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Abstract: A novel beads adsorbent, consisting of calcium alginate entrapped on magnetic nanoparti-
cles functionalized with methionine (MFMNABs), was developed for effective elimination of arsenic
from water. The material was characterized by FT-IR (Fourier Transform Infrared Spectroscopy),
SEM (Scanning Electron Microscopic), XRD (X-ray Diffraction) and TEM (Transmission Electron
Microscopy). The arsenic removal capacity of the material was studied by altering variables such as
pH of the solution, contact time, adsorbent dose and adsorbate concentration. The maximal removal
of As(III) was 99.56% under optimal conditions with an equilibrium time of 110 min and pH 7.0–7.5.
The adsorption followed a second order kinetics and data best fitted the Langmuir isotherm with
a correlation coefficient of R2 = 0.9890 and adsorption capacity (qm) of 6.6533 mg/g. The thermo-
dynamic study showed entropy change (∆S) and enthalpy change (∆H) to be 34.32 J mol−1 K and
5.25 kJ mol−1, respectively. This study proved that it was feasible to treat an As(III) solution with
MFMNABs. The synthesized adsorbent was cost-effective, environmentally friendly and versatile,
compared to other adsorbents. The adsorption study was carried by low cost spectrophotometric
method using N- bromosuccinimide and rhodamine-B developed in our laboratory.

Keywords: arsenic (III); adsorption; magnetic nanoparticles; methionine functionalized; calcium
alginate; spectrophotometric method

1. Introduction

Arsenic is naturally present in the crust of Earth and has long been recognized as
highly toxic and carcinogenic, affecting millions of humans in the world [1,2]. Long-term
exposure to arsenic gives symptoms such as vomiting, abdominal pain, diarrhea, severe
gastrointestinal irritation, gastrointestinal damage, cardiac damage and several types of
cancer [3]. It can result in vascular diseases like black foot disease [4,5]. Arsenic can
be found in both organic and inorganic forms, as trivalent arsenite (H3AsO3, HAsO3

2−

or H2AsO3
−) and pentavalent arsenate (H3AsO4, HAsO4

2−, H2AsO4
− or AsO4

3−), of
which the first form, As(III) is more noxious than As(V) [6]. In oxidizing conditions,
arsenite converts to arsenate, and vice versa under reducing conditions. Inorganic arsenic
compounds are more harmful and toxic, compared to organic arsenic compounds [7].
Inorganic and organic arsenic compounds are mainly used to preserve wood and as
pesticides [8,9]. It also finds applications in many industries such as pharmaceuticals,
paints, pesticide production, leather, textiles, etc. Several food supplements and care
products contain trace amounts of arsenic and it is also used in medical products [10]. The
maximum permissible limit for As in drinking water is 10 µg/L, as defined by the World
Health Organization [11].

Nanomaterials 2021, 11, 1345. https://doi.org/10.3390/nano11051345 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0001-8180-7292
https://orcid.org/0000-0001-9913-4671
https://www.mdpi.com/article/10.3390/nano11051345?type=check_update&version=1
https://doi.org/10.3390/nano11051345
https://doi.org/10.3390/nano11051345
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11051345
https://www.mdpi.com/journal/nanomaterials


Nanomaterials 2021, 11, 1345 2 of 21

Several techniques were reported for elimination of arsenic from water, namely oxi-
dation [12], alum and iron coagulation [13,14], adsorption and ion-exchange (iron-coated
sand, activated alumina and ion-exchange resin) [15,16], filtration with membranes [17]
and reverse osmosis [17]. Most of the methods suffer several shortcomings. Among these
technologies, adsorption is cost effective, easy to operate, highly efficient and most popular,
since a variety of adsorbents are available [18,19]. Several materials were reported for
As(III) removal, like pyrite fines, activated alumina, fly ash, manganese greensand [20],
meso porous silicas with amino-functionalizations [21], Al-loaded Shirasu-zeolite [22],
clinoptilolite and other zeolites [23–25]. However, they suffer from some disadvantages,
like complexity, high cost, etc.

Alginate has several advantages as it is cheap and easily forms cross-linking with a
CaCl2 solution. Ca2+ cations are able to bind two carboxyl moieties of guluronic remains in
alginate chains. It is a natural product (natural polysaccharide extracted from brown sea-
weeds), which is non-toxic, inexpensive, biodegradable, biocompatible and water soluble.
It has been largely used for immobilization of activated carbon (C) [26], carbon nanotubes
(C-NT) [27], nanoparticles of TiO2 [28] and magnetite [29], generating novel adsorbents
to eliminate heavy metals, pigments and dyes from wastewater. Pure Magnetic Nanopar-
ticles (MNPs) are not applied directly on account of the robust dipole–dipole attractions
between the MNPs and the large surface area that might lead to aggregation during the
adsorption process. Therefore, magnetic nanoparticles are entrapped into several types
of stabilizers (organic and inorganic), such as activated carbon [30], chitosan [31–34], β-
cyclodextrin [35,36] and alginate biopolymer [37–39]. In this work, methionine, a sulfur
containing amino acid, has been incorporated along with alginate.

In the present study, a new adsorbent MFMNABs (calcium alginate beads with en-
trapped iron oxide magnetic nanoparticles functionalized with methionine) has been
synthesized and applied for the removal of As(III). MFMNABs was found to be a cheap,
ecofriendly adsorbent for the elimination of arsenic (III) with comparable adsorption
capacity and recoverability. It is effective given its large surface area and occurrence
of surface amino groups. This adsorbent is evaluated with respect to various variables
like temperature, time, pH, etc. in batch conditions. The adsorption isotherms, kinetics
and thermodynamic studies have been performed and found to have advantages like
cheapness, simplicity, good reproducibility and high adsorption. Adsorption studies of
As(III) using ultraviolet-visible (UV-Vis) spectrophotometry and atomic absorption spec-
troscopy are reported [40,41]. Herein, a simple spectrophotometric method developed in
our laboratory using N-bromosuccinimide and rhodamine-B is used for investigating the
adsorption process.

2. Materials and Methods
2.1. Materials and Reagents

Sodium arsenite (NaAsO2) (Merck, Mumbai, India), methionine (C5H11NO2S) (Merck,
Mumbai, India), N-bromosuccinimide (NBS) (Schmid and Co., Freudenstadt, West Ger-
many), rhodamine-B (S.D. Fine Chem. Ltd., Mumbai, India), sodium alginate (C6H9NaO7)
[CDH, Delhi, India], ferric chloride hexahydrate (FeCl3·6H2O) [CDH, Delhi, India], ferrous
chloride dihydrate (FeCl2·2H2O) [CDH, Delhi, India], NH4OH [AR grade, Mumbai, India]
and HCl (Loba Chemie, Mumbai, India) were used. The chemicals were all analytical
grade and no further purification was made before use. Double distilled water (DDW)
was utilized.

A stock solution of As(III) (1000 mg L−1) was obtained by dissolution of 0.1732 g of
analytical grade NaAsO2 in 100 mL of DDW. A 0.002 M N-bromosuccinimide solution was
obtained by dissolution of 0.178 g of NBS in 100 mL distilled water and kept in an amber
colored bottle. The required working solutions of NBS were prepared by dilution of the
stock solution. A 0.001 M of rhodamine-B solution was prepared. Hydrochloric acid was
diluted with DDW to get 0.01 M HCl.
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2.2. Equipments

X-ray diffraction (XRD) (Expert-Pro PW3064/60, Raipur, India) analysis of pow-
dered samples was done at 30◦–80◦ and PANalytical 3 kW X’pert Powder-Multifunctional.
Fourier transform-infrared spectrometer (FT-IR) (Thermo Nicolet Avtar 370, Cochin, India)
was used to obtain the infrared spectra in the 400–4000 cm−1 range using KBr pellets.
Scanning Electron Microscopy (SEM) images of MFMNABs were obtained before and
after adsorption (Jeol 6390LA/OXFORD XMX N, Cochin, India). The details of shape
and characteristics features was obtained from Transmission Electron Microscopy (TEM)
images (Jeol/JEM 2100, Cochin, India). Systronic UV-visible spectrophotometer-117 (Carry
50 scan, Varian, Durg, India) with 1 cm quartz cell (0.1 mL) was used for the measure-
ment of absorbance. The pH was measured by a digital pH meter (Systronics model-112,
Durg, India).

2.3. Synthesis of Methionine Functionalized Magnetic Nanoparticles (MFMNPs)

The nanoparticles (NPs) were obtained by co-precipitation [42]. Fe(II) and Fe(III) were
co-precipitated by ammonia in hydrothermal conditions. A total of 2.4 g of ferrous chloride
and 4.8 g of ferric chloride were separately dissolved in 50 mL DDW and 15 mL of 1.5 M
NH4OH was added dropwise at 25–30 ◦C with stirring, at pH 10. The black precipitate
obtained was separated magnetically and washed 4–5 times with DDW. To this 10 mL of
0.1% methionine in double distilled water was added dropwise. The content was heated
up to 80 ◦C over 30 min with stirring. The obtained methionine functionalized magnetic
nanoparticles were separated by applying an external magnet, properly washed with DDW
and dried for 2 h at 250 ◦C.

2.4. Preparation of Calcium Alginate Beads with Entrapped Iron Oxide Magnetic Nanoparticles
Functionalized with Methionine (MFMNABs)

A total of 1.5 g sodium alginate was dissolved in 50 mL DDW with stirring for 2 h to
yield a viscous homogenous solution. Then, 1 g of methionine modified Fe3O4 NPs was
added with stirring. Thereafter the mixture was added dropwise to the CaCl2 solution, and
MFMNABs were obtained. To get stable beads, the gel beads were kept in CaCl2 solution
for 24 h. The beads were washed several times with DDW and stored in DDW for later use.
The color of beads was reddish brown given the entrapping of the magnetic NPs modified
by alginate. The synthesis of MFMNABs is presented in Figure 1.

2.5. Procedure for As(III) Analysis

After adsorption, the beads and liquid were separated by normal filter paper and the
amount of As(III) in solution was determined spectrophotometrically. To 5 mL of the filtrate
0.002 M NBS solution (2.5 mL) was added, where NBS oxidizes As(III) and the unconsumed
NBS, corresponding to the concentration of As(III) was determined by addition of 0.001 M
of rhodamine-B (4 mL). The mixture was left for 5 min. The unconsumed NBS bleached
the color of rhodamine-B and absorbance was measured at 555 nm.
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2.6. Batch Adsorption Studies

Batch adsorption studies indicate that As(III) can be adsorbed onto the prepared
modified alginate beads. The experimental parameters were optimized by investigating
the various parameters like solution pH (4.0–9.0), time of contact (15–120 min), dosage of
adsorbent (0.1–2.0 g) and concentration of As(III) in solution (10–35 mg/L). The pH was
adjusted by 0.1 N HCl and 0.1 N NaOH. The appropriate amount of adsorbent (MFMNABs)
was added to an aliquot containing a known amount of As(III) with the intended initial
pH and adequate contact time to reach equilibrium. The absorbance was measured by
UV-Vis spectrophotometry at 555 nm. The % amount of As(III) removal was obtained by
Equation (1):

% Removal =
C0 − Ce

C0
× 100 (1)

While the quantity of adsorbed As(III) (qe) was determined from Equation (2):

qe =
(C0 − Ce) V

m
(2)
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where C0 is the initial concentration and Ce is the equilibrium concentration of As(III)
(µg/mL), m being the mass of adsorbent (g) and V the solution volume (L) [43].

2.7. Determination of pHpzc (Point of Zero Charge)

In a series of 50 mL conical flasks containing 10 mL of 0.01 M NaCl, 0.1 N of NaOH
solution was added to adjust the initial pH (pHi) in the range 4–9. Then, to each flask, 1.6 g
MFMNABs was added and shaken for 24 h on a rotatory shaker at 150 rpm and the final
pH (pHf) was noted. The difference between the initial and final pH (∆pH = pHi − pHf)
was plotted against the initial pH (pHi) of the solution. The pH on the horizontal line in
the plot corresponding to ∆pH equal to zero gives pHpzc.

2.8. Adsorption Isotherm

The adsorption efficiency was determined from adsorption isotherms. The adsorption
is studied by obtaining the equilibrium concentration using various isotherms [44,45].
Herein, the most common isotherms, namely, Frendlich [46], Langmuir [47] and Temkin [48]
were used to find the best model fitting.

Langmuir isotherm: This model was used to assess the adsorption process using
Equation (3):

1
qe

=
1

qm
+

1
Km·qe

· 1
Ce

(3)

where Km—Langmuir adsorption constant (L/mg) and qm—maximum adsorption capacity
of the adsorbent (mg/g). Ce and qe—equilibrium concentration and equilibrium adsorption
capacities (mg/g) of As(III) ions, respectively. The value of R2 was obtained from the plot
1/qe vs. 1/Ce. In addition to this, the dimensional separation factor (RL) was calculated to
characterize isotherms using Equation (4):

RL =
1

1− KLC0
(4)

where C0 refers to the initial concentration of adsorbate and KL is the rate of adsorption.
The RL value infers that adsorption was irreversible (RL = 0), favorable (0 < RL < 1) linear,
(RL = 1) or unfavorable (RL > 1). [49–51].

Freundlich isotherm: This model was used for investigating the adsorption capacity
on heterogeneous surfaces and formation of monolayer. It is expressed by Equation (5):

log qe = log KF +
1
n

log Ce (5)

where KF (L/mg) and n are Freundlich constants signifying, respectively, the adsorption
capacity and intensity of the system. Ce and qe are equilibrium concentration and equilib-
rium adsorption capacity (mg/g) of As(III) ions, respectively. KF and 1/n are calculated
from the slope and intercept of log qe versus log Ce plot, respectively.

Temkin isotherm: This model is based on the surface coverage and expressed by
Equation (6):

qe = B1 ln KT + B1 ln Ce (6)

where B1 = RT/b, B1 is the Temkin constant dealing with the heat of adsorption (kJ/mol),
T represents absolute temperature (K), R the gas constant (8.314 J/mol K) and KT the
equilibrium binding constant (L/g). The plot of qe versus ln Ce, enables to determine KT
and B1.

2.9. Adsorption Kinetics

Most of the adsorption/desorption processes of many solid substances depend
on time.
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Pseudo-first-order kinetic model: This model of Lagergren’s kinetic equation for the
adsorption of adsorbates from liquid solutions is expressed as follows [52]:

log(qe − qt) = log qe −
k1t

2.303
(7)

where qe (mg/g) and qt (mg/g) are quantities adsorbed at equilibrium and time t (min),
respectively, and k1 (min−1) is the rate constant for pseudo-first-order equation. The values
of k1 and qe were calculated by plotting log (qe − qt) versus time (t).

Pseudo-second-order kinetic model: This model assumes that adsorption is controlled
by chemical adsorption [53]:

t
qt

=
t

k2q2
e
− 1

qe
(8)

where qe and qt are adsorption capacity (mg/g) at equilibrium and time t (time), and k2
(g/g per min) is the rate constant. The values of k2 and qe are calculated from the slope and
intercept of the t/qt versus t plot.

Intraparticle diffusion kinetic model: The intraparticle (pore) diffusion mechanism of
As(III) was studied by using the Weber and Morris model of diffusion [54], following the
equation given by:

qt = Kdt1/2 + C (9)

where Kd (mg/g min1/2) is the diffusion rate constant; C (mg/g) is the intercept in the
diffusion model. The slope and intercept were obtained by plotting qt versus

√
t.

Elovich kinetic model: This model applies satisfactorily to the chemisorption process,
which implies multilayer adsorption [55] and is expressed by Equation (10).

qt = α + β ln t (10)

where qt (mg/g) is the amount of As(III) adsorbed for time t (min), α (mg/g min−1) and β
(g/mg) are obtained from the slope (β) and intercept (α) of the linear plot of qt versus ln t.

2.10. Regeneration Studies

Desorption studies were made to assess the regeneration capacity of the adsorbent.
MFMNABs (1.6 g) were placed in a 100 mL conical flask with 10 µg/mL concentration of
As(III) and shaken for 110 min in an incubator shaker at 30 ◦C. Beads were separated by a
magnet and the concentration of arsenic was measured. Then, MFMNABs were recycled
by washing with 0.1 N NaOH and then three times with DDW. The beads were then again
added to a fresh As(III) solution and the reusability was verified.

3. Results and Discussion
3.1. Adsorbent Characterization
3.1.1. X-ray Diffraction

X-ray diffraction (XRD) patterns of MFMNPs, MFMNABs (before adsorption) and
MFMNABs (after adsorption) show characteristic peaks, as depicted in Figure 2. The XRD
diffraction pattern obtained for MFMNPs and MFMNABs (before and after adsorption)
exhibits consistent peaks at (220), (311), (400), (422), (511) and (440) which is identical to that
Standard JCPDS data [56] reported for Fe3O4 nanoparticles as well as the methionine-coated
Fe3O4 nanoparticles [57,58]. The materials show sharp peaks, indicating that particles
are crystalline and of small size and these results matched with the planes of the cubic
structure of Fe3O4 (face-centered cubic) [57].
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Figure 2. XRD diffractograms of MFMNPs and MFMNABs (before and after adsorption).

The average crystal size (D) of MFMNPs, MFMNABs (before adsorption) and
MFMNABs (after adsorption) were determined by the Debye-Scherrer’s Equation (11) [59]:

D =
K·λ

β·cosθ
(11)

where D is average crystal size in Å, θ is the peak angle, β is FWHM (Full Width at Half
Maximum) of the sharp peaks, λ is the wavelength of X-rays (1.54 Å) and K is constant
(equal to 0.9). The results are presented in Table 1. The XRD results show that the average
size of the particles of MFMNPs was 17.04 nm and after crosslinking with alginate, the
mean size of the MFMNABs particles was reduced to 12.95 nm. After adsorption, the
average size of MFMNABs was 20.68 nm. The d-spacing and particle size obtained from
HR-TEM and XRD data (311) are presented in Table 2.

Table 1. Crystal size values obtained by the Debye-Scherrer’s formula.

Substance Most Intense Peak
(2θ, Degree)

Most Intense Peak
(θ, Degree) hkl FWHM * of Most Intense

Peak (β, Radian)
Size of the

Particles (D, nm)

MFMNPs 35.77 17.88 311 0.0144 17.04
MFMNABs (Before

adsorption) 35.18 17.59 311 0.035 12.95

MFMNABs (After
adsorption) 35.66 17.83 311 0.013 20.68

FWHM * Full width at half maximum height.

Table 2. Comparison of d-spacing and particle size (D) obtained from HR-TEM and XRD.

HR-TEM XRD

d-spacing (nm) D (nm) d-spacing (nm) D (nm)
0.242 12.68 0.254 12.95

Figure 3 shows the size distribution curve of MFMNABs. It was observed that the
average size calculated by the Debye–Scherrer formula (Equation (11) using XRD data
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(12.68 nm) is in close proximity with that calculated by the Bragg’s Equation (12) using
TEM data (12.95 nm) [60].

nλ = 2d·sinθ (12)

where n is an integer and d is interplanar distance.
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3.1.2. Fourier Transform Infrared Spectroscopy

MFMNPs and MFMNABs (before and after adsorption) were studied by Fourier
Transform Infrared Spectroscopy (FTIR) and results are shown in Figure 4. The broad and
strong peaks at 3434 cm−1 (MFMNPs) shifted to 3432 cm−1 (MFMNABs-before adsorption)
and 3458 cm−1 (MFMNABs-after adsorption) are ascribed to stretching vibrations of -OH
and -NH2 [61]. The weak peaks at 2921 and 2855 cm−1 in MFMNPs, 2923 and 2851 cm−1 in
MFMNABs (before adsorption), and 2923 and 2847 cm−1 in MFMNABs (after adsorption)
are ascribed to C–H stretching vibrations [62]. The peak 1628 (MFMNPs) cm−1 assigned
to asymmetric stretching of NH3

+ get shifted to 1631 cm−1 (MFMNABs-before adsorp-
tion) and 1632 cm−1 (MFMNABs-after adsorption). The additional peak at 1414 cm−1

in MFMNABs (before adsorption) is assigned to the symmetric stretching vibration of
COO− of sodium alginate [63]. The weak bands observed at 1389 cm−1 (MFMNPs), 1388
(MFMNABs-before adsorption) and 1384 (MFMNABs-before adsorption) were attributed
to the stretching vibration of the C = O [64] bond and the band at 1120 cm−1 to the bend-
ing vibration of NH3 [65]. The peaks at 1037 cm−1 (MFMNPs), shifted to 1028 cm−1

(MFMNABs-before adsorption) and 1026 cm−1 (MFMNABs-after adsorption) indicate
C–O stretching vibrations [66]. The presence of a band at 556 cm−1 (MFMNPs), 562 cm−1

MFMNABs (before adsorption) and 560 cm−1 MFMNABs (after adsorption) is due to the
vibration of Fe–O bond in Fe3O4 and C–S–C stretching mode [67,68].
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3.1.3. Scanning Electron Microscopy

Scanning Electron Microscopy (SEM) was used to characterize the unmodified and
modified beads (before and after adsorption). SEM images of MFMNPs and MFMNABs
(before and after adsorption) taken under different magnification is shown in Figure 5.
Figure 5a,b reveals that the surface of MFMNPs are much smother as compared to the
surface of MFMNABs. Figure 5c,d indicate that after cross-linking with alginate, MFMNABs
exhibit rough, multi-layered surface with wide cavities and irregular pores. Figure 5e,f shows
that the surface of MFMNABs after adsorption become aggregated with narrow cavities.

3.1.4. Transmission Electron Microscopy

The shape and size of adsorbent were examined by transmission electron microscopy
(TEM). A matrix with spherical or ellipsoidal particles smaller than 20 nm is seen (Figure 6).
The distribution curve shows that the sizes of particles are distributed in the range of
6–20 nm and the majority of particle sizes are between 12–14 nm (Figure 3). Most particles
were scattered but some are aggregated indicating stabilization. The structure of the syn-
thesized functionalized beads was examined with selected area electron diffraction (SAED).
The contrast image show diffraction rings with bright spots depicting the polycrystalline
nature of the adsorbent.
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3.2. pH Effect

pH is important for adsorption, as it affects the adsorption capacity of the adsorbent.
The effect of pH on As(III) removal efficiency is shown in Figure 7a. Removal of As(III) was
investigated by varying the pH ranging from 4 to 9 under the following conditions: 10 mg/L
initial As(III) concentration, 1.0 g dosage, 110 min contact time and room temperature
(~35 ◦C). The pH of the sample was adjusted using 0.1 N NaOH or 0.1 N HCl. The
percentage removal was obtained at equilibrium and it was found that the percentage
removal (%) was maximal at pH 7.0–7.5. Thus, pH 7 was used for further studies.



Nanomaterials 2021, 11, 1345 11 of 21

Nanomaterials 2021, 11, x FOR PEER REVIEW 11 of 22 
 

 

4 5 6 7 8 9
70

75

80

85

90

95

100
%

 R
em

ov
al

pHpzc= 7.66 pH
in

iti
al
-p

H
fin

al

 % Removal (a)
 Point zero charge (b)

pH

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

 
Figure 7. (a) pH effect on the adsorption of As(III) by MFMNABs at initial concentration of 10 µg/mL, adsorbent dose; 1.0 
g, contact time; 110 min and, (b) pHpzc (point zero charge) of MFMNABs. 

In an aqueous solution, the As(III) species formed are likely to be H3AsO3 and 
H2AsO3− or HAsO32− anionic forms. Below 9.2, the non-ionic H3AsO3 is the dominant 
species of As(III) and weak Van der Waals forces are expected between As(III) and 
MFMNABs. As the pH approaches 7, the amounts of anionic species H2AsO3− tend to in-
crease, resulting in more specific binding, leading to enhanced removal of As(III) [69]. 
The point of zero charge (pHpzc) for MFMNABs value was found to be 7.66 (Figure 7b). 
The surface is positively charged below this value and small amounts of anionic species 
are adsorbed due to electrostatic attraction in the pH range 7.0 to 7.5. However, when the 
pH is higher than the pHpzc value, the adsorbent surface is negatively charged, causing 
the repulsion force [70,71]. Adsorption may also be due to strong chelation via sulfur and 
−NH2 group of the adsorbent. N and S atoms are potent donors due to presence of lone 
pair of electrons [72,73]. 

The enhanced removal of As(III) at pH 7.0–7.5 may also be attributed to the for-
mation of an outer-sphere complex by hydrogen bonding or probably because of inner 
sphere complex formation through ligand exchange with a hydroxyl group (−OH) on the 
adsorbent surface. In acidic pH, the highly protonated adsorbent surface is less favoura-
ble for inner-sphere complex formation by As(III), which leads to a decrease in removal 
capacity [74]. At basic pH, presence of large amounts of OH− may compete for adsorption 
sites with anionic As(III) species which affects the removal capacity of As(III) [74]. 

3.3. Adsorbent Dose Effect 
The adsorbent dose effect on the As removal was studied and results are shown in 

Figure 8a. The elimination of As(III) in water was investigated by varying the amounts of 
adsorbent (0.1‒2.0 g). The removal efficiency improved by augmenting the adsorbent 
amount from 0.1 to 1.6 g. The greater the number of vacant sites on the adsorbent, the 
greater the capacity of adsorption. As the dosage increased from 0.1 g to 1.6 g in 10 

Figure 7. (a) pH effect on the adsorption of As(III) by MFMNABs at initial concentration of 10 µg/mL, adsorbent dose; 1.0 g,
contact time; 110 min and, (b) pHpzc (point zero charge) of MFMNABs.

In an aqueous solution, the As(III) species formed are likely to be H3AsO3 and
H2AsO3

− or HAsO3
2− anionic forms. Below 9.2, the non-ionic H3AsO3 is the domi-

nant species of As(III) and weak Van der Waals forces are expected between As(III) and
MFMNABs. As the pH approaches 7, the amounts of anionic species H2AsO3

− tend to
increase, resulting in more specific binding, leading to enhanced removal of As(III) [69].
The point of zero charge (pHpzc) for MFMNABs value was found to be 7.66 (Figure 7b).
The surface is positively charged below this value and small amounts of anionic species
are adsorbed due to electrostatic attraction in the pH range 7.0 to 7.5. However, when the
pH is higher than the pHpzc value, the adsorbent surface is negatively charged, causing
the repulsion force [70,71]. Adsorption may also be due to strong chelation via sulfur and
−NH2 group of the adsorbent. N and S atoms are potent donors due to presence of lone
pair of electrons [72,73].

The enhanced removal of As(III) at pH 7.0–7.5 may also be attributed to the formation
of an outer-sphere complex by hydrogen bonding or probably because of inner sphere com-
plex formation through ligand exchange with a hydroxyl group (−OH) on the adsorbent
surface. In acidic pH, the highly protonated adsorbent surface is less favourable for inner-
sphere complex formation by As(III), which leads to a decrease in removal capacity [74].
At basic pH, presence of large amounts of OH− may compete for adsorption sites with
anionic As(III) species which affects the removal capacity of As(III) [74].

3.3. Adsorbent Dose Effect

The adsorbent dose effect on the As removal was studied and results are shown in
Figure 8a. The elimination of As(III) in water was investigated by varying the amounts
of adsorbent (0.1–2.0 g). The removal efficiency improved by augmenting the adsorbent
amount from 0.1 to 1.6 g. The greater the number of vacant sites on the adsorbent, the
greater the capacity of adsorption. As the dosage increased from 0.1 g to 1.6 g in 10 µg/mL
of As(III) ions at pH 7, the % removal increased from 92.7% to 95.4%, but afterwards, the
removal remained constant. The optimal dose was 1.6 g.
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Conditions: (a) 10 µg/mL As(III) concentration; pH 7, contact time 110 min, (b) As(III) 10 µg/mL; adsorbent dose 1.6 g; and
pH 7 and (c) Adsorbent dose; 1.6 g, contact time 110 min and pH 7.

3.4. Contact Time Effect

The removal of As(III) at diverse timings is found in Figure 8b. A total of 10 mL
of As(III) solution (10 mg/L) was taken at 7 pH and 1.6 g of adsorbent was added. The
extraction of As(III) increases from 90.2% to 94.9% then reaching the steady state in 105 min.
After equilibrium, the amount removed remains the same though the agitation time is
increased to 120 min. The availability of a large number of vacant sites initially leads to
rapid adsorption. However, with time, the number of vacant sites diminish, and elimination
slows. It was observed that the maximum % removal of 94.9% was obtained at 110 min.

3.5. Initial Concentration Effect

The adsorption of As(III) was followed by varying the arsenic amount (10–35 µg/mL),
with 1.6 g dosage, 110 min contact time and room temperature (~35 ◦C). In general, the
amount of As(III) removed by MFMNABs first augmented with the rise of the initial
concentration of arsenic and the optimal value of 99.56% was observed at 10 µg/mL
arsenic concentration. More active sites are available for adsorption of As(III) ions at lower
concentrations. With the number of As(III) ions being increased at higher concentrations,
less active sites are available for adsorption. Figure 8c shows that As(III) adsorption
is dependent of its initial amount, and when this quantity increases, the adsorption is
lower. With an increase in the initial amount of As(III), these ions compete for free sites
of the adsorbent, which results in the saturation of more sites. There is a very slight
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improvement in adsorption upon an increase in the arsenic amount, more noticeable for
low concentrations (5–10 µg), showing high affinity [75].

3.6. Adsorption Isotherm

Adsorption isotherms were analyzed using the Langmuir (Figure 9A), Freundlich
(Figure 9B) and Temkin (Figure 9C) isotherm models to evaluate the best fit with the
correlation coefficients (R2). Results are presented in Table 3. The data showed that
Langmuir isotherm model was the best fit with a R2 = 0.9890, compared to Freundlich
(R2 = 0.9682) and Temkin (R2 = 0.9711) models, proving the homogeneous surface. The
maximum adsorption capacity was 6.6533 mg/g for the MFMNABs. In addition, the value
of the dimensional separation factor (RL) was found to be less than 1, which confirms that
the adsorption of As(III) is a favorable process.
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Table 3. Adsorption isotherm parameters for As(III) adsorption by MFMNABs.

Isotherm Values of Parameters

Langmuir qmax (mg g−1)
6.6533

KL
0.0975

R2

0.989
RL

0.3389

Freundlich KF (mg g−1) (mg L−1)n

0.7919
n

1.1507
R2

0.9682
-

Temkin B1
0.4625

KT (L mg−1)
0.3984

R2

0.9711
-
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3.7. Adsorption Kinetics

Adsorption of As(III) by MFMNABs was modeled using pseudo-first-order
(Figure 10A), pseudo-second-order (Figure 10B), Elovich (Figure 10C) and intra-particle
diffusion (Figure 10D) models to explain the kinetic data. The values of the kinetic model
parameters are listed in Table 4. The pseudo second order kinetic model shows the highest
R2 value of 0.9998. The kinetic results agree with those of different carbon and clay-based
adsorbents [76–78].
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Table 4. Kinetic parameters for adsorption of As(III) onto MFMNABs.

Models Kinetics Parameters

Pseudo-First-Order
k1 (min−1) qe (mg g−1) R2

0.0223 2.492 0.9317
Pseudo-Second-

Order
k2 (g mg−1 min−1) qe (mg g−1) R2

0.08 0.1177 0.9998
Intra-particle

Diffusion
kd (mg g−1 min−1) C (mg g−1) R2

8.0456 0.1099 0.9758

Elovich model
A (mg g−1 min−2) β (g mg−1 min−1) R2

1.01035 0.397 0.9601

3.8. Thermodynamic Parameters

A rise in temperature caused an enlargement in the rate of As(III) adsorption prov-
ing [78] that the process is endothermic [79]. The adsorption thermodynamic parameters,
i.e., Gibbs free energy (∆G), changes in enthalpy (∆H) and changes in entropy (∆S) were
calculated by the equations:
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∆G = −RT ln Kd (13)

ln Kd =
∆S
R
− ∆H

RT
(14)

where Kd—equilibrium constant of the Langmuir model (L/g), T—absolute temperature
(Kelvin, k) and R—universal gas constant (8.314 kJ/mol K). The values of ∆H and ∆S
were 5.25 KJ/mol and 34.32 J/mol/K, respectively, taken from the slope and the intercept
of the linear plot of ln Kd versus 1/T (Figure 11). ∆H has a positive value, confirming
the endothermicity of the adsorption and the positive values of ∆S suggest a randomness
increase. A similar endothermic adsorption behavior is found in many pollutant adsorption
systems in the literature [80,81]. The change in the Gibbs free energy (∆G) was −1.8, −1.97
and−2.17 KJ/mol for 30, 40 and 50 ◦C, respectively. ∆G has a negative value, meaning that
the adsorption of As on the MFMNABs is feasible and spontaneous at all temperatures.
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3.9. Reusability

Desorption studies were made to assess the regeneration capacity of the adsorbent. It
was found that the beads were reusable for six cycles (Figure 12).
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3.10. Adsorption Mechanism

The FTIR spectra of MFMNABs (Figure 4) shows a shift in position and intensity of
bands at 3432, 2851, 1631, 1414, 1388, 1082, 1028 and 562 cm−1 after adsorption of As(III).
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These results indicate that the O–H, NH2, C–H, COO−, C = O, C–S–C, C–O and Fe–O
groups are involved in the adsorption process.

The FTIR spectra of MFMNPs exhibits bands at 1628 and 1390 cm−1 which is attributed
to C = O and C–O stretching vibrations of the amino acid residues, respectively. The peak
corresponding to C–H stretching vibrations of methionine is observed at 2870 cm−1. The
band around 3400 cm−1 is assigned to the overlapping of N–H and O–H stretching peaks.

The possible interaction of methionine functionalized groups is supposed to be
through N, S and O donor atoms and –OH groups, as shown in Figure 13. The carboxylate
ion of amino acid can interact with Fe3+ by either bidentate or unidentate modalities, the
former being more likely than the latter. N atom of amine group, a potent donor, can make
coordinate covalent bond with Fe3+. Sulfur (S) atom is also expected to be a potent donor
atom due to its lone pair of electrons [82].
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In the acidic pH, the predominant As(III) species, H3AsO3 get adsorbed due to weak
Van der Waals forces. At pH 7.0−7.5, adsorption increases due to electrostatic attraction
between the positive surface and increase in anionic species. Adsorption may also be due
to strong chelation via sulfur and –NH2 groups [72,73]. It may also be attributed to the
formation of complex through hydrogen bonding. The shift in the position and decrease
in intensity of Fe–O peak indicate the involvement of Fe–O bond also in the adsorption
process. The scheme of mechanism of adsorption of As(III) is depicted in Figure 13a and
the mechanism of spectrophotometric method used is shown in Figure 13b.

4. Comparisons of Adsorption Capacities (qm) of As(III)

The maximal adsorption capacity (qm) of different adsorbents for the removal of
As(III) are presented in Table 5.

Table 5. Comparison of the adsorption capacity of different adsorbents.

Adsorbents Adsorption Capacity (mg/g) References

Guava leaf biomass 1.05 [83]
Mango bark 1.25 [83]

Bagasse 1.35 [83]
Ferric hydroxide microcapsule-loaded alginate beads (FHMCA) 3.80 [84]

Modified saxaul ash 4.20 [85]
WTRs (water treatment residuals) loaded alginate beads 3.40 [86]

Iron impregnated AC from Lapsi seed stone 2.00 [87]
Magnetic nanoparticle obtained from metallic wool 2.20 [88]

Magnetite-maghemite nanoparticle 3.69 [89]
Hybrid (polymeric/inorganic) fibrous sorbent 75.67 [90]

Hybrid material zirconium polyacrylamide (ZrPACM-43) 41.48 [91]

Laterite soil (batch adsorption and fixed bed column) 0.18
69.22 [92]

Methionine functionalized magnetic nanoparticles 6.65 Present study

Many adsorbents with high adsorption capacity are reported for As (V) as well as
total As whereas only few adsorbents with high adsorption capacities are reported for As
(III) due to its existence as non-ionic species around 7.0 pH [91]. MFMNABs exhibited high
adsorption capacity, in comparison to adsorbents, like guava leaf biomass, mango bark,
FHMCA, etc. reported for As(III). A few hybrid materials like polymeric/inorganic fibrous
sorbent [90] and zirconium polyacrylamide [91] show higher adsorption capacity; however,
they show limitations, such as, being comparatively costlier, use fibrous ion exchangers,
need tedious method of fabrication, have removal at low pH (away from general aqueous
condition), etc. Hence, the adsorbent methionine functionalized magnetic nanoparticles is
more adequate for the adsorption of As(III) from aqueous solutions.

5. Conclusions

The present work provides a cheap and environmentally friendly method for the
adsorption of As(III) from aqueous samples. A spectrophotometric method based on the
reaction of As(III) with N-bromosuccinimide and rhodamine-B can be used for monitoring
the adsorption of As(III). The process efficiency depends on several variables, like tempera-
ture, contact time, initial adsorbent concentration and solution pH. The highest adsorption
was found at pH 7.0–7.5. The maximal As removal (99.56%) was for the concentration
of 10 µg/mL, room temperature (~35 ◦C), pH 7 and adsorbent dose 1.6 g. The obtained
data for As adsorption agrees well with the Freundlich isotherm. The reported modified
adsorbent shows good benefits, like good removal efficiency, high adsorption capacity,
cheapness, ease of synthesis and availability as well as being promising for the elimination
of arsenic from water.
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