Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Fabrication of Fibers
2.2. Sensor Structure
2.3. Characterization
3. Results
3.1. Electrical Characteristics
3.2. Mechanical Characteristics
4. Application
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gafford, J.; Ding, Y.; Harris, A.; McKenna, T.; Polygerinos, P.; Holland, D.; Moser, A.; Walsh, C. Shape deposition manufacturing of a soft, atraumatic, deployable surgical grasper. J. Med. Devices Trans. ASME 2014, 8, 4–5. [Google Scholar] [CrossRef]
- Jentoft, L.P.; Tenzer, Y.; Vogt, D.; Liu, J.; Wood, R.J.; Howe, R.D. Flexible, stretchable tactile arrays from MEMS barometers. In Proceedings of the 2013 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013. [Google Scholar] [CrossRef]
- Tenzer, Y.; Jentoft, L.P.; Howe, R.D. The feel of MEMS barometers: Inexpensive and easily customized tactile array sensors. IEEE Robot. Autom. Mag. 2014, 21, 89–95. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, Y.; Zhou, Y.; Man, Q.; Hu, C.; Asghar, W. A skin-inspired tactile sensor for smart prosthetics. Sci. Robot. 2018, 3, eaat0429. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Facchetti, A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater. 2019, 31, e1901408. [Google Scholar] [CrossRef] [PubMed]
- Navaraj, W.; Dahiya, R. Fingerprint-Enhanced Capacitive-Piezoelectric Flexible Sensing Skin to Discriminate Static and Dynamic Tactile Stimuli. Adv. Intell.Syst. 2019, 1, 1900051. [Google Scholar] [CrossRef]
- Lepora, N.F.; Church, A.; Kerckhove, C.; De Hadsell, R.; Lloyd, J. From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor. IEEE Robot. Autom. Lett. 2019, 4, 2101–2107. [Google Scholar] [CrossRef] [Green Version]
- Silva, P.; Miguel, P.; Ramos, P.; Postolache, O.; Miguel, J.; Pereira, D. Tactile sensors for robotic applications. Measurement 2013, 46, 1257–1271. [Google Scholar] [CrossRef]
- Chou, H.; Nguyen, A.; Chortos, A.; To, J.W.F.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.; Tok, J.B.; Bao, Z. Tactile sensing. Nat. Commun. 2015, 6, 1–10. [Google Scholar] [CrossRef]
- Gao, Y.; Jen, Y.; Chen, R.; Aw, K.; Yamane, D.; Lo, C. Sensors and Actuators A: Physical Five-fold sensitivity enhancement in a capacitive tactile sensor by reducing material and structural rigidity. Sens. Actuators A Phys. 2019, 293, 167–177. [Google Scholar] [CrossRef]
- Yan, X.; Yu, M.; Ramakrishna, S.; Russell, S.J.; Long, Y.Z. Advances in portable electrospinning devices for in situ delivery of personalized wound care. Nanoscale 2019, 11, 19166–19178. [Google Scholar] [CrossRef]
- Phys, J.A.; Yao, K.; Yousry, Y.M.; Wang, J. Open-cell P (VDF-TrFE)/MWCNT nanocomposite foams with local piezoelectric and conductive effects for passive airborne sound absorption Open-cell P (VDF-TrFE)/MWCNT nanocomposite foams with local piezoelectric and conductive effects for passive airbo. J. Appl. Phys. 2020, 127, 214102. [Google Scholar] [CrossRef]
- Ishii, Y.; Yousry, Y.M.; Nobeshima, T.; Iumsrivun, C.; Sakai, H.; Uemura, S.; Ramakrishna, S.; Yao, K. Electromechanically Active As-Electrospun Polystyrene Fiber Mat: Significantly High Quasistatic/Dynamic Electromechanical Response and Theoretical Modeling. Macromol. Rapid Commun. 2020, 41, 2000218. [Google Scholar] [CrossRef]
- Kweon, O.Y.; Lee, S.J.; Oh, J.H. Wearable high-performance pressure sensors based on three-dimensional electrospun conductive nanofibers. NPG Asia Mater. 2018, 10, 540–551. [Google Scholar] [CrossRef]
- Selvan, R.T.; Jayathilaka, W.A.D.M.; Hilaal, A.; Ramakrishna, S. Improved Piezoelectric Performance of Electrospun PVDF Nano ¯ bers with Conductive Paint Coated Electrode. Int. J. Nanosci. 2020, 19, 1950008. [Google Scholar] [CrossRef]
- Selvan, R.T.; Jia, C.Y.; Jayathilaka, W.A.D.M. Enhanced Piezoelectric Performance of Electrospun PVDF-MWCNT-Cu Nanocomposites for Energy Harvesting Application. Nano 2020, 15, 2050049. [Google Scholar] [CrossRef]
- Ishii, Y.; Kurihara, S. Charge generation from as-electrospun polystyrene fiber mat with uncontacted/contacted electrode. Appl. Phys. Lett. 2019, 115, 203904. [Google Scholar] [CrossRef]
- Xin, Y.; Tian, H.; Guo, C.; Li, X.; Sun, H.; Wang, P.; Lin, J.; Wang, S.; Wang, C. PVDF tactile sensors for detecting contact force and slip: A review. Ferroelectrics 2016, 504, 31–45. [Google Scholar] [CrossRef]
- Tseng, H.; Tian, W.; Wu, W. P(VDF-TrFE) Polymer-Based Thin Films Deposited on Stainless Steel Substrates Treated Using Water Dissociation for Flexible Tactile Sensor Development. Sensors 2013, 13, 14777–14796. [Google Scholar] [CrossRef] [Green Version]
- Nanocomposites, P.B. Modelling and Analysis of Elliptical Cantilever Device Using Flexure Method and Fabrication of Electrospun. Nano 2020, 15, 2050007. [Google Scholar] [CrossRef]
- Nobeshima, T.; Ishii, Y.; Sakai, H.; Uemura, S.; Yoshida, M. Electrospun poly (methyl methacrylate) fibrous mat showing piezoelectric properties. Jpn. J. Appl. Phys. 2018, 57, 05GC06. [Google Scholar] [CrossRef]
- Ishii, Y.; Nobeshima, T.; Sakai, H.; Omori, K.; Uemura, S. Amorphous Electrically Actuating Submicron Fiber Waveguides. Macromol. Mater. Eng. 2018, 303, 1700302. [Google Scholar] [CrossRef]
- Hassan, D.; Ah-Yasari, A.H. Fabrication and studying the dielectric properties of (Polystyrene-copper oxide) nanocomposites for piezoelectric application. Bull. Electr. Eng. Inform. 2019, 8, 52–57. [Google Scholar] [CrossRef]
- Ishii, Y.; Kurihara, S.; Kitayama, R.; Sakai, H.; Nakabayashi, Y.; Nobeshima, T.; Uemura, S. High electromechanical response from bipolarly charged as-electrospun polystyrene fiber mat. Smart Mater. Struct. 2019, 28, 08LT02. [Google Scholar] [CrossRef]
- Araneo, R.; Bini, F.; Rinaldi, A.; Notargiacomo, A.; Pea, M.; Celozzi, S. Thermal-electric model for piezoelectric ZnO nanowires. Nanotechnology 2015, 26, 265402. [Google Scholar] [CrossRef]
Materials | Average Fiber Size | Electrospinning Parameters | Principle | Electromechanical Properties | Reference | |
---|---|---|---|---|---|---|
poly(methyl methacrylate) (PMMA) | 1 µm | Rate | 0.1 mL/h | Actuation | Piezoelectric constant (dT) = 8.5 nm/V | [21] |
Syringe size | 0.18 mm | |||||
Applied Voltage | 8 kV | |||||
Distance | 10 cm | |||||
polymer poly(DL-lactic acid) (PDLLA) | 0.4 µm | Rate | 0.04 mL/h | Actuation | Young modulus = 1.5 kPa Piezoelectric constant = 29,000 × 10−12 m V−1 | [22] |
Syringe size | 0.18 mm | |||||
Applied Voltage | 4 kV | |||||
Distance | 10 cm | |||||
atactic polystyrene (aPS) | 5.8 µm | Rate | 5.0 mL/h | Sensing | Apparent piezoelectric d constant (dapp) = 12.9 ± 1.8 pC N−1 Young modulus = 47.7 kPa | This study |
Syringe size | 0.59 mm | |||||
Applied Voltage | 12 kV | |||||
Distance | 17 cm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramadoss, T.S.; Ishii, Y.; Chinnappan, A.; Ang, M.H.; Ramakrishna, S. Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application. Nanomaterials 2021, 11, 1320. https://doi.org/10.3390/nano11051320
Ramadoss TS, Ishii Y, Chinnappan A, Ang MH, Ramakrishna S. Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application. Nanomaterials. 2021; 11(5):1320. https://doi.org/10.3390/nano11051320
Chicago/Turabian StyleRamadoss, Tamil Selvan, Yuya Ishii, Amutha Chinnappan, Marcelo H. Ang, and Seeram Ramakrishna. 2021. "Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application" Nanomaterials 11, no. 5: 1320. https://doi.org/10.3390/nano11051320
APA StyleRamadoss, T. S., Ishii, Y., Chinnappan, A., Ang, M. H., & Ramakrishna, S. (2021). Fabrication of Pressure Sensor Using Electrospinning Method for Robotic Tactile Sensing Application. Nanomaterials, 11(5), 1320. https://doi.org/10.3390/nano11051320