for hydrogen release), low heat dissipation during hydrogen uptake, reversibility, fast kinetics, high stability, material cost, and weightlessness. Carbon nanotubes appear to meet most of these criteria, and in this experimental work, they were studied alongside palladium, which is a proven reference material due to its superior hydrogen storage performance at room temperature and pressure conditions.



One desire to pursue is improving the kinetic properties of the hydrogen storage of materials; this way, special focus is given to studies on thermal desorption as well as calibration [1,2,3]. Appropriate experimental techniques to study the basic physical processes involved in desorption are crucial. Of these, TDS (thermal desorption spectrometry) ensures good accuracy in monitoring hydrogen uptake in solids. They have high sensitivity and selectivity methods in studying the gas desorption of materials [4]. They form a sufficient means to monitor the evolution of hydrogen after the use of a heat ramp, in contrast with the methods of obtaining static sorption isotherms.



The binding energy of the molecules to be absorbed varies depending on the nature of the adsorbate/surface materials, and the desorption temperature provides information on that energy [5,6]. A relevant improvement when performed by QMS (quadrupole mass spectrometry) is the small sizes and weights of the samples that one intends to use. Additionally, choosing materials with high specific surfaces (which readily absorb different gases), conventional gravimetric methods can produce misleading measurements, and therefore the use of mass spectrometry ensures greater selectivity of identifiable evolving gas species.



An additional goal consists of looking for low-weight and high-performance hydrogen active storage media made from carbon nanomaterial assemblies. With this purpose in mind, different carbon nanomaterial assemblies-based electrodes were used in this work to compare their relative performance with a palladium electrode (as a typical hydrogen storage reference), in molecular-beam thermal desorption spectrometry (MB-TDS) [7]. As a variant of thermal desorption spectrometry, MB-TDS has been developed to detect the hydrogen release by lowermost amounts of solid samples [7,8]. It can be used successfully to measure amounts of hydrogen below the microbalance detection limit. Furthermore, it has several advantages over the conventional TDS method: real-time and in situ detection of trace hydrogen without prior calibration with a chemical standard [7,8] and the use of more laborious UHV (ultra-high-vacuum) techniques [9,10,11].



Amongst all of the emerging materials for solid-state hydrogen storage, nanostructure carbon materials (especially carbon nanotubes) have been receiving special attention. Single-wall carbon nanotubes can be assumed to form by rolling a single graphene sheet and due to several unique properties, they are envisaged as a very good medium for solid-state hydrogen storage. They are inert to surface contaminants and therefore less severe activation conditions are required. Additionally, in single-walled carbon nanotubes, all carbon atoms are exposed to the surface, which makes them the material with the highest surface-to-bulk atom ratio and therefore highly surface active. Furthermore, the densities of carbon nanotubes are considerably lower than that of metals, intermetallic-alloys and metal-organic frameworks. These nanomaterials are also known to possess large amounts of void spaces in the form of pores, which can accommodate large quantities of hydrogen.



The hydrogen storage in CNTs (carbon nanotubes) is the result of the combined action of physisorption and chemisorption. It has been demonstrated that the maximal degree of nanotube hydrogenation depends on the nanotube diameter, and for the diameter values around 2.0 nm nanotube-hydrogen complexes with close to 100% hydrogenation exist and are stable at room temperature. This means that specific carbon nanotubes can have a hydrogen storage capacity of more than 7 wt% through the formation of reversible C–H bonds.



The experiments on hydrogen adsorption in CNTs can, in general, be divided into two categories, depending on the method of storage: gas-phase hydrogen storage and electrochemical hydrogen storage. In gas-phase hydrogen storage techniques, a macroscopic sample of nanotubes is exposed to pure hydrogen gas under various temperature and equilibrium pressure conditions. The amount of hydrogen adsorbed by nanotubes is then measured gravimetrically using a microbalance. A more popular method of determining the amount of stored hydrogen is by volumetrically using Sieverts type volumetric apparatus. The latter technique involves the exposure of carbon nanotubes to hydrogen gas in a known volume and determining the storage capacity from the change in the free volume of the system upon exposure. With smaller quantities of sample, the gravimetric storage capacities can also be determined using temperature-programmed desorption or thermogravimetric analysis. The second method of storing hydrogen in carbon nanotubes is electrochemical. To do this, the electrochemical cell is constructed with carbon nanotubes (CNTs) as the working electrode, Pt as the counter electrode, and an appropriate electrolyte. In such a system, hydrogen is stored in the CNT electrode by the reduction of water at a suitable potential. A storage equivalent of a discharge capacity of 110 mAh/g can be obtained when hydrogen is stored electrochemically. Though pristine-carbon nanotubes exhibit remarkable hydrogen storage capacity at cryogenic temperatures, their storage capacity diminishes to less than 1.0 wt% at room temperature.



Electrochemical hydrogen storage compared to other methods of hydrogen storage is very promising since it can be conducted at low temperature and pressure and with a high degree of reversibility (available hydrogen stored this way in materials can build supercapacitors with very high specific capacitance: up to 4 × 103 F g−1).



Porous materials such as carbon materials, zeolites, and metal-organic frameworks, which physically adsorb H2 molecules on the walls of the micropores, are one of the representative families of hydrogen-storage materials. Due to the weak interaction between hydrogen and the host materials, such porous materials can store sufficient amounts of hydrogen mostly at low temperatures and/or under high pressure. Another family comprises materials that chemically absorb H atoms internally, forming chemical bonds such as metal-hydrides.



Understanding the principal steps involved in H adsorption on the metal surface, followed by its interfacial transfer into the metal bulk, is of significance in metal-hydride science. Basic aspects of hydrogen physisorption and chemisorption under low-pressure gas-phase conditions, the adsorption sites of the physisorbed H2 and the chemisorbed H as well as surface-chemical and surface-electronic state of chemisorbed H are fairly well understood. In the case of the H2 molecule approaching the metallic surface at higher temperatures than those characteristics of physisorption, a distinct interaction pattern sets in. This results in strong (chemical) interactions between the metal surface and the H2 molecule. The chemical interactions with the surface lead to dissociation of the H molecule into atomic H and practically instantaneous formation of a surface bond with the substrate:


H2 → 2 H*










2 H* + 2 M → 2 M − H











The Pd–H system is one of the best-known metal–hydrogen systems. Palladium has a simple face-centered cubic (fcc) structure and can reversibly absorb and desorb hydrogen at ambient conditions. The Pd–H system has been extensively studied as a prototypical hydrogen-storage system. When Pd is exposed to hydrogen gas, H2 molecules dissociate into atomic H on the surface of Pd; then the H atoms diffuse into bulk and occupy the interstitial sites of the (fcc) Pd lattice. The Pd–H system is known to have two distinct phases at ambient conditions, depending on the temperature and the hydrogen gas pressure. The hydrogen-absorption process of bulk Pd is divided mainly into three steps. The first step is the dissociation of hydrogen molecules into atoms on the surface of Pd (1→2). The second step is the penetration of the dissociated H atoms into the subsurface (2→3). The third step is a diffusion of H atoms into sites in the Pd lattice to form the hydride (Pd–H) (3→4). The effect of the dissociation process of hydrogen molecules into atoms on the Pd surface is negligibly small at 300 K (1→2). Therefore, the diffusion of the atoms from the surface to the subsurface (2→3) is considered to be the rate-limiting step for the H-absorption speed.




2. Materials and Methods


In TDS, the temperature of the sample surface is usually controlled linearly (constant heating rate), and when working at a high enough vacuum pumping speed, the desorption rate from the sample is proportional to the pressure. Furthermore, during desorption, the determination of various adsorption and desorption parameters is based on the analysis of the hydrogen partial pressure–temperature curves (desorption spectra).



For desorption kinetics of the first order, the rate of desorption (rd) of hydrogen molecules from an adsorbent surface, is given by:


   r d  = −   d θ   d t   =    k d  θ = v θ e x p  (  −    E d     k B  T    )   



(1)




where  θ  is the adsorbate coverage; kd is desorption rate constant; v is the pre-exponential frequency factor (typically of the order of vibrational frequency in the range 1012–1013 s−1); Ed is the activation energy of desorption; and kB the Boltzmann constant.



A desorption spectrum that represents desorption rate versus temperature typically displays peaks corresponding to desorption of different adsorbed phases. The physisorbed phases usually give rise to peaks generally below 400 K, while chemisorbed ones desorb at higher temperatures. Therefore, a TDS spectrum delivers a quick overview at which temperature the desorption takes place and displays peak(s) centered at value(s) of temperature, Tm, where d2N/dt2 = 0; with N representing here the number of hydrogen molecules. Given that (dN/dt) = (dN/dT) β, where β is the heating rate, then for desorption kinetics of first order, one gets for T = Tm:


     E d     k B   T m 2    =  v β  e x p  (  −    E d     k B   T m     )   



(2)







This allows determining Ed from a semi-log linear plot, since β and Tm are the measurable parameters. Physical adsorption is a non-activated process, and so Ed = Eb, where Eb is the binding energy of the adsorbate to the surface. The constancy of the frequency factor can be assumed only for small desorbing molecules (as hydrogen).



The number of desorbed hydrogen moles, nT, can be determined from the integral of the mass spectrometer signal, providing it can be adequately calibrated [7]:


   n T  =   ∫    t 0     t 1    n  ( t )  d t  



(3)




where n(t) represents the molar hydrogen desorption rate as a function of time.



With the range of temperatures used in this work (below 400 K), hydrogen desorption from chemisorbed sites is not detected and so one can simplify the non-equilibrium kinetics of the global desorption process by the following three elementary steps:




	(i)

	
(C–H)ads → H(lat)




	(ii)

	
H(lat) → H(s)




	(iii)

	
H(s) + H(s) → H2(g)









where H(s) stands for hydrogen atoms on the surface of the material nano-regions; H(lat) are hydrogen atoms inside the material lattice (but outside the chemisorption centers); and (C–H)ads are the physisorbed hydrogen atoms on active sites. The second step is limited by diffusion, which means that it is the step that determines the rate of the entire process.



In first-order kinetics, the diffusion-controlled desorption rate is given by:


   r d   ( t )  = −   d N  ( t )    d t   =    k d   (  T  ( t )   )  N  ( t )  =  k d 0  e x p  (  −    E a  d i f      k B  T  ( t )     )  N  ( t )   



(4)




where N(t) stands for the average amount of the adsorbate in diffusion; Eadif is the diffusion activation energy; and kd0 is related with the diffusivity pre-exponential factor D0 by:


   k d 0  =  1   τ 0    ≈    D 0     l 2     



(5)







Here, l and τ0 represent, respectively, the diffusion characteristic length and the relaxation time for hydrogen removal. It can be also shown that:


  l ≈   Δ T    D 0   (   T  m a x    )   β   



(6)




where ∆T stands for the full width at half maximum of the TDS peak.



From the condition of maximum desorption at T = Tm (i.e., ∂rd/∂T = 0,) one gets:


     T m 2   β  =    E a  d i f      k B  T  (   T m   )     



(7)







This equation shows a similarity with the equation for kd[T(t)], and from these considerations, it is possible to graphically confirm if desorption is a diffusion-controlled process or not [12,13,14]. The activation energy of desorption Ed can be obtained from the linear dependence of ln(Tm2/β) versus 1/Tm.



Quantitative determination of TDS requires an ulterior signal calibration measurement of hydrogen, which normally involves measuring the desorption spectrum of a reference sample (with known hydrogen content), which must maintain chemical stability, be neither hygroscopic nor vaporizable, over a temperature range (e.g., TiH2). An error of ±5% in the weight of desorbed hydrogen between one and six mg in TiH2 was estimated [13].



Molecular beam thermal desorption mass spectrometry (MB-TDS) was used here to determine the electrochemical capture and release of the hydrogen in the samples, and the apparatus has already been described elsewhere [7] (shown only schematically in Figure 1). A composite molecular jet of known intensity is produced through a well-defined geometric hole, with the origin in the solid sample from which degassing takes place at a certain oven temperature.



The recording of the hydrogen partial pressures with the quadrupole mass spectrometer (QMS) tuned to the hydrogen gas as a function of temperature and time allows for the amount of hydrogen desorbed to be measured. The scanning of temperatures is assured by a programmable-controlled heated system. Collisions between the molecules within the beam and those of the residual gas are prevented due to the combination of low pressure (high-vacuum conditions) with the low density of the beam. Due to these operation conditions, it is possible to define exactly the geometry of the effusion beam as well as the fraction of it detected by the QMS (which stays in the forward direction).



Normally, the source is maintained at 20 °C above the temperature of the sample oven (to avoid clogging of the crack) and PID temperature controllers allow the use of different heating rates; typically values of the order of 1 °C min−1 are used. The background change of the partial pressure of hydrogen can be described by a time decay [7,8].



By pumping the heated furnace (with the sample inside), the desorption rate of hydrogen, dX/dt, can be expressed as a function of temperature T [15,16]:


    d X   d t   = B  (  1 − X  )     exp   (  −    E d    R T    )   



(8)




and therefore


     E d   R  =  υ  C β      exp   (  −    E d    R  T m     )   



(9)







Defining X by the ratio of the amount of hydrogen released from the solid sample and the total hydrogen intake, then B is the Arrhenius pre-exponential factor, R the universal gas constant, and C the initial hydrogen concentration. Assuming this, one can obtain the desorption activation energy, making use of the recorded MB-TDS desorption curves, through the equation:


  ln    T m 2   β  =    E d    R  T m    −  ln      R B    E d     



(10)







In contrast to the conventional TDS technique, where it is not possible to discriminate the hydrogen contribution coming out of the source inner walls, using our MB-TDS apparatus, one can indeed quantify such degassing amount by comparing (at a rate of 1/60 K s−1) and in the absence of a sample, the normalized pressure hydrogen background decay behaviors in two different situations: heating-on and heating-off. This reflects the very high sensitivity of the MB-TDS technique [7,8], which avoids misleading results due to background variations in the partial pressure of the hydrogen residue. One can then subtract the residual hydrogen gas background (recorded without jet) from the total hydrogen impinged on the QMS, and so the actual amount of hydrogen in the sample can be calculated [7]:


     N 0  +  N b     N 0    = 1 +    A b     A 0     



(11)







Here, N and A stand respectively for the number of hydrogen molecules and the area under the desorption curve, with the subscripts “0” and “b” assigned, respectively, to the situations “beam-off” and “beam-on”. An improvement of the order of 20% in the signal-to-noise ratio for the trace hydrogen can be estimated through expression (11) because the role of the operating condition of the real molecular beam is being played by the “heating-on” curve.



Before introducing each of the samples in the oven of the MB-TDS apparatus, they need to be submitted to hydrogen uptake, and this was done by electrochemical hydrogen charging. This procedure requires a previous experimental preparation of cathodes, which is summarized here for single-walled carbon nanotube (SWNT) networks.




3. Results and Discussion


Uniform thin films of SWNT networks of varying densities were fabricated at room temperature by vacuum filtration. A dilute suspension of purified Rice nanotubes in chloroform is sonicated and then vacuum filtered through an alumina membrane (Whatman, Sigma-Aldrich, Darmstadt, Germany) 20 nm pore size) in a short time (few s). As the solvent passes through the pores, the nanotubes are trapped on the surface of the filter, forming an interconnected mesh. The film can be made free-standing over an aperture (25 mm2) by making the transfer to a Teflon substrate with a hole, over which the film is laid before membrane dissolution in sodium hydroxide aqueous solution. The obtained free-standing film is transferred onto a Kapton film and dried, which is put in adhesion contact with it through the hole. Its atomic force microscopic topographical image is shown in Figure 2. The SWNT network with the dimension 5 mm × 5 mm was connected to a silver wire using silver conductive epoxy, which was then coated with non-conductive epoxy. After drying at room temperature, the electrode was ready for use.



A pure platinum anode was used to charge the electrodes at one molar of NaOH electrolyte solution. The samples were submitted to the constant applied voltage (10 V during one h) accompanied by a significant increase in the electrolyte resistance. Additionally, and for comparison purposes, a cathode of pure palladium was used in the electrochemical cell together with the pure platinum anode, in the same above conditions.



Before and after the electrochemical hydrogen uptake, we used a Kern ABT-101 (Kern & Sohn, Balingen, Germany) analytical balance to weigh all the samples. This way, relative weight increases were recorded: 8% for Pd and 4% for the SWNT network. The MB-TDS procedure already described was then applied to each of the hydrogenated samples (using 1 °C min−1 for the heating rate). Figure 3 displays the desorption experimental spectra.



It is possible to compute the total hydrogen contained in each sample from the area of the respective MB-TDS recorded curve in Figure 3. This is done through the subtraction of the residual hydrogen background pressure (measured with the “beam-off”) in identical experimental conditions. This way, each experimental desorption spectrum in Figure 3 can be fitted (due to the proportionality between X and the measured hydrogen pressure):


  P = 1 − e x p  [   G J   T 2  e x p  (    − J  T   )   ]   



(12)







Here, J = Ed/R and G = −B/β. This pressure reaches a maximum given by


     P  m a x   = 1 − e x p  [    G J  4  e x p  (  − 2  )  + F  ]   



(13)




where F = ln (1 − P0) − (J/G) T02 exp(−J/T0), with P0 and T0 standing for, respectively, the hydrogen background pressure and room temperature at the instant just before the triggering of the heating- up. From this, one obtains the parameter J from the desorption spectra (Figure 3). Consequently, the area Ab below the recorded graphics is obtained through fitting the MB-TDS curves with Equation (12), and by subtracting the corresponding P0. The area Ab mirrors the number of hydrogen molecules Nb detected with the QMS:


   N 0  +  N b  =  (   A 0  +  A b   )     N A  S   R T    



(14)




where S represents pumping speed and NA Avogadro number.



Furthermore, the number of hydrogen molecules still needs to be corrected due to experimental factors related to the QMS (geometrical fraction of the hydrogen jet effectively detected and its ionization efficiency). This allows for the subsequent estimation of the total amount of hydrogen released from each sample. Considering the QMS catalog technical specifications [7], an efficiency of about 70% is expected. Based on the geometric configuration conditions, it is possible to estimate 20% of the jet that effectively impinges the QMS. The combination of these two attenuation effects allowed us to estimate a reduction factor of the order of 10 in the molecular current that reaches the detector [7]. Thus, the true masses of hydrogen released from the samples can be calculated, and not surprisingly, they were in agreement with the relative weight increase values (previously recorded in the experimental part), only if they were multiplied by a factor of 10 (this is exactly the experimental attenuation factor already mentioned). In short, the total hydrogen content of each sample could then be calculated from the corresponding MB-TDS spectrum, providing an alternative way to avoid misleading weight results if hydrogen uptake is low.



From the relative corrected area of the spectra given in Figure 3, it was found that they agreed with the expected relative weight increases already mentioned:


Palladium = 8% → SWNT network = 4% → MWNT network = 2%











The wt% of hydrogen absorbed in carbon nanostructures is expected to be proportional to their respective specific surface areas [17], and in fact, the above experimental sequence seems likely to be explained by this argument, because the MWNT network had the highest value of the specific surface area.



By recording TDS spectra with other scan rates (2 K min−1 and 3 K min−1) for each of the samples and fitting linear plots given by Equation (10) to the experimental points (βi, Tmi), one could find the corresponding desorption energies Ed:


MWNT network = 18 kJ/mol → SWNT network = 20 kJ/mol → Palladium = 53 kJ/mol











This seems to reinforce the role of inter-tube sites in carbon nanostructures for storing hydrogen by a physisorption mechanism. Hydrogen desorption temperatures have reached as high as about 350 K, possibly due to the availability of “sub-nanometer” sized rooms [18].



The adsorption capacity is positively correlated with specific surface area and micropore volume. The hydrogen adsorption occurs inside and outside the tube, or at the gap of the array of bundles, and size, geometric, and arrangement of CNTs exert influence on hydrogen adsorption. Hydrogen can be physisorbed in carbon nanotubes bundles on various sites such as external wall surface, grooves, and interstitial channels. Therefore, it can a large energy density (as required for the mobile applications). It is also known that by tuning the adsorption conditions, hydrogen can either be chemisorbed or physisorbed on carbon nanotubes.



Usually, there are two hydrogen adsorption pathways in CNTs: the first is the physical adsorption of hydrogen molecules, which is favored at a high-pressure hydrogen atmosphere, and the second is electrochemical adsorption of hydrogen. Electrochemical hydrogen storage provides higher capacity at ambient temperature and atmospheric pressure than conventional hydrogen storage technology at low temperature and high pressure. Hydrogen storage takes place during the process of the electrolysis of water while protons become inserted into the host material. Carbonaceous materials with a mesoporous structure also demonstrate the capability of up-taking H2 through the insertion of atomic H, which favors stabilization of the hydrogen absorbed.



For bulk palladium, it is known that a hydrogen molecule chemisorbs on the surface adsorption sites following dissociation into individual atoms even at low temperatures. After filling most of the surface sites, hydrogen atoms start to occupy the subsurface region, where the hydrogen atoms are bound weaker than the adsorbed atoms on the surface. Thus, hydrogen spontaneously desorbed is measured in TDS, together with hydrogen coming from activated desorption.



Although there are no catalytic properties ascribed to the allotropic forms of carbon, it is known to be an active catalyst in some oxidation reactions. Among their many other interesting properties, carbon nanotubes have been found to act as catalysts for some important chemical reactions including some that could be used to make cleaner fuels. Furthermore, the exceptional physical properties of carbon nanotubes such as large specific surface areas, excellent electron conductivity incorporated with good chemical inertness, and relatively high oxidation stability make it a promising support material for heterogeneous catalysis instead of the conventional alumina, silicon, or activated carbon supports. One or more kinds of catalysts can be loaded on the high surface area of the CNT nanomaterial, which serves as the support, to form a supported catalyst as a whole system. In a supported catalyst system, the significance of using the support is to increase the dispersion of the active phases, to have better control of the porous structure, to improve mechanical strength, to prevent sintering, and to assist catalysis.



The combination of physisorption in the nanocarbon porous material with chemisorption in chemical hydrides and the presence of a metal hydride are the key advantages of the proposed hydrogen sorbents with high stabilities, and high adsorption/desorption kinetics.



Hydrogen spillover arises in hydrogen catalyzed reactions on supported metal catalysts. Dihydrogen molecules dissociate on the metal part of the catalyst. Some hydrogen atoms remain attached to the metal, whilst others diffuse to the support.



An applicable spillover sorbent should: (a) permit the diffusion of H2 or H atoms in a well-dispersed pore lattice, (b) have most of the interior pore surface area disposable to encounter with spillover H2 or H, and (c) be lightweight to maximize the gravimetric hydrogen uptake. Thus, the hydrogen uptake in mesoporous carbon, which has a suitable surface area, and proper porosity and low density can be augmented substantially by hydrogen spillover.




4. Conclusions


This work reports an effective method for real-time quantitative analysis of hydrogen in different materials by using the MB-TDS technique. Several advantages such as time-efficiency and without using the calibration step can provide insight into researchers who want to quantitatively measure the hydrogen storage capacity. This MB-TDS methodology can be used to detect the hydrogen adsorbed at different types of nanomaterials (metal oxides, layered double hydroxides, or nanoparticles with surface capping agent, i.e., several types of organic molecules could be adsorbed at the surface of nanomaterials during the electrocyclic tests), as long as they possess suitable thermal stability at the working temperatures of desorption.



MB-TDS has been proven to be an effective method for real-time quantitative analysis and in situ capture of hydrogen with any type of hydrogen storage material, even if the amount is below the microbalance detection limit. Additionally, to perform a quantitative analysis of hydrogen storage capacity, the device does not need to be calibrated by introducing a certain number of hydrogen molecules into the vacuum system, unlike in conventional TDS. Furthermore, it was not needed to work in an ultra-high vacuum, which would add more time-consuming and unnecessary procedures.



In contrast to activated carbons, carbon nanostructures are promising for hydrogen storage technological applications, since they are much lighter than alternative metals (as palladium) or metal hydrides in metal alloys. Activated carbons are not efficient enough as hydrogen capture systems because only a small fraction of the pores (from their pore size distribution) are small enough to interact strongly with the gas phase hydrogen molecules. For small-sized systems, surface- or interface-related sites assume crucial importance and can change the overall solubility of hydrogen.



Carbon nanotubes, due to their high surface area and chemical durability, have great potential as hydrogen adsorbents. They can adsorb hydrogen by physisorption and/or chemisorption mechanisms. Hydrogen can be physisorbed in carbon nanotube bundles on various sites such as external wall surface, grooves, and interstitial channels. Therefore, it can have a large energy density (as required for mobile applications). It is also known that by tuning the adsorption conditions, hydrogen can be either chemisorbed or physisorbed on carbon nanotubes.



However, in the MB-TDS experiments, our mass spectrometer was unable to distinguish between adsorbed molecular and atomic hydrogen. For that, a QMS with improved mass resolution will be needed.



This methodology offers several advantages, paving the way for future developments in comparing the intrinsic activity of nanomaterials because it allows for the combination of the mass of hydrogen monitoring with the electrochemical active surface area (ECSA) of the electrodes.
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Figure 1. Molecular Beam-Thermal Desorption Spectrometry (MB-TDS)configuration (top view). 
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Figure 2. Atomic Force Microscopy image of a Single-walled carbon nanotube transferred film surface. 
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Figure 3. MB-TDS spectra were taken at a heating rate of 1 °C/min. 
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