SERRS Detection on Silver Nanoparticles Supported on Acid-Treated Melamine-Resin Microspheres
Abstract
:1. Introduction
2. Experimental Methods
2.1. Synthetic and Acid-Treatment Reactions of Melamine-Resin Microspheres
2.2. Synthesis of Silver Nanoparticle Colloid Solution
2.3. Fabrication and Incubation of SERRS Substrate
2.4. Characterization and SERRS Detection
3. Results and Discussion
3.1. Synthetic and Acid-Treatment Reactions of Melamine-Resin Microspheres
3.2. SERRS-Substrate Fabrication/Adsorbing Silver Nanoparticles on Melamine-Resin Microspheres
3.3. Performance of the SERRS Substrate Incorporating the Acid-Treated Melamine-Resin Microspheres
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, Z.; Mansuer, M.; Guo, Y.; Zhu, Z.; Wang, X. Ag-nanoparticles on UF-microsphere as an ultrasensitive SERS substrate with unique features for rhodamine 6G detection. Talanta 2016, 146, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, R.; Schäfer, C.G.; Wang, F. Composite MF@Ag-NPs microspheres for label-free quantitative detection of uric acid. Colloids Surf. A Physicochem. Eng. Asp. 2017, 523, 1–8. [Google Scholar] [CrossRef] [Green Version]
- You, L.; Li, R.; Dong, X.; Wang, F.; Guo, J.; Wang, C. Micron-sized surface enhanced Raman scattering reporter/fluorescence probe encoded colloidal microspheres for sensitive DNA detection. J. Colloid Interface Sci. 2017, 488, 109–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Chen, T.; Lau, W.S.; Wang, Y.; Tang, Q.; Yang, Y.; Chen, H. Development of polymer-encapsulated metal nano-particles as surface-enhanced Raman scattering probes. Small 2009, 5, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Mao, K.; Zhou, X.; Hu, J. A novel biosensor based on Au@Ag core-shell nanoparticles for SERS detection of arsenic (III). Talanta 2016, 146, 285–290. [Google Scholar] [CrossRef]
- Wang, J.; Wu, X.; Wang, C.; Rong, Z.; Ding, H.; Li, H.; Li, S.; Shao, N.; Dong, P.; Xiao, R.; et al. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS Appl. Mater. Interfaces 2016, 8, 19958–19967. [Google Scholar] [CrossRef]
- Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q. Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117, 5002–5069. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, Y.; Mei, R.; Yin, Y.; You, J.; Chen, L. Polystyrene Encapsulated SERS Tags as Promising Standard Tools: Simple and Universal in Synthesis; Highly Sensitive and Ultrastable for Bioimaging. Anal. Chem. 2019, 91, 5270–5277. [Google Scholar] [CrossRef]
- Wackerlig, J.; Schirhagl, R. Applications of Molecularly Imprinted Polymer Nanoparticles and Their Advances toward In-dustrial Use: A Review. Anal. Chem. 2016, 88, 250–261. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, L.; Yan, H.; Lu, Z.; Yin, W.; Han, H. Enzyme induced molecularly imprinted polymer on SERS substrate for ultrasensitive detection of patulin. Anal. Chim. Acta 2020, 1101, 111–119. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Shende, C.S.; Tu, S.-I.; Inscore, F.; Gift, A.; Maksymiuk, P.; Farquharson, S. Analysis of pesticides on or in fruit by surface-enhanced Raman spectroscopy. In Nondestructive Sensing for Food Safety, Quality, and Natural Resources; International Society for Optics and Photonics: Washington, DC, USA, 2004. [Google Scholar]
- Li, H.; Dai, H.; Zhang, Y.; Tong, W.; Gao, H.; An, Q. Surface-Enhanced Raman Spectra Promoted by a Finger Press in an All-Solid-State Flexible Energy Conversion and Storage Film. Angew. Chem. Int. Ed. 2017, 56, 2649–2654. [Google Scholar] [CrossRef]
- Liu, G.; Cai, W.; Kong, L.; Duan, G.; Li, Y.; Wang, J.; Cheng, Z. Trace detection of cyanide based on SERS effect of Ag nano-plate-built hollow microsphere arrays. J. Hazard. Mater. 2013, 248, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Sanles-Sobrido, M.; Exner, W.; Rodrıguez-Lorenzo, L. Design of SERS-Encoded, Submicron, Hollow Particles Through Con-fifined Growth of Encapsulated Metal Nanoparticles. J. Am. Chem. Soc. 2009, 131, 2699–2705. [Google Scholar] [CrossRef] [PubMed]
- Laing, S.; Gracie, K.; Faulds, K. Multiplex in vitro detection using SERS. Chem. Soc. Rev. 2015, 45, 1901–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamieson, L.E.; Asiala, S.M.; Gracie, K.; Faulds, K.; Graham, D. Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. Annu. Rev. Anal. Chem. 2017, 10, 415–437. [Google Scholar] [CrossRef] [Green Version]
- Cialla-May, D.; Zheng, X.-S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961. [Google Scholar] [CrossRef] [PubMed]
- Smolsky, J.; Kaur, S.; Hayashi, C.; Batra, S.K.; Krasnoslobodtsev, A.V. Surface-Enhanced Raman Scattering-Based Immuno-assay Technologies for Detection of Disease Biomarkers. Biosensors 2017, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Liu, H.; Wang, B.; Weng, S.; Yang, L.; Liu, J. Three-Dimensional Surface-Enhanced Raman Scattering Hotspots in Spherical Colloidal Superstructure for Identification and Detection of Drugs in Human Urine. Anal. Chem. 2015, 87, 4821–4828. [Google Scholar] [CrossRef] [PubMed]
- Fisk, H.; Westley, C.; Turner, N.J.; Goodacre, R. Achieving optimal SERS through enhanced experimental design. J. Raman Spectrosc. 2016, 47, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Li, C.; Yu, J.; Jiang, S.; Xu, S.; Yang, C.; Liu, Y.J.; Gao, X.; Liu, A.; Man, B. SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sens. Actuators B Chem. 2018, 258, 163–171. [Google Scholar] [CrossRef]
- Freeman, R.G.; Grabar, K.C.; Allison, K.J.; Bright, R.M.; Davis, J.A.; Guthrie, A.P.; Hommer, M.B.; Jackson, M.A.; Smith, P.C.; Walter, D.G.; et al. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science 1995, 267, 1629–1632. [Google Scholar] [CrossRef] [PubMed]
- Yap, F.L.; Thoniyot, P.; Krishnan, S.; Krishnamoorthy, S. Nanoparticle Cluster Arrays for High-Performance SERS through Directed Self-Assembly on Flat Substrates and on Optical Fibers. ACS Nano 2012, 6, 2056–2070. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Sun, C.; Liu, X.; Xin, L.; Fang, Y. Self-assembled Au nanoparticle arrays on thiol-functionalized resin beads for sensitive detection of paraquat by surface-enhanced Raman scattering. Colloids Surf. A Physicochem. Eng. Asp. 2014, 455, 104–110. [Google Scholar] [CrossRef]
- Zhao, H.; Hasi, W.; Li, N.; Sha, X.; Han, S. Preparation of a high-performance thermally shrinkable polystyrene SERS substrate via Au@Ag nanorods self-assembled to detect pesticide residues. J. Raman Spectrosc. 2019, 50, 1679–1690. [Google Scholar] [CrossRef]
- Hao, Z.; Guo, Y.; Mansuer, M.; Zhu, J.; Zhu, Z. Role of the excess monomer in the growth of urea and formaldehyde resin deposit particles. J. Colloid Interface Sci. 2014, 430, 239–248. [Google Scholar] [CrossRef]
- Shen, L.; Zhu, J.; Guo, Y.; Zhu, Z.; Wang, X.; Hao, Z. Optimizing Melamine Resin Microspheres with Excess Formaldehyde for the SERS Substrate. Nanomaterials 2017, 7, 263. [Google Scholar] [CrossRef] [Green Version]
- MA, F.W.; Zhao, A.H.; Sun, A.L.; Li, A.Q.; Huo, L.H. A Facile Route for Nitrogen-Doped Hollow Graphitic Carbon Spheres with Superior Performance in Supercapacitors. J. Mater. Chem. 2012, 22, 13464–13468. [Google Scholar] [CrossRef]
- Lee, P.C.; Meisel, D.J.J. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 1982, 86, 3391–3395. [Google Scholar] [CrossRef]
- Kuttner, C. Plasmonics in Sensing: From Colorimetry to SERS Analytics. In Plasmonics; IntechOpen: London, UK, 2018. [Google Scholar]
- Laura, F. Bottom-up optimization of SERS hot-spots. Chem. Commun. 2012, 48, 9346–9348. [Google Scholar]
Samples | M2F | MF3 | MF6 | MF9 |
---|---|---|---|---|
parameter n | 0.500 | 3.00 | 6.00 | 9.00 |
* mass loss rate (wt %) | 17.5 | 6.21 | 4.29 | 4.75 |
Temperature (°C) | 20 | 40 | 60 | 80 | 100 |
---|---|---|---|---|---|
Parameter (n) | 6.0 | 6.0 | 6.0 | 6.0 | 6.0 |
* mass loss rate (wt %) | 3.90 | 4.08 | 4.29 | 4.97 | 5.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, C.; Shen, L.; Guo, Y.; Wang, X.; Wang, X.; Hao, Z. SERRS Detection on Silver Nanoparticles Supported on Acid-Treated Melamine-Resin Microspheres. Nanomaterials 2021, 11, 1337. https://doi.org/10.3390/nano11051337
Duan C, Shen L, Guo Y, Wang X, Wang X, Hao Z. SERRS Detection on Silver Nanoparticles Supported on Acid-Treated Melamine-Resin Microspheres. Nanomaterials. 2021; 11(5):1337. https://doi.org/10.3390/nano11051337
Chicago/Turabian StyleDuan, Chaofeng, Lu Shen, Yuqing Guo, Xiaogang Wang, Xiaohua Wang, and Zhixian Hao. 2021. "SERRS Detection on Silver Nanoparticles Supported on Acid-Treated Melamine-Resin Microspheres" Nanomaterials 11, no. 5: 1337. https://doi.org/10.3390/nano11051337
APA StyleDuan, C., Shen, L., Guo, Y., Wang, X., Wang, X., & Hao, Z. (2021). SERRS Detection on Silver Nanoparticles Supported on Acid-Treated Melamine-Resin Microspheres. Nanomaterials, 11(5), 1337. https://doi.org/10.3390/nano11051337