Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of SCTF
2.3. Characterization
2.4. Photocatalytic Degradation Procedure
3. Results and Discussion
3.1. Fabrication and Characterization of SCTF
3.2. Photocatalytic Performance of SCTF
3.2.1. Optimization of SCTF
3.2.2. Continuous-Flow Photodegradation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vobecka, L.; Ticha, L.; Atanasova, A.; Slouka, Z.; Hasal, P.; Pribyl, M. Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment. Chem. Eng. J. 2020, 396, 125236. [Google Scholar] [CrossRef]
- Wu, M.X.; Mao, Z.M.; Chen, K.J.; Bachman, H.; Chen, Y.C.; Rufo, J.; Ren, L.Q.; Li, P.; Wang, L.; Huang, T.J. Acoustic separation of nanoparticles in continuous flow. Adv. Funct. Mater. 2017, 27, 1606039. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Shim, H.E.; Yang, J.E.; Choi, Y.J.; Jeon, J. Continuous flow removal of anionic dyes in water by chitosan-functionalized iron oxide nanoparticles incorporated in a dextran gel column. Nanomaterials 2019, 9, 1164. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Li, S.L.; Hu, A.Y.; Yu, C.P. Long-term operation of bio-catalyzed cathodes within continuous flow membrane-less microbial fuel cells. Chemosphere 2021, 266, 129059. [Google Scholar] [CrossRef] [PubMed]
- Hejazian, M.; Darmanin, C.; Balaur, E.; Abbey, B. Mixing and jetting analysis using continuous flow microfluidic sample delivery devices. RSC Adv. 2020, 10, 15694–15701. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.J.; Karadaghi, L.R.; Wang, L.; Malmstadt, N.; Brutchey, R.L. Continuous flow methods of fabricating catalytically active metal nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 27479–27502. [Google Scholar] [CrossRef]
- Petala, A.; Spyrou, D.; Frontistis, Z.; Mantzavinos, D.; Kondarides, D.I. Immobilized Ag3PO4 photocatalyst for micro-pollutants removal in a continuous flow annular photoreactor. Catal. Today 2019, 328, 223–229. [Google Scholar] [CrossRef]
- Russo, D.; Spasiano, D.; Vaccaro, M.; Andreozzi, R.; Puma, G.L.; Reis, N.M.; Marotta, R. Direct photolysis of benzoylecgonine under UV irradiation at 254 nm in a continuous flow microcapillary array photoreactor. Chem. Eng. J. 2016, 283, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Borah, P.; Sreejith, S.; Anees, P.; Menon, N.V.; Kang, Y.J.; Ajayaghosh, A.; Zhao, Y.L. Near-IR squaraine dye-loaded gated periodic mesoporous organosilica for photo-oxidation of phenol in a continuous-flow device. Sci. Adv. 2015, 1, e1500390. [Google Scholar] [CrossRef] [Green Version]
- Rangkooy, H.A.; Tanha, F.; Jaafarzadeh, N.; Mohammadbeigi, A. The influence of ZnO-SnO2 nanoparticles and activated carbon on the photocatalytic degradation of toluene using continuous flow mode. Medical Gas. Res. 2017, 7, 260–264. [Google Scholar]
- Jouali, A.; Salhi, A.; Aguedach, A.; Lhadi, E.; El Krati, M.; Tahiri, S. Photo-catalytic degradation of polyphenolic tannins in continuous-flow reactor using titanium dioxide immobilized on a cellulosic material. Water Sci. Technol. 2020, 82, 1454–1466. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.J.; Song, N.N.; Zhang, S.Y.; Zou, S.; Zhong, S. Synthesis of sponge-loaded Bi2WO6/ZnFe2O4 magnetic photocatalyst and application in continuous flow photocatalytic reactor. J. Mater. Sci. Mater. El. 2017, 28, 8197–8205. [Google Scholar] [CrossRef]
- Caudillo-Flores, U.; Rodriguez-Padron, D.; Munoz-Batista, M.J.; Kubacka, A.; Luque, R.; Fernandez-Garcia, M. Facile synthesis of B/g-C(3)N(4)composite materials for the continuous-flow selective photo-production of acetone. Green Chem. 2020, 22, 4975–4984. [Google Scholar] [CrossRef]
- Rao, X.; Dou, H.L.; Long, D.; Zhang, Y.P. Ag3PO4/g-C3N4 nanocomposites for photocatalytic degradating gas phase formaldehyde at continuous flow under 420 nm LED irradiation. Chemosphere 2020, 244, 125462. [Google Scholar] [CrossRef]
- Bahmani, M.; Dashtian, K.; Mowla, D.; Esmaeilzadeh, F.; Ghaedi, M. UiO-66(Ti)-Fe3O4-WO3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor. J. Hazard. Mater. 2020, 393, 122360. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.Y.; Xia, X.G.; Li, K.W.; Zhang, N.; Wang, Y.C.; Xiao, Z.J.; Fan, Q.X.; Kauppinen, E.I.; Xie, S.S. Transparent and freestanding single-walled carbon nanotube films synthesized directly and continuously via a blown aerosol technique. Adv. Mater. 2020, 32, 2004277. [Google Scholar] [CrossRef]
- Ahmad, S.; Ding, E.X.; Zhang, Q.; Jiang, H.; Sainio, J.; Tavakkoli, M.; Hussain, A.; Liao, Y.P.; Kauppinen, E.I. Roles of sulfur in floating-catalyst CVD growth of single-walled carbon nanotubes for transparent conductive film applications. Chem. Eng. J. 2019, 378, 122010. [Google Scholar] [CrossRef] [Green Version]
- Han, B.S.; Xue, X.; Xu, Y.J.; Zhao, Z.Y.; Guo, E.Y.; Liu, C.; Luo, L.S.; Hou, H.L. Preparation of carbon nanotube film with high alignment and elevated density. Carbon 2017, 122, 496–503. [Google Scholar] [CrossRef]
- Tian, M.; Woo, C.Y.; Choi, J.W.; Seo, J.Y.; Kim, J.M.; Kim, S.H.; Song, M.; Lee, H.W. Printable free-standing hybrid graphene/dry-spun carbon nanotube films as multifunctional electrodes for highly stable perovskite solar cells. ACS Appl. Mater. Interfaces 2020, 12, 54806–54814. [Google Scholar] [CrossRef]
- Walker, J.S.; Fagan, J.A.; Biacchi, A.J.; Kuehl, V.A.; Searles, T.A.; Walker, A.R.H.; Rice, W.D. Global alignment of solution-based single-wall carbon nanotube films via machine-vision controlled filtration. Nano Lett. 2019, 19, 7256–7264. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Lau, C.; Liu, Y.H.; Wu, F.Q.; Gui, H.; Liu, Q.Z.; Ma, Y.Q.; Wan, H.C.; Amer, M.R.; Zhou, C.W. Fully screen-printed, large-area, and flexible active-matrix electrochromic displays using carbon nanotube thin-film transistors. ACS Nano 2016, 10, 9816–9822. [Google Scholar] [CrossRef]
- Urper, O.; Cakmak, I.; Karatepe, N. Fabrication of carbon nanotube transparent conductive films by vacuum filtration method. Mater. Lett. 2018, 223, 210–214. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zeng, S.; Chen, M.H.; Zhang, Y.Y.; Li, Q.W. Fabrication and functionalization of carbon nanotube films for high-performance flexible supercapacitors. Carbon 2015, 92, 271–296. [Google Scholar] [CrossRef]
- Siwal, S.S.; Saini, A.K.; Rarotra, S.; Zhang, Q.B.; Thakur, V.K. Recent advancements in transparent carbon nanotube films: Chemistry and imminent challenges. J. Nanostructure Chem. 2021, 11, 93–130. [Google Scholar] [CrossRef]
- Anson-Casaos, A.; Sanahuja-Parejo, O.; Hernandez-Ferrer, J.; Benito, A.M.; Maser, W.K. Carbon nanotube film electrodes with acrylic additives: Blocking electrochemical charge transfer reactions. Nanomaterials 2020, 10, 1078. [Google Scholar] [CrossRef]
- Mustonen, K.; Laiho, P.; Kaskela, A.; Susi, T.; Nasibulin, A.G.; Kauppinen, E.I. Uncovering the ultimate performance of single-walled carbon nanotube films as transparent conductors. Appl. Phys. Lett. 2015, 107, 143113. [Google Scholar] [CrossRef]
- Han, M.; Kim, J.K.; Lee, J.; An, H.K.; Yung, J.P.; Kang, S.W.; Jung, D. H-2 gas sensor based on Pd-loaded carbon nanotube film. J. Nanosci. Nanotechno. 2020, 20, 4470–4473. [Google Scholar] [CrossRef]
- Chang, Z.H.; Feng, D.Y.; Huang, Z.H.; Liu, X.X. Electrochemical deposition of highly loaded polypyrrole on individual carbon nanotubes in carbon nanotube film for supercapacitor. Chem. Eng. J. 2018, 337, 552–559. [Google Scholar] [CrossRef]
- Luo, X.G.; Huang, X.X.; Wang, X.X.; Zhong, X.H.; Meng, X.X.; Wang, J.N. Continuous preparation of carbon nanotube film and its applications in fuel and solar cells. ACS Appl. Mater. Interfaces 2016, 8, 7818–7825. [Google Scholar] [CrossRef]
- Zhang, Q.; Wei, N.; Laiho, P.; Kauppinen, E.I. Recent developments in single-walled carbon nanotube thin films fabricated by dry floating catalyst chemical vapor deposition. Topics Curr. Chem. 2017, 375, 90. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.M.; Robin, M.; Portilla, L.; Ren, Y.F.; Shao, S.S.; Bai, L.; Cao, Y.; Pecunia, V.; Cui, Z.; Zhao, J.W. Air-stable N-type printed carbon nanotube thin film transistors for CMOS logic circuits. Carbon 2020, 163, 145–153. [Google Scholar] [CrossRef]
- Wang, B.W.; Jiang, S.; Zhu, Q.B.; Sun, Y.; Luan, J.; Hou, P.X.; Qiu, S.; Li, Q.W.; Liu, C.; Sun, D.M. Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits. Adv. Mater. 2018, 30, 1802057. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.P.; Shearer, C.; Shapter, J. Recent development of carbon nanotube transparent conductive films. Chem. Rev. 2016, 116, 13413–13453. [Google Scholar] [CrossRef]
- Xiang, X.; Zhang, W.J.; Yang, Z.P.; Zhang, Y.Y.; Zhang, H.J.; Zhang, H.; Guo, H.T.; Zhang, X.T.; Li, Q.W. Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Adv. 2016, 6, 24946–24951. [Google Scholar] [CrossRef]
- Wu, K.J.; Niu, Y.T.; Zhang, Y.Y.; Yong, Z.Z.; Li, Q.W. Continuous growth of carbon nanotube films: From controllable synthesis to real applications. Compos. Part. A 2021, 144, 106359. [Google Scholar] [CrossRef]
- Daranyi, M.; Csesznok, T.; Kukovecz, A.; Konya, Z.; Kiricsi, I.; Ajayan, P.M.; Vajtai, R. Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity. Nanotechnology 2011, 22, 195701. [Google Scholar] [CrossRef]
- Huang, Y.Z.; Chen, D.P.; Hu, X.L.; Qian, Y.J.; Li, D.X. Preparation of TiO2/carbon nanotubes/reduced graphene oxide composites with enhanced photocatalytic activity for the degradation of rhodamine B. Nanomaterials 2018, 8, 431. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.W.; Jiang, H.; Jin, W.L.; Shi, C.K. Enhanced photocatalytic performance over Bi4Ti3O12 nanosheets with controllable size and exposed {001} facets for Rhodamine B degradation. Appl. Catal. B-Environ. 2016, 180, 698–706. [Google Scholar] [CrossRef]
- Ye, K.-H.; Chai, Z.; Gu, J.; Yu, X.; Zhao, C.; Zhang, Y.; Mai, W. BiOI-BiVO4 photoanodes with significantly improved solar water splitting capability: P–n junction to expand solar adsorption range and facilitate charge carrier dynamics. Nano Energy 2015, 18, 222–231. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.G.; He, H.W.; Wang, X.X.; Zhang, J.; Zhang, Q.Q.; Tong, Y.F.; Liu, H.L.; Ramakrishna, S.; Yan, S.Y.; et al. One-step synthesis heterostructured g-C3N4/TiO2 composite for rapid degradation of pollutants in utilizing visible light. Nanomaterials 2018, 8, 842. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Tang, H.; Yao, K.F. Recyclable TiO2/carbon nanotube sponge nanocomposites: Controllable synthesis, characterization and enhanced visible light photocatalytic property. Ceram. Int. 2015, 41, 363–368. [Google Scholar] [CrossRef]
- Shi, C.; Qi, H.J.; Sun, Z.; Qu, K.Q.; Huang, Z.H.; Li, J.; Dong, M.Y.; Guo, Z.H. Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. J. Mater. Chem. C 2020, 8, 2238–2247. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Z.; Lv, X.; Liu, X.; Jia, S.; Zhang, Y.; Yu, Y.; Zhang, C.; Liu, D. Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation. Nanomaterials 2021, 11, 1335. https://doi.org/10.3390/nano11051335
Yang Z, Lv X, Liu X, Jia S, Zhang Y, Yu Y, Zhang C, Liu D. Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation. Nanomaterials. 2021; 11(5):1335. https://doi.org/10.3390/nano11051335
Chicago/Turabian StyleYang, Zhengpeng, Xiaoting Lv, Xuqing Liu, Shengmin Jia, Yongyi Zhang, Yingying Yu, Chunjing Zhang, and Dandan Liu. 2021. "Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation" Nanomaterials 11, no. 5: 1335. https://doi.org/10.3390/nano11051335
APA StyleYang, Z., Lv, X., Liu, X., Jia, S., Zhang, Y., Yu, Y., Zhang, C., & Liu, D. (2021). Sieve-Like CNT Film Coupled with TiO2 Nanowire for High-Performance Continuous-Flow Photodegradation of Rhodamine B under Visible Light Irradiation. Nanomaterials, 11(5), 1335. https://doi.org/10.3390/nano11051335