Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation
Abstract
:1. Introduction
2. Computational Details
2.1. Simulation Setup
2.1.1. Irradiation Setup: Single-Ion Impact Limit
2.1.2. Irradiation Setup: High-Fluence Irradiation
2.2. Interatomic Potentials
2.3. Data Analysis
3. Results and Discussion
3.1. Monolayer h-BN
3.1.1. Single-Ion Irradiation
3.1.2. Simulations of High-Fluence Irradiation
3.2. Multilayer h-BN
3.2.1. Depth Distribution of Irradiation-Induced Defects in Multilayer h-BN Targets
3.2.2. Depth-Dependent Energy Threshold for Vacancy Creation in Multilayer h-BN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
hBN | Hexagonal Boron-Nitride |
TMD | Transition Metal Dichalcogenide |
2D | Two Dimensional |
MD | Molecular Dynamics |
DFT | Density Functional Theory |
References
- Koehl, W.F.; Buckley, B.B.; Heremans, F.J.; Calusine, G.; Awschalom, D.D. Room temperature coherent control of defect spin qubits in silicon carbide. Nature 2011, 479, 84–87. [Google Scholar] [CrossRef]
- Baranov, P.G.; Bundakova, A.P.; Soltamova, A.A.; Orlinskii, S.B.; Borovykh, I.V.; Zondervan, R.; Verberk, R.; Schmidt, J. Silicon vacancy in SiC as a promising quantum system for single-defect and single-photon spectroscopy. Phys. Rev. B 2011, 83, 125203. [Google Scholar] [CrossRef]
- Shang, Z.; Hashemi, A.; Berencén, Y.; Komsa, H.P.; Erhart, P.; Zhou, S.; Helm, M.; Krasheninnikov, A.V.; Astakhov, G.V. Local vibrational modes of Si vacancy spin qubits in SiC. Phys. Rev. B 2020, 101, 144109. [Google Scholar] [CrossRef]
- Evans, R.E.; Bhaskar, M.K.; Sukachev, D.D.; Nguyen, C.T.; Sipahigil, A.; Burek, M.J.; Machielse, B.; Zhang, G.H.; Zibrov, A.S.; Bielejec, E.; et al. Photon-mediated interactions between quantum emitters in a diamond nanocavity. Science 2018, 362, 662–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doherty, M.W.; Manson, N.B.; Delaney, P.; Jelezko, F.; Wrachtrup, J.; Hollenberg, L.C. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 2013, 528, 1–45. [Google Scholar] [CrossRef] [Green Version]
- He, Y.M.; Clark, G.; Schaibley, J.R.; He, Y.; Chen, M.C.; Wei, Y.J.; Ding, X.; Zhang, Q.; Yao, W.; Xu, X.; et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 2015, 10, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, A.; Sidler, M.; Allain, A.V.; Lembke, D.S.; Kis, A.; Imamoglu, A. Optically active quantum dots in monolayer WSe 2. Nat. Nanotechnol. 2015, 10, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959. [Google Scholar] [CrossRef]
- Lopes, J.M.J. Synthesis of hexagonal boron nitride: From bulk crystals to atomically thin films. Prog. Cryst. Growth Charact. Mater. 2021, 67, 100522. [Google Scholar] [CrossRef]
- Mendelson, N.; Chugh, D.; Reimers, J.R.; Cheng, T.S.; Gottscholl, A.; Long, H.; Mellor, C.J.; Zettl, A.; Dyakonov, V.; Beton, P.H.; et al. Identifying carbon as the source of visible single-photon emission from hexagonal boron nitride. Nat. Mater. 2020. [Google Scholar] [CrossRef]
- Hayee, F.; Yu, L.; Zhang, J.L.; Ciccarino, C.J.; Nguyen, M.; Marshall, A.F.; Aharonovich, I.; Vučković, J.; Narang, P.; Heinz, T.F.; et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 2020, 19, 534–539. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.T.; Bray, K.; Ford, M.J.; Toth, M.; Aharonovich, I. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 2016, 11, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Fischer, M.; Caridad, J.M.; Sajid, A.; Ghaderzadeh, S.; Ghorbani-Asl, M.; Gammelgaard, L.; Bøggild, P.; Thygesen, K.S.; Krasheninnikov, A.V.; Xiao, S.; et al. Controlled generation of luminescent centers in hexagonal boron nitride by irradiation engineering. Sci. Adv. 2021, 7, eabe7138. [Google Scholar] [CrossRef]
- Elias, C.; Valvin, P.; Pelini, T.; Summerfield, A.; Mellor, C.; Cheng, T.; Eaves, L.; Foxon, C.; Beton, P.; Novikov, S.; et al. Direct band-gap crossover in epitaxial monolayer boron nitride. Nat. Commun. 2019, 10, 2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawfik, S.A.; Ali, S.; Fronzi, M.; Kianinia, M.; Tran, T.T.; Stampfl, C.; Aharonovich, I.; Toth, M.; Ford, M.J. First-principles investigation of quantum emission from hBN defects. Nanoscale 2017, 9, 13575–13582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimers, J.R.; Sajid, A.; Kobayashi, R.; Ford, M.J. Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal Boron Nitride. J. Chem. Theory Comput. 2018, 14, 1602–1613. [Google Scholar] [CrossRef] [PubMed]
- Abdi, M.; Chou, J.P.; Gali, A.; Plenio, M.B. Color centers in hexagonal Boron Nitride monolayers: A group theory and ab Initio analysis. ACS Photonics 2018, 5, 1967–1976. [Google Scholar] [CrossRef]
- Hernández-Mínguez, A.; Lähnemann, J.; Nakhaie, S.; Lopes, J.M.J.; Santos, P.V. Luminescent defects in a few-layer h-BN film grown by molecular beam epitaxy. Phys. Rev. Appl. 2018, 10, 044031. [Google Scholar] [CrossRef] [Green Version]
- Iikawa, F.; Hernández-Mínguez, A.; Aharonovich, I.; Nakhaie, S.; Liou, Y.T.; Lopes, J.M.J.; Santos, P.V. Acoustically modulated optical emission of hexagonal boron nitride layers. Appl. Phys. Lett. 2019, 114, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sajid, A.; Ford, M.J.; Reimers, J.R. Single-photon emitters in hexagonal boron nitride: A review of progress. Rep. Prog. Phys. 2020, 83, 044501. [Google Scholar] [CrossRef] [Green Version]
- Gottscholl, A.; Kianinia, M.; Soltamov, V.; Orlinskii, S.; Mamin, G.; Bradac, C.; Kasper, C.; Krambrock, K.; Sperlich, A.; Toth, M.; et al. Initialization and read-out of intrinsic spin defects in a van der Waals crystal at room temperature. Nat. Mater. 2020, 19, 540–545. [Google Scholar] [CrossRef]
- Chejanovsky, N.; Mukherjee, A.; Kim, Y.; Denisenko, A.; Finkler, A.; Taniguchi, T.; Watanabe, K.; Dasari, D.B.R.; Smet, J.H.; Wrachtrup, J. Single spin resonance in a van der Waals embedded paramagnetic defect. arXiv 2019, arXiv:1906.05903. [Google Scholar]
- O’Brien, J.L. Optical quantum computing. Science 2007, 318, 1567–1570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Carvalho, B.R.; Kahn, E.; Lv, R.; Rao, R.; Terrones, H.; Pimenta, M.A.; Terrones, M. Defect engineering of two-dimensional transition metal dichalcogenides. 2D Mater. 2016, 3, 022002. [Google Scholar] [CrossRef]
- Wilhelm, R.A.; El-Said, A.S.; Krok, F.; Heller, R.; Gruber, E.; Aumayr, F.; Facsko, S. Highly charged ion induced nanostructures at surfaces by strong electronic excitations. Prog. Surf. Sci. 2015, 90, 377–395. [Google Scholar] [CrossRef] [Green Version]
- Cun, H.; Iannuzzi, M.; Hemmi, A.; Osterwalder, J.; Greber, T. Implantation length and thermal stability of interstitial ar atoms in boron nitride nanotents. ACS Nano 2014, 8, 1014–1021. [Google Scholar] [CrossRef] [PubMed]
- Valerius, P.; Herbig, C.; Will, M.; Arman, M.A.; Knudsen, J.; Caciuc, V.; Atodiresei, N.; Michely, T. Annealing of ion-irradiated hexagonal boron nitride on Ir(111). Phys. Rev. B 2017, 96, 235410. [Google Scholar] [CrossRef] [Green Version]
- Simos, N.; Kotsina, Z.; Sprouster, D.; Zhong, Z.; Zhong, H.; Hurh, P. Hexagonal boron nitride (h-BN) irradiated with 140 MeV protons. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2020, 479, 110–119. [Google Scholar] [CrossRef]
- Entani, S.; Larionov, K.V.; Popov, Z.I.; Takizawa, M.; Mizuguchi, M.; Watanabe, H.; Li, S.; Naramoto, H.; Sorokin, P.B.; Sakai, S. Non-chemical fluorination of hexagonal boron nitride by high-energy ion irradiation. Nanotechnology 2020, 31, 125705. [Google Scholar] [CrossRef] [PubMed]
- Kozubek, R.; Ernst, P.; Herbig, C.; Michely, T.; Schleberger, M. Fabrication of defective single layers of hexagonal Boron Nitride on various supports for potential applications in catalysis and DNA sequencing. ACS Appl. Nano Mater. 2018, 1, 3765–3773. [Google Scholar] [CrossRef]
- Doan, T.C.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.Y.; Jiang, H.X. Hexagonal boron nitride thin film thermal neutron detectors with high energy resolution of the reaction products. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 783, 121–127. [Google Scholar] [CrossRef]
- Lehtinen, O.; Dumur, E.; Kotakoski, J.; Krasheninnikov, A.; Nordlund, K.; Keinonen, J. Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2011, 269, 1327–1331. [Google Scholar] [CrossRef]
- Stephani, K.A.; Boyd, I.D. Molecular dynamics modeling of defect formation in many-layer hexagonal boron nitride. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 365, 235–239. [Google Scholar] [CrossRef]
- Albe, K.; Möller, W. Modelling of boron nitride: Atomic scale simulations on thin film growth. Comput. Mater. Sci. 1998, 10, 111–115. [Google Scholar] [CrossRef]
- Los, J.; Kroes, J.; Albe, K.; Gordillo, R.; Katsnelson, M.; Fasolino, A. Extended Tersoff potential for boron nitride: Energetics and elastic properties of pristine and defective h-BN. Phys. Rev. B 2017, 96, 184108. [Google Scholar] [CrossRef] [Green Version]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Nordlund, K. Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 2019, 520, 273–295. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. The Stopping and Range of Ions in Matter. In Treatise on Heavy-Ion Science; Bromley, D.A., Ed.; Springer: Boston, MA, USA, 1985; pp. 93–129. [Google Scholar] [CrossRef]
- Zobelli, A.; Gloter, A.; Ewels, C.P.; Colliex, C. Shaping single walled nanotubes with an electron beam. Phys. Rev. B 2008, 77, 045410. [Google Scholar] [CrossRef] [Green Version]
- Kotakoski, J.; Jin, C.H.; Lehtinen, O.; Suenaga, K.; Krasheninnikov, A.V. Electron knock-on damage in hexagonal boron nitride monolayers. Phys. Rev. B 2010, 82, 113404. [Google Scholar] [CrossRef] [Green Version]
- Kretschmer, S.; Maslov, M.; Ghaderzadeh, S.; Ghorbani-Asl, M.; Hlawacek, G.; Krasheninnikov, A.V. Supported two-dimensional materials under ion irradiation: The substrate governs defect production. ACS Appl. Mater. Interfaces 2018, 10, 30827–30836. [Google Scholar] [CrossRef]
- Ghorbani-Asl, M.; Kretschmer, S.; Spearot, D.E.; Krasheninnikov, A.V. Two-dimensional MoS2 under ion irradiation: From controlled defect production to electronic structure engineering. 2D Mater. 2017, 4, 25078. [Google Scholar] [CrossRef]
- Ghaderzadeh, S.; Ladygin, V.; Ghorbani-Asl, M.; Hlawacek, G.; Schleberger, M.; Krasheninnikov, A.V. Freestanding and supported MoS2 monolayers under cluster irradiation: Insights from molecular dynamics simulations. ACS Appl. Mater. Interfaces 2020, 12, 37454–37463. [Google Scholar] [CrossRef] [PubMed]
- Krasheninnikov, A.V.; Nordlund, K. Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 2010, 107, 071301. [Google Scholar] [CrossRef]
- Krasheninnikov, A.V. Are two-dimensional materials radiation tolerant? Nanoscale Horiz. 2020, 5, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, O.; Kotakoski, J.; Krasheninnikov, A.V.; Tolvanen, A.; Nordlund, K.; Keinonen, J. Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation. Phys. Rev. B 2010, 81, 153401. [Google Scholar] [CrossRef] [Green Version]
- Strand, J.; Larcher, L.; Shluger, A.L. Properties of intrinsic point defects and dimers in hexagonal boron nitride. J. Phys. Condens. Matter 2020, 32, 055706. [Google Scholar] [CrossRef]
- Standop, S.; Lehtinen, O.; Herbig, C.; Lewes-Malandrakis, G.; Craes, F.; Kotakoski, J.; Michely, T.; Krasheninnikov, A.V.; Busse, C. Ion Impacts on Graphene/Ir(111): Interface Channeling, Vacancy Funnels, and a Nanomesh. Nano Lett. 2013, 13, 1948–1955. [Google Scholar] [CrossRef] [PubMed]
- Kalbac, M.; Lehtinen, O.; Krasheninnikov, A.V.; Keinonen, J. Ion-Irradiation-Induced Defects in Isotopically-Labeled Two Layered Graphene: Enhanced In-Situ Annealing of the Damage. Adv. Mater. 2013, 25, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 015012. [Google Scholar] [CrossRef]
- Schneider, J.; Hamaekers, J.; Chill, S.T.; Smidstrup, S.; Bulin, J.; Thesen, R.; Blom, A.; Stokbro, K. ATK-ForceField: A new generation molecular dynamics software package. Model. Simul. Mater. Sci. Eng. 2017, 25, 085007. [Google Scholar] [CrossRef] [Green Version]
Projectile | AP (eV) | AP (eV) | DFT-MD (eV) | DFT-MD (eV) | AP | DFT-MD |
---|---|---|---|---|---|---|
He | 40.49 | 41.63 | 32 | 40 | 0.8 | 0.97 |
Ne | 40.09 | 35.71 | 31.5 | 30.0 | 1.05 | 1.12 |
Ar | 51.30 | 43.30 | 38.5 | 35.0 | 1.10 | 1.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghaderzadeh, S.; Kretschmer, S.; Ghorbani-Asl, M.; Hlawacek, G.; Krasheninnikov, A.V. Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation. Nanomaterials 2021, 11, 1214. https://doi.org/10.3390/nano11051214
Ghaderzadeh S, Kretschmer S, Ghorbani-Asl M, Hlawacek G, Krasheninnikov AV. Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation. Nanomaterials. 2021; 11(5):1214. https://doi.org/10.3390/nano11051214
Chicago/Turabian StyleGhaderzadeh, Sadegh, Silvan Kretschmer, Mahdi Ghorbani-Asl, Gregor Hlawacek, and Arkady V. Krasheninnikov. 2021. "Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation" Nanomaterials 11, no. 5: 1214. https://doi.org/10.3390/nano11051214
APA StyleGhaderzadeh, S., Kretschmer, S., Ghorbani-Asl, M., Hlawacek, G., & Krasheninnikov, A. V. (2021). Atomistic Simulations of Defect Production in Monolayer and Bulk Hexagonal Boron Nitride under Low- and High-Fluence Ion Irradiation. Nanomaterials, 11(5), 1214. https://doi.org/10.3390/nano11051214