Nanoparticles for the Treatment of Inner Ear Infections
Abstract
:1. Introduction
2. Inner Ear Infections
2.1. Viral Infections
2.2. Bacterial Infections
2.3. Fungal Infections
3. Administration Routes
4. Nanoparticles-Mediated Treatment
4.1. Inorganic Nanoparticles
4.2. Lipid Nanoparticles
4.3. Polymeric Nanoparticles
4.4. Nanoparticles Incorporated in Nanocomposite Materials
4.5. Nanomaterials Safety
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Danti, S.; Azimi, B.; Candito, M.; Fusco, A.; Bafqi, M.S.S.; Ricci, C.; Milazzo, M.; Cristallini, C.; Latifi, M.; Donnarumma, G.; et al. Lithium niobate nanoparticles as biofunctional interface material for inner ear devices. Biointerphases 2020, 15, 031004. [Google Scholar] [CrossRef]
- Nguyen, K.; Kempfle, J.S.; Jung, D.H.; McKenna, C.E. Recent advances in therapeutics and drug delivery for the treatment of inner ear diseases: A patent review (2011–2015). Expert Opin. Ther. Patents 2016, 27, 191–202. [Google Scholar] [CrossRef]
- Ren, Y.; Landegger, L.D.; Stankovic, K.M. Gene Therapy for Human Sensorineural Hearing Loss. Front. Cell. Neurosci. 2019, 13, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.W.; Shaffer, A.D.; Kitsko, D.; Chi, D.H. Sudden Sensorineural Hearing Loss in Children—Management and Outcomes: A Meta-analysis. Laryngoscope 2021, 131, 425–434. [Google Scholar] [CrossRef]
- Lang, B.; Hintze, J.; Conlon, B. Coronavirus disease 2019 and sudden sensorineural hearing loss. J. Laryngol. Otol. 2020, 134, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Vinhaes, E.S.; Santos, L.A.; Dias, L.; Andrade, N.A.; Bezerra, V.H.; De Carvalho, A.T.; De Moraes, L.; Henriques, D.F.; Azar, S.R.; Vasilakis, N.; et al. Transient Hearing Loss in Adults Associated with Zika Virus Infection. Clin. Infect. Dis. 2016, 6, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Korver, A.M.H.; Smith, R.J.H.; Van Camp, G.; Schleiss, M.R.; Bitner-Glindzicz, M.A.K.; Lustig, L.R.; Usami, S.-I.; Boudewyns, A.N. Congenital hearing loss. Nat. Rev. Dis. Prim. 2017, 3, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muri, L.; Le, N.D.; Zemp, J.; Grandgirard, D.; Leib, S.L. Metformin mediates neuroprotection and attenuates hearing loss in experimental pneumococcal meningitis. J. Neuroinflamm. 2019, 16, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Li, X.; Zhang, W.; Kohane, D.S. Drug Delivery across Barriers to the Middle and Inner Ear. Adv. Funct. Mater. 2020. [Google Scholar] [CrossRef]
- McCall, A.A.; Swan, E.E.L.; Borenstein, J.T.; Sewell, W.F.; Kujawa, S.G.; McKenna, M.J. Drug Delivery for Treatment of Inner Ear Disease: Current State of Knowledge. Ear Hear. 2010, 31, 156–165. [Google Scholar] [CrossRef] [Green Version]
- Mäder, K.; Lehner, E.; Liebau, A.; Plontke, S.K. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear. Res. 2018, 368, 49–66. [Google Scholar] [CrossRef]
- Mittal, R.; Pena, S.A.; Zhu, A.; Eshraghi, N.; Fesharaki, A.; Horesh, E.J.; Mittal, J.; Eshraghi, A.A. Nanoparticle-based drug delivery in the inner ear: Current challenges, limitations and opportunities. Artif. Cells Nanomed. Biotechnol. 2019, 47, 1312–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valente, F.; Astolfi, L.; Simoni, E.; Danti, S.; Franceschini, V.; Chicca, M.; Martini, A. Nanoparticle drug delivery systems for inner ear therapy: An overview. J. Drug Deliv. Sci. Technol. 2017, 39, 28–35. [Google Scholar] [CrossRef]
- An, X.; Zha, D. Development of nanoparticle drug-delivery systems for the inner ear. Nanomedicine 2020, 15, 1981–1993. [Google Scholar] [CrossRef]
- Dewyer, N.A.; Kiringoda, R.; McKenna, M.J. Inner Ear Infections (Labyrinthitis). In Infections of the Ears, Nose, Throat, and Sinuses; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2018; pp. 79–88. [Google Scholar]
- Prince, A.D.P.; Stucken, E.Z. Sudden Sensorineural Hearing Loss: A Diagnostic and Therapeutic Emergency. J. Am. Board Fam. Med. 2021, 34, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Bontempo, L.J.; Shoenberger, J. Ear, Nose, and Throat Emergencies, An Issue of Emergency Medicine Clinics of North America, E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2018; Volume 37. [Google Scholar]
- Barkwill, D.; Arora, R. Labyrinthitis; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Yorgancılar, E.; Yıldırım, M.; Gun, R.; Bakır, S.; Tekın, R.; Gocmez, C.; Merıc, F.; Topcu, I. Complications of chronic suppurative otitis media: A retrospective review. Eur. Arch. Oto-Rhino-Laryngol. 2012, 270, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Rider, J.; Cen, S.; Borger, J. Vestibular Neuronitis; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Lee, J.Y.; Kim, M.B. Importance of Video Head Impulse Test Parameters for Recovery of Symptoms in Acute Vestibular Neuritis. Otol. Neurotol. 2020, 41, 964–971. [Google Scholar] [CrossRef]
- Kim, J.S. When the Room Is Spinning: Experience of Vestibular Neuritis by a Neurotologist. Front. Neurol. 2020, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Innovative Genomics Institute. Glossary. Available online: https://innovativegenomics.org/glossary/ (accessed on 2 April 2021).
- BD Editors. Septate vs. Non-Septate Hyphae. Available online: https://biologydictionary.net/septate-vs-non-septate-hyphae/ (accessed on 2 April 2021).
- Khan, A.; Jain, S.K. Fungal Otomycosis in Swimmers. Int. J. Life Sci. Bioeng. 2019, 6, 1–8. [Google Scholar]
- Mustafa, M. Audiological profile of asymptomatic Covid-19 PCR-positive cases. Am. J. Otolaryngol. 2020, 41, 102483. [Google Scholar] [CrossRef]
- Gabrielli, L.; Bonasoni, M.P.; Santini, D.; Piccirilli, G.; Chiereghin, A.; Guerra, B.; Landini, M.P.; Capretti, M.G.; Lanari, M.; Lazzarotto, T. Human fetal inner ear involvement in congenital cytomegalovirus infection. Acta Neuropathol. Commun. 2013, 1, 63. [Google Scholar] [CrossRef] [Green Version]
- Sao, T.; Navya, A. Profiling of Audiological Characteristics in Infants with Congenital Rubella Syndrome. J. Otolaryngol. ENT Res. 2017, 7, 226. [Google Scholar]
- Orman, G.; Kukreja, M.; Vallejo, J.; Desai, N.; Huisman, T.; Kralik, S. Accuracy of MR Imaging for Detection of Sensorineural Hearing Loss in Infants with Bacterial Meningitis. Am. J. Neuroradiol. 2020, 41, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.; Yoo, J.E.; Choe, Y.H.; Park, S.C.; Lee, H.J.; Lee, H.J.; Noh, B.; Kim, S.H.; Kang, G.-Y.; Lee, K.-M.; et al. Cleaved Cochlin Sequesters Pseudomonas aeruginosa and Activates Innate Immunity in the Inner Ear. Cell Host Microbe 2019, 25, 513–525.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, L.E.; Johnsson, L.G. Viral infections of the Inner Ear. Am. J. Otolaryngol. 1983, 4, 347–362. [Google Scholar] [CrossRef]
- Leal, M.D.C.; Ramos, D.S.; Neto, S.S.C. Hearing Loss From Congenital Zika Virus Infection. Top. Magn. Reson. Imaging 2019, 28, 19–22. [Google Scholar] [CrossRef]
- Palma, S.; Roversi, M.F.; Bettini, M.; Mazzoni, S.; Pietrosemoli, P.; Lucaccioni, L.; Berardi, A.; Genovese, E. Hearing loss in children with congenital cytomegalovirus infection: An 11-year retrospective study based on laboratory database of a tertiary paediatric hospital. Acta Otorhinolaryngol. Italy 2019, 39, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Pinninti, S.; Christy, J.; Almutairi, A.; Cochrane, G.; Fowler, K.B.; Boppana, S. Vestibular, Gaze, and Balance Disorders in Asymptomatic Congenital Cytomegalovirus Infection. Pediatrics 2021, 147, e20193945. [Google Scholar] [CrossRef]
- Riga, M.; Korres, G.; Chouridis, P.; Naxakis, S.; Danielides, V. Congenital cytomegalovirus infection inducing non-congenital sensorineural hearing loss during childhood: A systematic review. Int. J. Pediatr. Otorhinolaryngol. 2018, 115, 156–164. [Google Scholar] [CrossRef]
- Martinez-Gomez, E.; Perez-Carpena, P.; Flook, M.; Lopez-Escamez, J. A Systematic Review on the Association of Acquired Human Cytomegalovirus Infection with Hearing Loss. J. Clin. Med. 2020, 9, 4011. [Google Scholar] [CrossRef]
- Leruez-Ville, M.; Foulon, I.; Pass, R.; Ville, Y. Cytomegalovirus infection during pregnancy: State of the science. Am. J. Obstet. Gynecol. 2020, 223, 330–349. [Google Scholar] [CrossRef] [PubMed]
- Mawson, A.R.; Croft, A.M. Rubella Virus Infection, the Congenital Rubella Syndrome, and the Link to Autism. Int. J. Environ. Res. Public Health 2019, 16, 3543. [Google Scholar] [CrossRef] [Green Version]
- Caroça, C.; Vicente, V.; Campelo, P.; Chasqueira, M.; Caria, H.; Silva, S.N.; Paixão, P.; Paço, J. Rubella in Sub-Saharan Africa and sensorineural hearing loss: A case control study. BMC Public Health 2017, 17, 146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittal, R.; Liu, X.Z.; Fifer, R.C. A Possible Association Between Hearing Loss and Zika Virus Infections. JAMA Otolaryngol. Neck Surg. 2017, 144, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Yee, K.T.; Neupane, B.; Bai, F.; Vetter, D.E. Zika virus infection causes widespread damage to the inner ear. Hear. Res. 2020, 395, 108000. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.K.; Pani, S.R. Incidence of Hearing Loss in COVID-19 Patients: A COVID Hospital-based Study in the Eastern Part of India. Int. J. Curr. Res. Rev. 2021, 13, 103–107. [Google Scholar] [CrossRef]
- Ribeiro, G.E.; Silva, D.P.C.d. Audiological implications of COVID-19: An integrative literature review. Revista CEFAC 2021, 23. [Google Scholar] [CrossRef]
- Jatto, M.E.; Adeyemo, A.A.; Ogunkeyede, S.A.; Lagunju, I.A.; Nwaorgu, O.G. Pediatric Hearing Thresholds Post-bacterial Meningitis. Front. Surg. 2020, 7, 36. [Google Scholar] [CrossRef]
- Mohammed, R.Q.; Abdullah, P.B. Infection with Acute Otitis Media Caused by Pseudomonas aeruginosa (MDR) and Staphylococcus aureus (MRSA). Biochem. Cell. Arch. 2020, 20, 905–908. [Google Scholar]
- Calabrese, E.J.; Dhawan, G. Historical use of X-rays. Hum. Exp. Toxicol. 2013, 33, 542–553. [Google Scholar] [CrossRef]
- Juyal, D.; Sharma, M.; Negi, V.; Prakash, R.; Sharma, N. Pseudomonas aeruginosa and its sensitivity spectrum in chronic suppurative otitis media: A study from Garhwal hills of Uttarakhand State, India. Indian J. Otol. 2017, 23, 180. [Google Scholar] [CrossRef]
- Meyerhoff, W.L.; Paparella, M.M.; Oda, M.; Shea, D. Mycotic Infections of the Inner Ear. Laryngoscope 1979, 89, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Falser, N. Fungal Infection of the Ear. Dermatology 1984, 169, 135–140. [Google Scholar] [CrossRef]
- Mofatteh, M.R.; Yazdi, Z.N.; Yousefi, M.; Namaei, M.H. Comparison of the recovery rate of otomycosis using betadine and clotrimazole topical treatment. Braz. J. Otorhinolaryngol. 2018, 84, 404–409. [Google Scholar] [CrossRef]
- Jaudoin, C.; Agnely, F.; Nguyen, Y.; Ferrary, E.; Bochot, A. Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int. J. Pharm. 2021, 592, 120038. [Google Scholar] [CrossRef]
- Perin, P.; Marino, F.; Varela-Nieto, I.; Szczepek, A.J. Editorial: Neuroimmunology of the Inner Ear. Front. Neurol. 2021, 12, 635359. [Google Scholar] [CrossRef]
- Juhn, S.K. Barrier Systems in the Inner Ear. Acta Oto-Laryngol. 1988, 105, 79–83. [Google Scholar] [CrossRef]
- Nyberg, S.; Abbott, N.J.; Shi, X.; Steyger, P.S.; Dabdoub, A. Delivery of therapeutics to the inner ear: The challenge of the blood-labyrinth barrier. Sci. Transl. Med. 2019, 11, eaao0935. [Google Scholar] [CrossRef]
- El Kechai, N.; Agnely, F.; Mamelle, E.; Nguyen, Y.; Ferrary, E.; Bochot, A. Recent advances in local drug delivery to the inner ear. Int. J. Pharm. 2015, 494, 83–101. [Google Scholar] [CrossRef]
- Szeto, B.; Chiang, H.; Bs, C.V.; Yu, M.; Kysar, J.W.; Lalwani, A.K. Inner ear delivery: Challenges and opportunities. Laryngoscope 2020, 5, 122–131. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Pyykkö, I.; Hyttinen, J. Inner ear barriers to nanomedicine-augmented drug delivery and imaging. J. Otol. 2016, 11, 165–177. [Google Scholar] [CrossRef]
- Hao, J.; Li, S.K. Inner ear drug delivery: Recent advances, challenges, and perspective. Eur. J. Pharm. Sci. 2019, 126, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Guigou, C.; Lalande, A.; Millot, N.; Belharet, K.; Grayeli, A.B. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sci. 2021, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.J.; Son, J.; Jung, S.Y.; Yi, G.; Yoo, J.; Kim, D.-K.; Koo, H. Optimized phospholipid-based nanoparticles for inner ear drug delivery and therapy. Biomaterials 2018, 171, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hao, J.; Li, K.S. Current strategies for drug delivery to the inner ear. Acta Pharm. Sin. B 2013, 3, 86–96. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.K. Nanomedicine for Inner Ear Diseases: A Review of Recent In Vivo Studies. BioMed Res. Int. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.; Szczupak, M.; Rajguru, S.; Balaban, C.; Hoffer, M.E. Inner Ear Therapeutics: An Overview of Middle Ear Delivery. Front. Cell. Neurosci. 2019, 13, 261. [Google Scholar] [CrossRef] [Green Version]
- Manrique-Huarte, R.; de Linera-Alperi, M.A.; Parilli, D.; Rodriguez, J.; Borro, D.; Dueck, W.; Smyth, D.; Salt, A.; Manrique, M. Inner ear drug delivery through a cochlear implant: Pharmacokinetics in a Macaque experimental model. Hear. Res. 2021, 404, 108228. [Google Scholar] [CrossRef]
- Plontke, S.K.; Götze, G.; Rahne, T.; Liebau, A. Intracochlear drug delivery in combination with cochlear implants: Current aspects. HNO 2016, 65, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Prenzler, N.K.; Salcher, R.; Timm, M.; Gaertner, L.; Lenarz, T.; Warnecke, A. Intracochlear administration of steroids with a catheter during human cochlear implantation: A safety and feasibility study. Drug Deliv. Transl. Res. 2018, 8, 1191–1199. [Google Scholar] [CrossRef]
- Lehner, E.; Menzel, M.; Gündel, D.; Plontke, S.K.; Mäder, K.; Klehm, J.; Kielstein, H.; Liebau, A. Microimaging of a novel intracochlear drug delivery device in combination with cochlear implants in the human inner ear. Drug Deliv. Transl. Res. 2021. [Google Scholar] [CrossRef]
- Ito, J.; Endo, T.; Nakagawa, T.; Kita, T.; Kim, T.-S.; Iguchi, F. A New Method for Drug Application to the Inner Ear. ORL 2005, 67, 272–275. [Google Scholar] [CrossRef]
- Shinohara, T.; Bredberg, G.; Ulfendahl, M.; Pyykkö, I.; Olivius, N.P.; Kaksonen, R.; Lindstrom, B.; Altschuler, R.; Miller, J.M. Neurotrophic factor intervention restores auditory function in deafened animals. Proc. Natl. Acad. Sci. USA 2002, 99, 1657–1660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ylikoski, J.; Pirvola, U.; Virkkala, J.; Suvanto, P.; Liang, X.Q.; Magal, E.; Altschuler, R.; Miller, J.; Saarma, M. Guinea pig auditory neurons are protected by glial cell line-derived growth factor from degeneration after noise trauma. Hear. Res. 1998, 124, 17–26. [Google Scholar] [CrossRef]
- Brown, J.; Miller, J.M.; Altschuler, R.A.; Nuttall, A.L. Osmotic pump implant for chronic infusion of drugs into the inner ear. Hear. Res. 1993, 70, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Pararas, E.E.L.; Chen, Z.; Fiering, J.; Mescher, M.J.; Kim, E.S.; McKenna, M.J.; Kujawa, S.G.; Borenstein, J.T.; Sewell, W.F. Kinetics of reciprocating drug delivery to the inner ear. J. Control. Release 2011, 152, 270–277. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Kujawa, S.G.; McKenna, M.J.; Fiering, J.O.; Mescher, M.J.; Borenstein, J.T.; Swan, E.E.L.; Sewell, W.F. Inner ear drug delivery via a reciprocating perfusion system in the guinea pig. J. Control. Release 2005, 110, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tandon, V.; Kang, W.S.; Spencer, A.J.; Kim, E.S.; Pararas, E.E.L.; McKenna, M.J.; Kujawa, S.G.; Mescher, M.J.; Fiering, J.; Sewell, W.F.; et al. Microfabricated infuse-withdraw micropump component for an integrated inner-ear drug-delivery platform. Biomed. Microdevices 2015, 17, 37. [Google Scholar] [CrossRef]
- Piu, F.; Bishop, K.M. Local Drug Delivery for the Treatment of Neurotology Disorders. Front. Cell. Neurosci. 2019, 13, 238. [Google Scholar] [CrossRef] [Green Version]
- Non-invasive drug delivery system for the delivery of protein/peptide using neem gum and its derivatives. Biointerface Res. Appl. Chem. 2020, 10, 5460–5465. [CrossRef]
- Cervantes, B.; Arana, L.; Murillo-Cuesta, S.; Bruno, M.; Alkorta, I.; Varela-Nieto, I. Solid Lipid Nanoparticles Loaded with Glucocorticoids Protect Auditory Cells from Cisplatin-Induced Ototoxicity. J. Clin. Med. 2019, 8, 1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohammadian, M.; Moghaddam, A.D.; Sharifan, A.; Dabaghi, P.; Hadi, S. Different forms of whey protein aggregates as curcumin delivery systems: Evaluation of free radical scavenging activity and drug release kinetics. Biointerface Res. Appl. Chem. 2020, 10, 5490–5495. [Google Scholar] [CrossRef]
- Ullah, F.; Javed, F.; Khan, A.N.; Kudus, M.H.A.; Jamila, N.; Minhaz, A.; Akil, H.M. Synthesis and surface modification of chitosan built nanohydrogel with antiviral and antimicrobial agent for controlled drug delivery. Biointerface Res. Appl. Chem. 2019, 9, 4439–4445. [Google Scholar] [CrossRef]
- Boldyrev, A.; Ziganshin, M.; Mukhametzyanov, T.; Klimovitskii, A.; Lyadov, N.; Gerasimov, A. Formation of microspherical particles of albumin with model drug using spray drying process. Biointerface Res. Appl. Chem. 2019, 9, 4605–4611. [Google Scholar] [CrossRef]
- Zindani, D.; Kumar, K. Graphene-based polymeric nano-composites: An introspection into functionalization, processing techniques and biomedical applications. Biointerface Res. Appl. Chem. 2019, 9, 3926–3933. [Google Scholar] [CrossRef]
- Leso, V.; Fontana, L.; Ercolano, M.L.; Romano, R.; Iavicoli, I. Opportunities and challenging issues of nanomaterials in otological fields: An occupational health perspective. Nanomedicine 2019, 14, 2613–2629. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Ahmad, H.; Parveen, T.; Ahmad, A.; Oves, M.; Ismail, I.M.I.; Qari, H.A.; Umar, K.; Ibrahim, M.N.M. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front. Chem. 2020, 8, 341. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Gangadharappa, H.; Mruthunjaya, K. Phospholipids: Unique carriers for drug delivery systems. J. Drug Deliv. Sci. Technol. 2017, 39, 166–179. [Google Scholar] [CrossRef]
- Manzano, M.; Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 2020, 30, 1902634. [Google Scholar] [CrossRef]
- Paladini, F.; Pollini, M.; Sannino, A.; Ambrosio, L. Metal-Based Antibacterial Substrates for Biomedical Applications. Biomacromolecules 2015, 16, 1873–1885. [Google Scholar] [CrossRef]
- Zou, J.; Hannula, M.; Misra, S.; Feng, H.; Labrador, R.H.; Aula, A.S.; Hyttinen, J.; Pyykkö, I. Micro CT visualization of silver nanoparticles in the middle and inner ear of rat and transportation pathway after transtympanic injection. J. Nanobiotechnol. 2015, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziąbka, M.; Menaszek, E.; Tarasiuk, J.; Wroński, S. Biocompatible Nanocomposite Implant with Silver Nanoparticles for Otology—In Vivo Evaluation. Nanomaterials 2018, 8, 764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franci, G.; Falanga, A.; Galdiero, S.; Palomba, L.; Rai, M.; Morelli, G.; Galdiero, M. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015, 20, 8856–8874. [Google Scholar] [CrossRef] [Green Version]
- Ravishankar Rai, V.; Jamuna Bai, A. Nanoparticles and their potential application as antimicrobials. In Science against Microbial Pathogens: Communicating Current Research and Technological Advances; Mendez-Vilas, A., Ed.; Citeseer: Princeton, NJ, USA, 2011; pp. 197–209. [Google Scholar]
- Ahmad, M.A.; Salmiati, S.; Marpongahtun, M.; Salim, M.R.; Lolo, J.A.; Syafiuddin, A. Green Synthesis of Silver Nanoparticles Using Muntingia calabura Leaf Extract and Evaluation of Antibacterial Activities. Biointerface Res. Appl. Chem. 2020, 10, 6253–6261. [Google Scholar] [CrossRef]
- Muhsin, T.M.; Hachim, A.K. Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria. World J. Microbiol. Biotechnol. 2014, 30, 2081–2090. [Google Scholar] [CrossRef] [PubMed]
- Bolaños, K.; Kogan, M.J.; Araya, E. Capping gold nanoparticles with albumin to improve their biomedical properties. Int. J. Nanomed. 2019, 14, 6387–6406. [Google Scholar] [CrossRef] [Green Version]
- Maleki, M.J.; Pourhassan-Moghaddam, M.; Karimi, A.; Akbarzadeh, A.; Zarghami, N.; Mohammadi, S.A. Synthesis, characterisation, and application of chamomile gold nanoparticles in molecular diagnostics: A new component for PCR kits. Biointerface Res. Appl. Chem. 2019, 9, 4635–4641. [Google Scholar] [CrossRef]
- Li, L.; Chao, T.; Brant, J.; O’Malley, B.; Tsourkas, A.; Li, D. Advances in nano-based inner ear delivery systems for the treatment of sensorineural hearing loss. Adv. Drug Deliv. Rev. 2017, 108, 2–12. [Google Scholar] [CrossRef] [Green Version]
- Kayyali, M.N.; Brake, L.; Ramsey, A.J.; Wright, A.C.; O’Malley, B.W.; Daqing, L.D. A Novel Nano-approach for Targeted Inner Ear Imaging. J. Nanomed. Nanotechnol. 2017, 8, 1–6. [Google Scholar] [CrossRef]
- Dizaj, S.M.; Lotfipour, F.; Barzegar-Jalali, M.; Zarrintan, M.H.; Adibkia, K. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284. [Google Scholar] [CrossRef]
- Rodrigues, G.R.; López-Abarrategui, C.; Gómez, I.D.L.S.; Dias, S.C.; Otero-González, A.J.; Franco, O.L. Antimicrobial magnetic nanoparticles based-therapies for controlling infectious diseases. Int. J. Pharm. 2019, 555, 356–367. [Google Scholar] [CrossRef]
- Grumezescu, A.M.; Andronescu, E.; Holban, A.M.; Ficai, A.; Ficai, D.; Voicu, G.; Grumezescu, V.; Balaure, P.C.; Chifiriuc, C.M. Water dispersible cross-linked magnetic chitosan beads for increasing the antimicrobial efficiency of aminoglycoside antibiotics. Int. J. Pharm. 2013, 454, 233–240. [Google Scholar] [CrossRef]
- Seabra, A.B.; Pelegrino, M.T.; Haddad, P.S. Chapter 24—Antimicrobial Applications of Superparamagnetic Iron Oxide Nanoparticles: Perspectives and Challenges. In Nanostructures for Antimicrobial Therapy; Ficai, A., Grumezescu, A.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 531–550. [Google Scholar] [CrossRef]
- Sangaiya, P.; Jayaprakash, R. A Review on Iron Oxide Nanoparticles and Their Biomedical Applications. J. Supercond. Nov. Magn. 2018, 31, 3397–3413. [Google Scholar] [CrossRef]
- Narayanan, P.M.; Wilson, W.S.; Abraham, A.T.; Sevanan, M. Synthesis, Characterization, and Antimicrobial Activity of Zinc Oxide Nanoparticles Against Human Pathogens. BioNanoScience 2012, 2, 329–335. [Google Scholar] [CrossRef]
- Karimiyan, A.; Najafzadeh, H.; Ghorbanpour, M.; Hekmati-Moghaddam, S.H. Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans. Zahedan J. Res. Med. Sci. 2015, 17, e2179. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, M.; Sharma, N.K. Antimicrobial Activity of the engineered nanoparticles used as coating agents. In Handbook of Ecomaterials; Springer International Publishing: Cham, Switzerland, 2019; pp. 549–563. [Google Scholar]
- Fathima, J.B.; Pugazhendhi, A.; Venis, R. Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb. Pathog. 2017, 110, 245–251. [Google Scholar] [CrossRef]
- Maniu, A.A.; Perde-Schrepler, M.; Fischer-Fodor, E.; Florea, A.; Chis, G.S.; Roman, A.I. Metallic Nanoparticles in Otology. In Proceedings of the 6th Latin American Congress on Biomedical Engineering (CLAIB 2014), Paraná, Argentina, 29–31 October 2014; Springer Science and Business Media LLC: Cham, Switzerland, 2019; Volume 106, pp. 305–310. [Google Scholar]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Dallago, R.M.; Mignoni, M.L. Immobilization of Candida antarctica B (CALB) in Silica Aerogel: Morphological Characteristics and Stability. Biointerface Res. Appl. Chem. 2020, 10, 6744–6756. [Google Scholar] [CrossRef]
- Chircov, C.; Spoială, A.; Păun, C.; Crăciun, L.; Ficai, D.; Ficai, A.; Andronescu, E.; Turculeƫ, Ș.C. Mesoporous Silica Platforms with Potential Applications in Release and Adsorption of Active Agents. Molecules 2020, 25, 3814. [Google Scholar] [CrossRef] [PubMed]
- Bernardos, A.; Piacenza, E.; Sancenón, F.; Hamidi, M.; Maleki, A.; Turner, R.J.; Martínez-Máñez, R. Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, e1900669. [Google Scholar] [CrossRef] [PubMed]
- Selvarajan, V.; Obuobi, S.; Ee, P.L.R. Silica Nanoparticles—A Versatile Tool for the Treatment of Bacterial Infections. Front. Chem. 2020, 8, 602. [Google Scholar] [CrossRef]
- Magnetic-silica nanoshell for extraction of fungal genomic DNA from Rhizopus oryzae. Biointerface Res. Appl. Chem. 2020, 10, 4972–4976. [CrossRef]
- Schmidt, N.; Schulze, J.; Warwas, D.P.; Ehlert, N.; Lenarz, T.; Warnecke, A.; Behrens, P. Long-term delivery of brain-derived neurotrophic factor (BDNF) from nanoporous silica nanoparticles improves the survival of spiral ganglion neurons in vitro. PLoS ONE 2018, 13, e0194778. [Google Scholar] [CrossRef] [PubMed]
- Javadhesari, S.M.; Alipour, S.; Akbarpour, M. Effects of SiC nanoparticles on synthesis and antimicrobial activity of TiCu nanocrystalline powder. Ceram. Int. 2020, 46, 114–120. [Google Scholar] [CrossRef]
- Lemraski, E.G.; Tahmasebi, Z.; Valadbeigi, T.; Hajjami, M. Incorporation of Iron Nanoparticles into Silicon Carbide Nanoparticles as Novel Antimicrobial Bimetallic Nanoparticles. Silicon 2018, 11, 857–867. [Google Scholar] [CrossRef]
- Baig, U.; Gondal, M.; Ansari, M.; Akhtar, S. Facile synthesis, characterization and antibacterial activity of nanostructured palladium loaded silicon carbide. Ceram. Int. 2018, 44, 16908–16914. [Google Scholar] [CrossRef]
- Pezzotti, G. Silicon Nitride: A Bioceramic with a Gift. ACS Appl. Mater. Interfaces 2019, 11, 26619–26636. [Google Scholar] [CrossRef] [PubMed]
- Al-Garah, N.H.; Rashid, F.L.; Hadi, A.; Hashim, A. Synthesis and Characterization of Novel (Organic–Inorganic) Nanofluids for Antibacterial, Antifungal and Heat Transfer Applications. J. Bionanosci. 2018, 12, 336–340. [Google Scholar] [CrossRef]
- Shah, A.A.; Khan, A.; Dwivedi, S.; Musarrat, J.; Azam, A. Antibacterial and Antibiofilm Activity of Barium Titanate Nanoparticles. Mater. Lett. 2018, 229, 130–133. [Google Scholar] [CrossRef]
- Roy, S.; Glueckert, R.; Johnston, A.H.; Perrier, T.; Bitsche, M.; Newman, T.A.; Saulnier, P.; Schrott-Fischer, A. Strategies for drug delivery to the human inner ear by multifunctional nanoparticles. Nanomedicine 2012, 7, 55–63. [Google Scholar] [CrossRef]
- Gao, G.; Liu, Y.; Zhou, C.-H.; Jiang, P.; Sun, J.J. Solid Lipid Nanoparticles Loaded with Edaravone for Inner Ear Protection After Noise Exposure. Chin. Med. J. 2015, 128, 203–209. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009, 71, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Gao, X.; Li, M.; Li, Y.; Sun, M. Use of Solid Lipid Nanoparticles for the Treatment of Acute Acoustic Stress-Induced Cochlea Damage. J. Nanosci. Nanotechnol. 2020, 20, 7412–7418. [Google Scholar] [CrossRef] [PubMed]
- González-Paredes, A.; Sitia, L.; Ruyra, A.; Morris, C.J.; Wheeler, G.N.; McArthur, M.; Gasco, P. Solid lipid nanoparticles for the delivery of anti-microbial oligonucleotides. Eur. J. Pharm. Biopharm. 2019, 134, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Pyykkö, I.; Zou, J.; Zhang, Y.; Zhang, W.; Feng, H.; Kinnunen, P. Nanoparticle based inner ear therapy. World J. Otorhinolaryngol. 2013, 3, 114–133. [Google Scholar] [CrossRef]
- Mohammadian, F.; Eatemadi, A.; Daraee, H. Inner ear drug delivery using liposomes. Cell. Mol. Biol. 2017, 63, 28–33. [Google Scholar] [CrossRef]
- Srinivasan, M.; Rajabi, M.; Mousa, S.A. Multifunctional Nanomaterials and Their Applications in Drug Delivery and Cancer Therapy. Nanomaterials 2015, 5, 1690–1703. [Google Scholar] [CrossRef]
- Abolaban, F.; Djouider, F. Multifunctional Nanoparticle Platforms for Biomedical Applica-Tions: A Review. Dig. J. Nanomater. Biostruct. 2020, 15, 649–661. [Google Scholar]
- Lam, S.J.; Wong, E.; Boyer, C.; Qiao, G.G. Antimicrobial polymeric nanoparticles. Prog. Polym. Sci. 2018, 76, 40–64. [Google Scholar] [CrossRef]
- Ding, S.; Xie, S.; Chen, W.; Wen, L.; Wang, J.; Yang, F.; Chen, G. Is oval window transport a royal gate for nanoparticle delivery to vestibule in the inner ear? Eur. J. Pharm. Sci. 2019, 126, 11–22. [Google Scholar] [CrossRef]
- Tiplea, R.E.; Lemnaru, G.-M.; Trușcă, R.D.; Holban, A.; Kaya, M.G.A.; Dragu, L.D.; Ficai, D.; Ficai, A.; Bleotu, C. Antimicrobial Films based on Chitosan, Collagen, and ZnO for Skin Tissue Regeneration. Biointerface Res. Appl. Chem. 2020, 11, 11985–11995. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Tawfik, T.M.; El-Masry, A.M.A. Preparation of Chitosan Nanoparticles and its Utilization as Novel Powerful Enhancer for Both Dyeing Properties and Antimicrobial Activity of Cotton Fabrics. Biointerface Res. Appl. Chem. 2021, 11, 13652–13666. [Google Scholar] [CrossRef]
- Lajud, S.A.; Nagda, D.A.; Qiao, P.; Tanaka, N.; Civantos, A.; Gu, R.; Cheng, Z.; Tsourkas, A.; O’Malley, B.W.; Li, D. A Novel Chitosan-Hydrogel-Based Nanoparticle Delivery System for Local Inner Ear Application. Otol. Neurotol. 2015, 36, 341–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, M.; Mallick, S.; Paul, A.; Chattopadhyay, A.; Ghosh, S.S. Heightened Reactive Oxygen Species Generation in the Antimicrobial Activity of a Three Component Iodinated Chitosan−Silver Nanoparticle Composite. Langmuir 2010, 26, 5901–5908. [Google Scholar] [CrossRef]
- Zhao, W.; Gu, J.; Zhang, L.; Chen, A.H.; Shi, J. Fabrication of Uniform Magnetic Nanocomposite Spheres with a Magnetic Core/Mesoporous Silica Shell Structure. J. Am. Chem. Soc. 2005, 127, 8916–8917. [Google Scholar] [CrossRef]
- Namazi, H.; Rakhshaei, R.; Hamishehkar, H.; Kafil, H.S. Antibiotic loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int. J. Biol. Macromol. 2016, 85, 327–334. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Löbler, M.; Schmitz, K.-P.; Saulnier, P.; Perrier, T.; Pyykkö, I.; Zou, J. Inner ear biocompatibility of lipid nanocapsules after round window membrane application. Int. J. Pharm. 2011, 404, 211–219. [Google Scholar] [CrossRef]
- Zhou, H.; Ma, X.; Liu, Y.; Dong, L.; Luo, Y.; Zhu, G.; Qian, X.; Chen, J.; Lu, L.; Wang, J.; et al. Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol. Med. Rep. 2015, 11, 4381–4388. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, Y.; Celerier, C.; Pszczolinski, R.; Claver, J.; Blank, U.; Ferrary, E.; Sterkers, O. Superparamagnetic nanoparticles as vectors for inner ear treatments: Driving and toxicity evaluation. Acta Oto-Laryngol. 2016, 136, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.; Westermann, M.; Glei, M. In vitro uptake and toxicity studies of metal nanoparticles and metal oxide nanoparticles in human HT29 cells. Arch. Toxicol. 2017, 91, 3517–3527. [Google Scholar] [CrossRef]
- Wen, X.; Ding, S.; Cai, H.; Wang, J.; Wen, L.; Yang, F.; Chen, G. Nanomedicine strategy for optimizing delivery to outer hair cells by surface-modified poly(lactic/glycolic acid) nanoparticles with hydrophilic molecules. Int. J. Nanomed. 2016, 11, 5959–5969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Musazzi, U.M.; Youm, I.; Murowchick, J.B.; Ezoulin, M.J.; Youan, B.-B.C. Resveratrol-loaded nanocarriers: Formulation, optimization, characterization and in vitro toxicity on cochlear cells. Colloids Surfaces B Biointerfaces 2014, 118, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Wang, X.; Chen, D.; Lin, X.; Yu, D.; Wu, H. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration. Neurosci. Lett. 2016, 619, 142–148. [Google Scholar] [CrossRef]
- Miwa, T.; Saito, H.; Akita, H. Lipid nanoparticles-encapsulated brain-derived neurotrophic factor mRNA delivered through the round window niche in the cochleae of guinea pigs. Exp. Brain Res. 2021, 239, 425–433. [Google Scholar] [CrossRef] [PubMed]
Tested Nanomaterial | Nanomaterial Properties | Type of Study | Type of Cells | Experimental Design | Observations | Refs. |
---|---|---|---|---|---|---|
LCNs | Size: 50 nm Polydispersity index: <0.2 | In vitro | Cochlear cells isolated from newborn Sprague-Dawley rats | The cells were treated with LNCs at concentrations varying between 0 and 1.5 mg/mL for 24 h. | Survival rates of treated cells, depending on concentration: −1.5 mg/mL—37.96% −0.15 mg/mL—86.41% −0.015 mg/mL—80.06% Surviving cells from all treated groups had fewer LNCs in their cytoplasm. | [82,138] |
LCNs | Nanoparticle size: 50 nm Pledget size: 8 mm3 LNC concentration: 20.5 g/L | In vivo | Interdental cells, stria marginal cells, outer hair cells, inner hair cells, semi-circular canal endothelial cells, cochlear nerve of rats | A small piece of gelatin sponge pledget saturated with LNCs was placed on the round window membrane, and it was there for D28 for ABR study and 2 h for neural elements studies. | None of the animals manifested middle ear infections during the study. No inflammation was detected in the inner ear LNC treatment did not induce apoptosis. The inner ear neural elements were preserved. | [138] |
Resveratrol-loaded PLGA nanoparticles | Size: 135.5 ± 37.3 nm | In vitro | HEI-OC1 and SVK-1 cell line | The cells were treated with blank nanoparticle, resveratrol, and resveratrol-loaded nanoparticles at concentrations up to 1 mg/mL for 24 h. | No cell line’s viability was affected by blank nanoparticles in concentrations below 0.6 mg/mL At a concentration of 1 mg/mL, blank nanoparticles produced the death of 56% cells from HEI-OC1 cell line Resveratrol and resveratrol-loaded nanoparticles lead to negligible cell death rates. | [82,143] |
Polyethylenimine (PEI)-plasmid DNA nanoparticles | Size: ~20–100 nm Shape: almost spherical | In vitro | Cochlear epithelium isolated from C57BL/6J male and female mice | The cochlear explants were treated with linear nanoparticle polyplexes loaded with plasmid DNA at various weight ratios; the cell viability was assessed in a 0–48 h interval after transfection. | The use of a higher linear polyethylenimine-plasmid DNA ratio conducted to a significant time-dependent reduction in hair cell viability Oto-nanotoxicity of the tested material started to manifest immediately after the addition of the poly-plex, especially outer hair cells were noted to be more vulnerable in the acute phase. | [82,139] |
SPIONs | Size: 100 and 500 nm | In vitro | EC5V cells derived from the inner ear ampulla of semicircular canals. | The cells were treated with SPIONs at final concentrations, depending on size: 100 nm—3 × 1010, 3 × 109, 3 × 108 NP/mL 500 nm—7 × 107, 7 × 106 NP/mL. | A lower number of surviving cells were reported in the 100 nm treated group than in the 500 nm and control groupsApoptotic cells were more frequently observed in the 100 nm group than in the 500 nm and control groups. | [82,140] |
SPIONs | Size: 200 nm | In vivo | Inner ear cells of albino male guinea pigs | In each animal, on one ear, a 0.4 mm scala tympani cochleostomy, 1.5 mm under the round window ridge was performed through a posterior approach and bullostomy and 1 μL of saline serum was injected. In the other ear, a bolus of 1 μL of nanoparticles was performed using the same method. | At day 7, hearing threshold shift showed no difference between saline-treated ears and nanoparticles treated ears. | [140] |
AuNPs | Size: 50 nm Shape: spherical | In vitro | HEI-OC1 cell line | The cells were treated with nanoparticles at 0–100 μM for up to 6 days | There were not reported any significant changes in cell viability. | [82,96] |
AuNPs | Size: 50 nm Shape: spherical | In vivo | Mouse cochlear cells | Gold nanoparticles were applied in vivo to mouse cochleae | The injected nanoparticles fully diffused throughout the inner ear and were successfully localized within the cells. The presence of nanoparticles had no observable effect on the morphology of the hair cells. Gold nanoparticles do not enhance X-ray attenuation in a significant manner. Hence they are not considered suitable computed tomography imaging contrast agents for the inner ear. | [96] |
Methoxy poly (ethylene glycol)-polylactic acid nanoparticles loaded with dexamethasone | Size: 130 nm Shape: spherical | In vivo | Inner ear cells of male guinea pigs | The treatment was administered intraperitoneally at a dose of 10 mg/kg and at a concentration of 10 mg/mL, 1 h before cisplatin injection. Three days after treatment, the animals were euthanized, and their tissues were prepared for the examination. | The auditory brainstem response threshold was not significantly changed, indicating nanoparticles’ nontoxicity. A single injection of nanoparticles was reported to provide significant functional and histological protection of the cochlea from the cisplatin, which was similar to the effect of repeated injection of the free drug for 3 days. | [144] |
Unmodified PLGA-nanoparticles, surface modified with poloxamer 407, chitosan, or methoxy poly(ethylene glycol) | Size: 100–200 nm Relatively uniform size distribution | In vitro | HEI-OC1 cell line | The cells were treated with nanoparticles at concentrations varying between 0 and 80 mg/mL for 24 h | IC50 values: (1) unmodified NPs—71.30 ± 4.16 mg/mL (2) P407-modified NPs—60.53 ± 0.55 mg/mL (3) Chitosan-modified NPs—65.39 ± 0.47 mg/mL (4) mPEG-modified NPs—81.70 ± 1.04 mg/mL Uptake efficiencies: (1) unmodified NPs—79.7% (2) P407-modified NPs—91.4% (3) Chitosan-modified NPs—58.3% (4) mPEG-modified NPs—48.1% | [82,142] |
Unmodified PLGA-nanoparticles, surface modified with poloxamer 407, chitosan, or methoxypoly (ethylene glycol) | Size: 100–200 nm Relatively uniform size distribution | In vivo | Inner ear cells of albino guinea pigs | The four types of nanoparticles were injected at a concentration of 25 mg/mL into the unilateral tympanic cavity of the guinea pigs. They were examined 24 h after administration | No inflammation was detected in the inner ear Several tissues, such as stria vascularis, spiral ligament, organ of Corti, and spiral ganglion cells, barely underwent morphological alterations after nanoparticles administration The hydrophilic coating of PLGA nanoparticles played an important role in inner ear transport, particularly the P407 modification The surface-modified nanoparticles were considerably localized in the spiral ligament, stria vascularis, organ of Corti, and spiral ganglion cells, while the unmodified particles were distributed marginally | [142] |
Chitosan nanoparticles | Average size: 152.7 nm Polydispersity index: 0.135 Shape: spherical | In vitro | HEI-OC1 cell line | The cells were treated with nanoparticles at concentrations varying between 0 and 2.5 mg/mL for 24 h | There was not reported any significant change in cell viability Nanoparticles were internalized in cells with an 89.1% uptake efficiency | [82,130] |
Chitosan nanoparticles | Average size: 152.7 nm Polydispersity index: 0.135 Shape: spherical | In vivo | Inner ear cells of guinea pigs | The nanoparticles were injected at a concentration of 2.5 mg/mL into the unilateral tympanic cavity of the guinea pigs. The animals were decapitated 1 h after the treatment and examined after 24 h | The number of surviving hair cells hardly decreased, indicating the safety of the tested nanoparticles. The chitosan nanoparticles were successfully delivered into the vestibule, accumulating significantly more in the vestibular system than in the cochlear tissues The nanoparticle uptake in saccular supporting cells was much higher compared to cochlear hair cells of middle and apical turns | [130] |
Lipid nanoparticles-encapsulated brain-derived neurotrophic factor (BDNF) mRNA | Lipid composition: SS-cleavable and pH-activated lipid-like material:dioleolyphosphatidyl ethanolamine (DOPE):cholesterol= 3:3:4 | In vivo | Inner ear cells of Hartley guinea pigs | The animals were intramuscularly injected with gentamicin, promptly followed by intravenous injection of ethacrynic acid. On day 1, for early therapy, or day 14, for late therapy, 5 μl of lipid nanoparticles loaded with 0.1 mg/mL BDNF -enhanced green fluorescent protein mRNA was administered | On day 1 after gentamicin exposure, the auditory thresholds of the group administered with nanoparticles significantly improved compared to the sham control group. The auditory thresholds did not differ significantly between the sham control group and animals administered with nanoparticles 14 days after gentamicin exposure. The outer hair cells in the cochlea of the group treated 1 day after gentamicin exposure were significantly decreased compared with those in the control group, while inner hair cells counts had no significant differences in all turns among all groups. | [145] |
Lithium niobate NPs | Size range: 200–600 nm Average size: 392.25 nm Polydispersity index: 0.517 | In vitro | OC-k3 cell line | (1) Cytotoxicity of nanoparticles was investigated using the MTS assay. The OC-k3 cells were seeded in 96-well plates at the concentration of 7000 cells/well in 100 μL of medium and left to adhere for 24 h at ambient temperature after which were treated with the compound resuspended in a complete medium at three different concentrations: 0.85, 15, and 74 ng/mL. Vitality was analyzed 24, 48, and 72 h after treatment. (2) Similarly, a morphological test was performed by seeding and culturing the cells on a round glass slide. | The tested nanoparticles induced a significant increase in cell viability after 72 h of incubation at the concentrations of 0.0085 and 0.015 μg/mL. The morphological test proved a good state of cellular health. No cell morphology alterations were noticed at any of the tested doses and time points. | [1] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gheorghe, D.C.; Niculescu, A.-G.; Bîrcă, A.C.; Grumezescu, A.M. Nanoparticles for the Treatment of Inner Ear Infections. Nanomaterials 2021, 11, 1311. https://doi.org/10.3390/nano11051311
Gheorghe DC, Niculescu A-G, Bîrcă AC, Grumezescu AM. Nanoparticles for the Treatment of Inner Ear Infections. Nanomaterials. 2021; 11(5):1311. https://doi.org/10.3390/nano11051311
Chicago/Turabian StyleGheorghe, Dan Cristian, Adelina-Gabriela Niculescu, Alexandra Cătălina Bîrcă, and Alexandru Mihai Grumezescu. 2021. "Nanoparticles for the Treatment of Inner Ear Infections" Nanomaterials 11, no. 5: 1311. https://doi.org/10.3390/nano11051311
APA StyleGheorghe, D. C., Niculescu, A. -G., Bîrcă, A. C., & Grumezescu, A. M. (2021). Nanoparticles for the Treatment of Inner Ear Infections. Nanomaterials, 11(5), 1311. https://doi.org/10.3390/nano11051311