In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural and Electrochemical Characterization of CuSCN Layers
3.2. In Situ Raman Microdroplet Spectroelectrochemistry (Raman-μSEC)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Gratzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nat. Cell Biol. 1998, 395, 583–585. [Google Scholar] [CrossRef]
- Kavan, L. Electrochemistry and dye-sensitized solar cells. Curr. Opin. Electrochem. 2017, 2, 88–96. [Google Scholar] [CrossRef]
- Zhang, J.; Freitag, M.; Hagfeldt, A.; Boschloo, G. Solid-State Dye-Sensitized Solar Cells; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 151–185. [Google Scholar]
- Kavan, L. Electrochemistry and perovskite photovoltaics. Curr. Opin. Electrochem. 2018, 11, 122–129. [Google Scholar] [CrossRef]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef]
- Hagen, J.; Schaffrath, W.; Otschik, P.; Fink, R.; Bacher, A.; Schmidt, H.-W.; Haarer, D. Novel hybrid solar cells consisting of inorganic nanoparticles and an organic hole transport material. Synth. Met. 1997, 89, 215–220. [Google Scholar] [CrossRef]
- Sallenave, X.; Shasti, M.; Anaraki, E.H.; Volyniuk, D.; Grazulevicius, J.V.; Zakeeruddin, S.M.; Mortezaali, A.; Grätzel, M.; Hagfeldt, A.; Sini, G. Interfacial and bulk properties of hole transporting materials in perovskite solar cells: Spiro-MeTAD versus spiro-OMeTAD. J. Mater. Chem. A 2020, 8, 8527–8539. [Google Scholar] [CrossRef]
- O’Regan, B.; Schwartz, D.T. Efficient Photo-Hole Injection from Adsorbed Cyanine Dyes into Electrodeposited Copper(I) Thiocyanate Thin Films. Chem. Mater. 1995, 7, 1349–1354. [Google Scholar] [CrossRef]
- O’Regan, B.; Schwartz, D.T. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL‘NCS/CuSCN: Initiation and Potential Mechanisms. Chem. Mater. 1998, 10, 1501–1509. [Google Scholar] [CrossRef]
- Perera, V.P.S.; Pitigala, P.K.D.D.P.; Jayaweera, P.V.V.; Bandaranayake, K.M.P.; Tennakone, K. Dye-Sensitized Solid-State Photovoltaic Cells Based on Dye Multilayer−Semiconductor Nanostructures. J. Phys. Chem. B 2003, 107, 13758–13761. [Google Scholar] [CrossRef]
- Perera, V.; Senevirathna, M.; Pitigala, P.; Tennakone, K. Doping CuSCN films for enhancement of conductivity: Application in dye-sensitized solid-state solar cells. Sol. Energy Mater. Sol. Cells 2005, 86, 443–450. [Google Scholar] [CrossRef]
- Sun, L.; Ichinose, K.; Sekiya, T.; Sugiura, T.; Yoshida, T. Cathodic electrodeposition of p-CuSCN nanorod and its dye-sensitized photocathodic property. Phys. Procedia 2011, 14, 12–24. [Google Scholar] [CrossRef] [Green Version]
- Odobel, F.; Pellegrin, Y.; Gibson, E.A.; Hagfeldt, A.; Smeigh, A.L.; Hammarström, L. Recent advances and future directions to optimize the performances of p-type dye-sensitized solar cells. Co-Ord. Chem. Rev. 2012, 256, 2414–2423. [Google Scholar] [CrossRef]
- Premalal, E.; Dematage, N.; Kumara, G.; Rajapakse, R.; Shimomura, M.; Murakami, K.; Konno, A. Preparation of structurally modified, conductivity enhanced-p-CuSCN and its application in dye-sensitized solid-state solar cells. J. Power Sources 2012, 203, 288–296. [Google Scholar] [CrossRef]
- Iwamoto, T.; Ogawa, Y.; Sun, L.; White, M.S.; Glowacki, E.D.; Scharber, M.C.; Sariciftci, N.S.; Manseki, K.; Sugiura, T.; Yoshida, T. Electrochemical Self-Assembly of Nanostructured CuSCN/Rhodamine B Hybrid Thin Film and Its Dye-Sensitized Photocathodic Properties. J. Phys. Chem. C 2014, 118, 16581–16590. [Google Scholar] [CrossRef]
- Wijeyasinghe, N.; Regoutz, A.; Eisner, F.; Du, T.; Tsetseris, L.; Lin, Y.-H.; Faber, H.; Pattanasattayavong, P.; Li, J.; Yan, F.; et al. Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers Processed from Aqueous Precursor Solutions and Their Application in Thin-Film Transistors and Highly Efficient Organic and Organometal Halide Perovskite Solar Cells. Adv. Funct. Mater. 2017, 27, 1701818. [Google Scholar] [CrossRef]
- Matebese, F.; Taziwa, R.; Mutukwa, D. Progress on the Synthesis and Application of CuSCN Inorganic Hole Transport Material in Perovskite Solar Cells. Materials 2018, 11, 2592. [Google Scholar] [CrossRef] [Green Version]
- Yang, I.S.; Lee, S.; Choi, J.; Jung, M.T.; Kim, J.; Lee, W.I. Enhancement of open circuit voltage for CuSCN-based perovskite solar cells by controlling the perovskite/CuSCN interface with functional molecules. J. Mater. Chem. A 2019, 7, 6028–6037. [Google Scholar] [CrossRef]
- Kavan, L.; Zivcova, Z.V.; Hubik, P.; Arora, N.; Dar, M.I.; Zakeeruddin, S.M.; Grätzel, M. Electrochemical Characterization of CuSCN Hole-Extracting Thin Films for Perovskite Photovoltaics. ACS Appl. Energy Mater. 2019, 2, 4264–4273. [Google Scholar] [CrossRef]
- Wijeyasinghe, N.; Eisner, F.; Tsetseris, L.; Lin, Y.-H.; Seitkhan, A.; Li, J.; Yan, F.; Solomeshch, O.; Tessler, N.; Patsalas, P.; et al. p-Doping of Copper(I) Thiocyanate (CuSCN) Hole-Transport Layers for High-Performance Transistors and Organic Solar Cells. Adv. Funct. Mater. 2018, 28, 1802055. [Google Scholar] [CrossRef]
- Patel, M.J.; Gupta, S.K.; Gajjar, P. Electronic structure and optical properties of β-CuSCN: A DFT study. Mater. Today Proc. 2020, 28, 164–167. [Google Scholar] [CrossRef]
- Pattanasattayavong, P.; Packwood, D.M.; Harding, D.J. Structural versatility and electronic structures of copper(i) thiocyanate (CuSCN)–ligand complexes. J. Mater. Chem. C 2019, 7, 12907–12917. [Google Scholar] [CrossRef]
- Ni, Y.; Jin, Z.; Fu, Y. Electrodeposition of p-Type CuSCN Thin Films by a New Aqueous Electrolyte With Triethanolamine Chelation. J. Am. Ceram. Soc. 2007, 90, 2966–2973. [Google Scholar] [CrossRef]
- Arora, N.; Dar, M.I.; Hinderhofer, A.; Pellet, N.; Schreiber, F.; Zakeeruddin, S.M.; Grätzel, M. Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%. Science 2017, 358, 768–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, 5th ed.; Wiley Interscience: New York, NY, USA, 1997; pp. 1–273. [Google Scholar]
- Aldakov, D.; Chappaz-Gillot, C.; Salazar, R.; Delaye, V.; Welsby, K.A.; Ivanova, V.; Dunstan, P.R. Properties of Electrodeposited CuSCN 2D Layers and Nanowires Influenced by Their Mixed Domain Structure. J. Phys. Chem. C 2014, 118, 16095–16103. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Zhang, J.; Komatsu, D.; Sawatani, S.; Minoura, H.; Pauporté, T.; Lincot, D.; Oekermann, T.; Schlettwein, D.; Tada, H.; et al. Electrodeposition of Inorganic/Organic Hybrid Thin Films. Adv. Funct. Mater. 2008, 19, 17–43. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, H.; Feng, Z.; Lin, L.; Zhou, J.; Lin, Z. n-ZnO nanorods/p-CuSCN heterojunction light-emitting diodes fabricated by electrochemical method. Electrochim. Acta 2010, 55, 4889–4894. [Google Scholar] [CrossRef]
- Chappaz-Gillot, C.; Salazar, R.; Berson, S.; Ivanova, V. Room temperature template-free electrodeposition of CuSCN nanowires. Electrochem. Commun. 2012, 24, 1–4. [Google Scholar] [CrossRef]
- Sanchez, S.; Chappaz-Gillot, C.; Salazar, R.; Muguerra, H.; Arbaoui, E.; Berson, S.; Lévy-Clément, C.; Ivanova, V. Comparative study of ZnO and CuSCN semiconducting nanowire electrodeposition on different substrates. J. Solid State Electrochem. 2012, 17, 391–398. [Google Scholar] [CrossRef]
- Sun, L.; Huang, Y.; Hossain, A.; Li, K.; Adams, S.; Wang, Q. Fabrication of TiO2/CuSCN Bulk Heterojunctions by Profile-Controlled Electrodeposition. J. Electrochem. Soc. 2012, 159, D323–D327. [Google Scholar] [CrossRef]
- Chappaz-Gillot, C.; Salazar, R.; Berson, S.; Ivanova, V. Insights into CuSCN nanowire electrodeposition on flexible substrates. Electrochim. Acta 2013, 110, 375–381. [Google Scholar] [CrossRef]
- Ramírez, D.; Álvarez, K.; Riveros, G.; González, B.; Dalchiele, E.A. Electrodeposition of CuSCN seed layers and nanowires: A microelectrogravimetric approach. Electrochim. Acta 2017, 228, 308–318. [Google Scholar] [CrossRef]
- Shlenskaya, N.N.; Tutantsev, A.S.; Belich, N.A.; Goodilin, E.A.; Grätzel, M.; Tarasov, A.B. Electrodeposition of porous CuSCN layers as hole-conducting material for perovskite solar cells. Mendeleev Commun. 2018, 28, 378–380. [Google Scholar] [CrossRef]
- Chavhan, S.; Miguel, O.; Grande, H.-J.; Gonzalez-Pedro, V.; Sánchez, R.S.; Barea, E.M.; Mora-Seró, I.; Tena-Zaera, R. Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 2014, 2, 12754–12760. [Google Scholar] [CrossRef]
- Yang, I.S.; Sohn, M.R.; Sung, S.D.; Kim, Y.J.; Yoo, Y.J.; Kim, J.; Lee, W.I. Formation of pristine CuSCN layer by spray deposition method for efficient perovskite solar cell with extended stability. Nano Energy 2017, 32, 414–421. [Google Scholar] [CrossRef]
- Kavan, L.; Dunsch, L. Spectroelectrochemistry of Carbon Nanostructures. ChemPhysChem 2007, 8, 974–998. [Google Scholar] [CrossRef]
- Velický, M.; Bradley, D.F.; Cooper, A.J.; Hill, E.W.; Kinloch, I.A.; Mishchenko, A.; Novoselov, K.S.; Patten, H.V.; Toth, P.S.; Valota, A.T.; et al. Electron Transfer Kinetics on Mono- and Multilayer Graphene. ACS Nano 2014, 8, 10089–10100. [Google Scholar] [CrossRef]
- Velický, M.; Bissett, M.A.; Woods, C.R.; Toth, P.S.; Georgiou, T.; Kinloch, I.A.; Novoselov, K.S.; Dryfe, R.A.W. Photoelectrochemistry of Pristine Mono- and Few-Layer MoS2. Nano Lett. 2016, 16, 2023–2032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velický, M.; Toth, P.S.; Woods, C.R.; Novoselov, K.S.; Dryfe, R.A.W. Electrochemistry of the Basal Plane versus Edge Plane of Graphite Revisited. J. Phys. Chem. C 2019, 123, 11677–11685. [Google Scholar] [CrossRef]
- Wang, Y.; Alsmeyer, D.C.; McCreery, R.L. Raman spectroscopy of carbon materials: Structural basis of observed spectra. Chem. Mater. 1990, 2, 557–563. [Google Scholar] [CrossRef]
- Swain, G.M.; Ramesham, R. The electrochemical activity of boron-doped polycrystalline diamond thin film electrodes. Anal. Chem. 1993, 65, 345–351. [Google Scholar] [CrossRef]
- Pleskov, Y.; Mishuk, V.; Abaturov, M.; Elkin, V.; Krotova, M.; Varnin, V.; Teremetskaya, I. Synthetic semiconductor diamond electrodes: Determination of acceptor concentration by linear and non-linear impedance measurements. J. Electroanal. Chem. 1995, 396, 227–232. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Zivcova, Z.V.; Frank, O.; Petrák, V.; Tarábková, H.; Vacik, J.; Nesládek, M.; Kavan, L. Electrochemistry and in situ Raman spectroelectrochemistry of low and high quality boron doped diamond layers in aqueous electrolyte solution. Electrochim. Acta 2013, 87, 518–525. [Google Scholar] [CrossRef]
- MacPherson, J.V. A practical guide to using boron doped diamond in electrochemical research. Phys. Chem. Chem. Phys. 2015, 17, 2935–2949. [Google Scholar] [CrossRef] [PubMed]
- Kavan, L.; Zivcova, Z.V.; Petrak, V.; Frank, O.; Janda, P.; Tarabkova, H.; Nesladek, M.; Mortet, V. Boron-doped Diamond Electrodes: Electrochemical, Atomic Force Microscopy and Raman Study towards Corrosion-modifications at Nanoscale. Electrochim. Acta 2015, 179, 626–636. [Google Scholar] [CrossRef]
- Živcová, Z.V.; Frank, O.; Drijkoningen, S.; Haenen, K.; Mortet, V.; Kavan, L. n-Type phosphorus-doped nanocrystalline diamond: Electrochemical and in situ Raman spectroelectrochemical study. Rsc Adv. 2016, 6, 51387–51393. [Google Scholar] [CrossRef]
- Zivcova, Z.V.; Petrák, V.; Frank, O.; Kavan, L. Electrochemical impedance spectroscopy of polycrystalline boron doped diamond layers with hydrogen and oxygen terminated surface. Diam. Relat. Mater. 2015, 55, 70–76. [Google Scholar] [CrossRef]
- Itoh, T.; McCreery, R.L. In Situ Raman Spectroelectrochemistry of Electron Transfer between Glassy Carbon and a Chemisorbed Nitroazobenzene Monolayer. J. Am. Chem. Soc. 2002, 124, 10894–10902. [Google Scholar] [CrossRef]
- Kalbac, M.; Kavan, L.; Dunsch, L. An in situ Raman spectroelectrochemical study of the controlled doping of semiconducting single walled carbon nanotubes in a conducting polymer matrix. Synth. Met. 2009, 159, 2245–2248. [Google Scholar] [CrossRef]
- Frank, O.; Dresselhaus, M.S.; Kalbac, M. Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Isotopically Engineered Graphene Systems. Acc. Chem. Res. 2015, 48, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandrasekhar, R.; Choy, K. Electrostatic spray assisted vapour deposition of fluorine doped tin oxide. J. Cryst. Growth 2001, 231, 215–221. [Google Scholar] [CrossRef]
- Shiell, T.B.; Wong, S.; Yang, W.; Tanner, C.A.; Haberl, B.; Elliman, R.G.; McKenzie, D.R.; McCulloch, D.G.; Bradby, J.E. The composition, structure and properties of four different glassy carbons. J. Non-Cryst. Solids 2019, 522, 119561. [Google Scholar] [CrossRef]
- Kawashima, Y.; Katagiri, G. Fundamentals, overtones, and combinations in the Raman spectrum of graphite. Phys. Rev. B 1995, 52, 10053–10059. [Google Scholar] [CrossRef] [PubMed]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Prawer, S.; Nemanich, R.J. Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2004, 362, 2537–2565. [Google Scholar] [CrossRef] [PubMed]
- Dennison, J.R.; Holtz, M.; Swain, G. Raman Spectroscopy of Carbon Materials. Spectroscopy 1996, 11, 38–45. [Google Scholar]
- Williams, A.W.S.; Lightowlers, E.C.; Collins, A.T. Impurity conduction in synthetic semiconducting diamond. J. Phys. C: Solid State Phys. 1970, 3, 1727–1735. [Google Scholar] [CrossRef]
- Mortet, V.; Taylor, A.; Živcová, Z.V.; Machon, D.; Frank, O.; Hubík, P.; Tremouilles, D.; Kavan, L. Analysis of heavily boron-doped diamond Raman spectrum. Diam. Relat. Mater. 2018, 88, 163–166. [Google Scholar] [CrossRef]
- Bian, H.; Chen, H.; Zhang, Q.; Li, J.; Wen, X.; Zhuang, W.; Zheng, J. Cation Effects on Rotational Dynamics of Anions and Water Molecules in Alkali (Li+, Na+, K+, Cs+) Thiocyanate (SCN–) Aqueous Solutions. J. Phys. Chem. B 2013, 117, 7972–7984. [Google Scholar] [CrossRef]
- Son, Y.; de Tacconi, N.R.; Rajeshwar, K. Photoelectrochemistry and Raman spectroelectrochemistry of cuprous thiocyanate films on copper electrodes in acidic media. J. Electroanal. Chem. 1993, 345, 135–146. [Google Scholar] [CrossRef]
- Laser, D.; Bard, A.J. Semiconductor electrodes. IV. Electrochemical behavior of n- and p-type silicon electrodes in acetonitrile solutions. J. Phys. Chem. 1976, 80, 459–466. [Google Scholar] [CrossRef]
- Zou, Y.; Walton, A.S.; Kinloch, I.A.; Dryfe, R.A.W. Investigation of the Differential Capacitance of Highly Ordered Pyrolytic Graphite as a Model Material of Graphene. Langmuir 2016, 32, 11448–11455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duyne, R.P.; Haushalter, J.P. Resonance Raman spectroelectrochemistry of semiconductor electrodes: The photooxidation of tetrathiafulvalene at n-gallium arsenide(100) in acetonitrile. J. Phys. Chem. 1984, 88, 2446–2451. [Google Scholar] [CrossRef]
- Hao, H.; Xie, Q.; Ai, J.; Wang, Y.; Bian, H. Specific counter-cation effect on the molecular orientation of thiocyanate anions at the aqueous solution interface. Phys. Chem. Chem. Phys. 2020, 22, 10106–10115. [Google Scholar] [CrossRef]
- Gans, P.; Gill, J.B.; Griffin, M. Spectrochemistry of solutions. Part 5.—Raman spectroscopic study of the coordination of silver(I) ions in liquid ammonia by thiocyanate ions. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1978, 74, 432–439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlčková Živcová, Z.; Bouša, M.; Velický, M.; Frank, O.; Kavan, L. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates. Nanomaterials 2021, 11, 1256. https://doi.org/10.3390/nano11051256
Vlčková Živcová Z, Bouša M, Velický M, Frank O, Kavan L. In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates. Nanomaterials. 2021; 11(5):1256. https://doi.org/10.3390/nano11051256
Chicago/Turabian StyleVlčková Živcová, Zuzana, Milan Bouša, Matěj Velický, Otakar Frank, and Ladislav Kavan. 2021. "In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates" Nanomaterials 11, no. 5: 1256. https://doi.org/10.3390/nano11051256
APA StyleVlčková Živcová, Z., Bouša, M., Velický, M., Frank, O., & Kavan, L. (2021). In Situ Raman Microdroplet Spectroelectrochemical Investigation of CuSCN Electrodeposited on Different Substrates. Nanomaterials, 11(5), 1256. https://doi.org/10.3390/nano11051256