Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TiO2 Nanocrystals via Two Kinds of Butanol Reagents
2.3. Microstructure Characterizations
2.4. Photocatalytic Degradation Experiments
2.5. Photocatalytic Decomposition of Water to Produce Hydrogen Test
2.6. Photoelectrochemical Measurements
3. Results and Discussion
3.1. Basic Structure Characterization of Photocatalyst
TiO2 | Phase Composition (wt%) | Crystalline Sizes (nm) | ||
---|---|---|---|---|
Anatase | Rutile | Anatase | Rutile | |
s-TiO2 | 48 | 52 | 7.82 | 6.39 |
t-TiO2 | 100 | / | 4.46 | / |
P25 | 79 | 21 | 14.4 | 13.9 |
Raw Materials and Preparation Method | Phase Composition (wt%) | SBET (m2g−1) | Reference | |
---|---|---|---|---|
Anatase | Rutile | |||
s-TiO2 | 48 | 52 | 236.6 | This study |
P25 | 79 | 21 | 5.9 | / |
TiOSO4 + H2O + H2SO4 | 77.4 | 22.6 | 32.2 | [25] |
TTIP + ethanol + xylene flame spray pyrolysis | 88 | 11 | 249 | [26] |
TTIP + acetonitrile + xylene flame spray pyrolysis | 92 | 8 | 36 | [29] |
TTIP + isopropanol + HF + TiCl3 | 79 | 21 | / | [30] |
TiCl4 + air + C2H4 laser pyrolysis | 46 | 54 | / | [32] |
TiCl3 + HNO3 + ethanol + urea | 59 | 41 | / | [34] |
TiO2 + H2O oven | 44 | 56 | / | [35] |
3.2. Photocatalytic Performance
3.3. Material Photocatalytic Mechanism Characterization Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abazari, R.; Mahjoub, A.R.; Sanati, S.; Rezvani, Z.; Hou, Z.; Dai, H. Ni-Ti Layered Double Hydroxide@Graphitic Carbon Nitride Nanosheet: A Novel Nanocomposite with High and Ultrafast Sonophotocatalytic Performance for Degradation of Antibiotics. Inorg. Chem. 2019, 58, 1834–1849. [Google Scholar] [CrossRef]
- Huang, S.; Xu, Y.; Chen, Z.; Xie, M.; Xu, H.; He, M.; Li, H.; Zhang, Q. A core-shell structured magnetic Ag/AgBr@Fe2O3 composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Adv. 2015, 5, 71035–71045. [Google Scholar] [CrossRef]
- Mardani, H.R. (Cu/Ni)-Al layered double hydroxides@Fe3O4 as efficient magnetic nanocomposite photocatalyst for visible-light degradation of methylene blue. Res. Chem. Intermed. 2017, 43, 5795–5810. [Google Scholar] [CrossRef]
- Singh, J.; Uma, S. Efficient Photocatalytic Degradation of Organic Compounds by Ilmenite AgSbO3 under Visible and UV Light Irradiation. J. Phys. Chem. C. 2009, 113, 12483–12488. [Google Scholar] [CrossRef]
- Pan, Z.; Ma, W.; Wang, L. Construction of a magnetic Z-scheme photocatalyst with enhanced oxidation/reduction abilities and recyclability for the degradation of tetracycline. RSC Adv. 2016, 6, 114374–114382. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, G.; Li, J.; Li, Y.; Wu, X. 0D/2D Z-Scheme Heterojunctions of Bismuth Tantalate Quantum Dots/Ultrathin g-C3N4 Nanosheets for Highly Efficient Visible Light Photocatalytic Degradation of Antibiotics. ACS Appl. Mater. Interfaces 2017, 9, 43704–43715. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fan, Y.; Wu, R.; Huo, Y.; Wu, H.; Wang, F.; Xu, X. Novel magnetic g-C3N4/α-Fe2O3/Fe3O4 composite for the very effective visible-light-Fenton degradation of Orange II. RSC Adv. 2018, 8, 5180–5188. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, H.; Tu, W.; Liu, Y.; Wu, S.; Tan, Y.Z.; Chew, J.W. Construction of hierarchical 2D-2D Zn3In2S6/fluorinated polymeric carbon nitride nanosheets photocatalyst for boosting photocatalytic degradation and hydrogen production performance. Appl. Catal. B 2018, 233, 58–69. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, R.; Wang, P.; Li, Y.; Wang, C. Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of methyl orange under light irradiation. Chemosphere 2017, 179, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Peiris, S.; de Silva, B.H.; Ranasinghe, N.K.; Bandara, V.S.; Perera, R.I. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.; Tocci, G.; Woolcot, T.; Torrelles, X.; Pang, C.L.; Humphrey, D.S.; Yim, C.M.; Grinter, D.C.; Cabailh, G.; Bikondoa, O.; et al. Structure of a model TiO2 photocatalytic interface. Nat. Mater. 2017, 16, 461–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction Photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, C.; Li, H.H.; Zhao, Y.F.; Gong, Y.Y.; Niu, L.Y.; Liu, X.J.; Wang, T. The effects of nonmetal dopants on the electronic, optical and chemical performances of monolayer g-C3N4 by first-principles study. Appl. Surf. Sci. 2017, 392, 966–974. [Google Scholar] [CrossRef]
- Ni, Y.; Li, J.; Zhang, L.; Yang, S.; Wei, X. Urchin-like Co2P nanocrystals: Synthesis, characterization, influencing factors and photocatalytic degradation property. Mater. Res. Bull. 2009, 44, 1166–1172. [Google Scholar] [CrossRef]
- Pan, D.; Jiao, J.; Li, Z.; Guo, Y.; Feng, C.; Liu, Y.; Wang, L.; Wu, M. Efficient Separation of Electron-Hole Pairs in Graphene Quantum Dots by TiO2 Heterojunctions for Dye Degradation. ACS Sustain. Chem. Eng. 2015, 3, 2405–2413. [Google Scholar] [CrossRef]
- Wang, P.; Tang, Y.; Dong, Z.; Chen, Z.; Lim, T. Ag-AgBr/TiO2/RGO nanocomposite for visible-light photocatalytic degradation of penicillin G. J. Mater. Chem. A 2013, 1, 4718–4727. [Google Scholar] [CrossRef]
- Yan, X.; Xue, C.; Yang, B.; Yang, G. Novel three-dimensionally ordered macroporous Fe3+-doped TiO2 photocatalysts for H2 production and degradation applications. Appl. Surf. Sci. 2017, 394, 248–257. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Wang, C.; Yu, X.; Zhang, X.; Lu, Z.; Wang, X.; Han, X.; Zhao, J.; Li, L.; Yang, X. Enhanced hydrogen production from ammonia borane over CuNi alloy nanoparticles supported on TiO2(B)/anatase mixed-phase nanofibers with high specific surface area. J. Alloy Compd. 2020, 815, 152431. [Google Scholar] [CrossRef]
- Kuang, J.; Xing, Z.; Yin, J.; Li, Z.; Tan, S.; Li, M.; Jiang, J.; Zhu, Q.; Zhou, W. Ti3+ self-doped rutile/anatase/TiO2(B) mixed-crystal tri-phase heterojunctions as effective visible-light-driven photocatalysts. Arab. J. Chem. 2020, 13, 2568–2578. [Google Scholar] [CrossRef]
- Gao, Y.; Lin, X.; Zhao, Y.D.; Xu, S.L.; Lai, C.H.; Guo, Z.H.; Wu, W.X.; Ding, X.L.; Jia, F.; Zhou, L.; et al. The Cleaning Effect of the Photocatalysis of TiO2B@anatase Nanowires on Biological Activity on a Titanium Surface. Int. J. Nanomed. 2020, 15, 9639–9655. [Google Scholar] [CrossRef]
- Xu, F.Y.; Xiao, W.; Cheng, B.; Yu, J.G. Direct Z-scheme anatase/rutile bi-phase nanocomposite TiO2 nanofiber photocatalyst with enhanced photocatalytic H-2-production activity. Int. J. Hydrog. Energy 2014, 39, 15394–15402. [Google Scholar] [CrossRef]
- Bakardjieva, S.; Šubrt, J.; Štengl, V.; Dianez, M.J.; Sayagues, M.J. Photoactivity of anatase-rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase. Appl. Catal. B 2005, 58, 193–202. [Google Scholar] [CrossRef]
- Bettini, L.G.; Dozzi, M.V.; della Foglia, F.; Chiarello, G.L.; Selli, E.; Lenardi, C.; Piseri, P.; Milani, P. Mixed-phase nanocrystalline TiO2 photocatalysts produced by flame spray pyrolysis. Appl. Catal. B Environ. 2015, 178, 226–232. [Google Scholar] [CrossRef]
- Di Paola, A.; Bellardita, M.; Palmisano, L.; Parrino, F. Junction Effect on the Photocatalytic Activity of Mixed-Phase TiO2 Nanoparticles. ECS Trans. 2010, 25, 29. [Google Scholar] [CrossRef]
- Kanna, M.; Wongnawa, S. Mixed amorphous and nanocrystalline TiO2 powders prepared by sol-gel method: Characterization and photocatalytic study. Mater. Chem. Phys. 2008, 110, 166–175. [Google Scholar] [CrossRef]
- Kho, Y.K.; Iwase, A.; Teoh, W.Y.; Madler, L.; Kudo, A.; Amal, R. Photocatalytic H-2 Evolution over TiO2 Nanoparticles. The Synergistic Effect of Anatase and Rutile. J. Phys. Chem. C 2010, 114, 2821–2829. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, C.H.; Wang, N.N.; Li, Y.Y.; Ding, H.M. Stable Ti3+ Self-Doped Anatase-Rutile Mixed TiO2 with Enhanced Visible Light Utilization and Durability. J. Phys. Chem. C 2016, 120, 6116–6124. [Google Scholar] [CrossRef]
- Shimura, K.; Yoshida, H. Heterogeneous photocatalytic hydrogen production from water and biomass derivatives. Energy Environ. Sci. 2011, 4, 2467–2481. [Google Scholar] [CrossRef]
- Scarisoreanu, M.; Ilie, A.; Dutu, E.; Badoi, A.; Dumitrache, F.; Tanasa, E.; Mihailescu, C.N.; Mihailescu, I. Direct nanocrystallite size investigation in microstrained mixed phase TiO2 nanoparticles by PCA of Raman spectra. Appl. Surf. Sci. 2019, 470, 507–519. [Google Scholar] [CrossRef]
- Yoneyama, H. Electrochemical aspects of light-induced heterogeneous reactions on semiconductors. Crit. Rev. Solid State Mater. Sci. 1993, 18, 69–111. [Google Scholar] [CrossRef]
- Lei, S.; Weng, D. Highly active mixed-phase TiO2 photocatalysts fabricated at low temperature and the correlation between phase composition and photocatalytic activity. J. Environ. Sci. 2008, 20, 1263–1267. [Google Scholar]
- Yu, C.; Liu, H.; Song, J.; Yang, J.; Zhang, P.; Guo, F.; Hong, L.; Hui, H. Can mixed anatase and rutile photocatalyst TiO2 be synthesized under high pressure in water? Mater. Lett. 2019, 246, 133–136. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, L.; Kim, J.K.; Ma, M.; Veerappan, G.; Lee, C.; Kong, K.; Lee, H.; Park, J.H. An order/disorder/water junction system for highly efficient co-catalyst-free photocatalytic hydrogen generation. Energy Environ. Sci. 2016, 9, 499–503. [Google Scholar] [CrossRef]
- Han, S.; Liu, K.; Hu, L.; Teng, F.; Yu, P.; Zhu, Y. Superior Adsorption and Regenerable Dye Adsorbent Based on Flower-Like Molybdenum Disulfide Nanostructure. Sci. Rep. 2017, 7, 1. [Google Scholar]
- Asman, S.; Mohamad, S.; Sarih, N. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media. Int. J. Mol. Sci. 2015, 16, 3656–3676. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhou, C.; Ma, Z.; Ren, Z.; Fan, H.; Yang, X. Elementary photocatalytic chemistry on TiO2 surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730. [Google Scholar] [CrossRef] [Green Version]
- Castro, R.H.R.; Wang, B. The Hidden Effect of Interface Energies in the Polymorphic Stability of Nanocrystalline Titanium Dioxide. J. Am. Ceram. Soc. 2011, 94, 918–924. [Google Scholar] [CrossRef]
- Kim, Y.J.; Francis, L.F. Microstructure and crystal structure development in porous titania coatings prepared from anhydrous titanium ethoxide solutions. J. Mater. Sci. 1998, 33, 4423–4433. [Google Scholar] [CrossRef]
- Madras, G.; Mccoy, B.J.; Navrotsky, A. Kinetic model for TiO2 polymorphic transformation from anatase to rutile. J. Am. Ceram. Soc. 2007, 90, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Sijakovic-Vujicic, N.; Gotic, M.; Music, S.; Ivanda, M.; Popovic, S. Synthesis and microstructural properties of Fe-TiO2 nanocrystalline particles obtained by a modified sol-gel method. J. Sol-Gel Sci. Technol. 2004, 30, 5–19. [Google Scholar] [CrossRef]
- Attwood, A.L.; Murphy, D.M.; Edwards, J.L.; Egerton, T.A.; Harrison, R.W. An EPR study of thermally and photochemically generated oxygen radicals on hydrated and dehydrated titania surfaces. Res. Chem. Intermed. 2003, 29, 449–465. [Google Scholar] [CrossRef]
- Bakhshayesh, A.M.; Mohammadi, M.R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceram. Int. 2013, 39, 7343–7353. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhou, C.; Zhang, P.; Guo, S.; Li, S.; Meng, X.; Lu, Y.; Xu, H.; Ma, H.; et al. In situ self-assembly synthesis of carbon self-doped graphite carbon nitride hexagonal tubes with enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 2019, 44, 27354–27362. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A. Oxygen defect dependent variation of band gap, Urbach energy and luminescence property of anatase, anatase-rutile mixed phase and of rutile phases of TiO2 nanoparticles. Phys. E Low Dimens. Syst. Nanostruct. 2014, 56, 364–371. [Google Scholar] [CrossRef]
- Ikeda, J.A.S.; Chiang, Y.M. Space charge segregation at grain boundaries in titanium dioxide. I. Relationship between lattice defect chemistry and space charge potential. J. Am. Ceram. Soc. 1993, 76, 2437–2446. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P. Alternate synthetic strategy for the preparation of CdS nanoparticles and its exploitation for water splitting. Int. J. Hydrog. Energy 2006, 31, 891–898. [Google Scholar] [CrossRef]
- Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.; Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013, 12, 798–801. [Google Scholar] [CrossRef]
- Christoforidis, K.C.; Fornasiero, P. Photocatalysis for Hydrogen Production and CO2 Reduction: The Case of Copper-Catalysts. ChemCatChem 2019, 11, 368–382. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, Y.; Yang, Y.; Zhang, P.; Zhou, J.; Wu, J.; Li, K.; Wang, W.; Chen, L. Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance. Nanomaterials 2021, 11, 1347. https://doi.org/10.3390/nano11051347
Lei Y, Yang Y, Zhang P, Zhou J, Wu J, Li K, Wang W, Chen L. Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance. Nanomaterials. 2021; 11(5):1347. https://doi.org/10.3390/nano11051347
Chicago/Turabian StyleLei, Yuchen, Yun Yang, Peilin Zhang, Jiaojiao Zhou, Jing Wu, Kuang Li, Weiwei Wang, and Luyang Chen. 2021. "Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance" Nanomaterials 11, no. 5: 1347. https://doi.org/10.3390/nano11051347
APA StyleLei, Y., Yang, Y., Zhang, P., Zhou, J., Wu, J., Li, K., Wang, W., & Chen, L. (2021). Controllable One-Step Synthesis of Mixed-Phase TiO2 Nanocrystals with Equivalent Anatase/Rutile Ratio for Enhanced Photocatalytic Performance. Nanomaterials, 11(5), 1347. https://doi.org/10.3390/nano11051347