Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets
2.2. Characterization of Nanoplatelets
2.3. Photocurrent Analysis
3. Results
3.1. XRD Analysis
3.2. Structural and Surface Morphology Analyses
3.3. XPS Analysis
3.4. Raman Spectra
3.5. Photocurrent under UV and Red Light
3.5.1. Analysis under UV and Red Illumination
3.5.2. Effects of the Defect Structure and Optical Bandgap on Photocurrent
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lawal, A.; Shaari, A.; Ahmed, R.; Jarkoni, N. First-principles many-body comparative study of Bi2Se3 crystal: A promising candidate for broadband photodetector. Phys. Lett. A 2017, 381, 2993–2999. [Google Scholar] [CrossRef]
- Ren, Z.; Taskin, A.A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator. Phys. Rev. B 2010, 82, 241306. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Liu, C.X.; Qi, X.L.; Dai, X.; Fang, Z.; Zhang, S.C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438–442. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, L.G.; Wang, D.; An, X.Y.; Yang, H. Enhancement of surface state contribution in cadmium doped Bi2Se3 single crystal. J. Alloys Compd. 2019, 806, 180–186. [Google Scholar] [CrossRef]
- Salvato, M.; Scagliotti, M.; De Crescenzi, M.; Castrucci, P.; De Matteis, F.; Crivellari, M.; Cresi, S.P.; Catone, D.; Bauch, T.; Lombardi, F. Stoichiometric Bi2Se3 topological insulator ultra-thin films obtained through a new fabrication process for optoelectronic applications. Nanoscale 2020, 12, 12405. [Google Scholar] [CrossRef]
- Irfan, B.; Sahoo, S.; Gaur, A.P.S.; Ahmadi, M.; Guinel, M.J.F.; Katiyar, R.S.; Chatterjee, R. Temperature dependent Raman scattering studies of three dimensional topological insulators Bi2Se3. J. Appl. Phys. 2014, 115, 173506. [Google Scholar] [CrossRef]
- Schönherr, P.; Collins-McIntyre, L.J.; Zhang, S.; Kusch, P.; Reich, S.; Giles, T.; Daisenberger, D.; Prabhakaran, D.; Hesjedal, T. Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires. Nanoscale Res. Lett. 2014, 9, 127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, N.; Geishendorf, K.; Walowski, J.; Thomas, A.; Munzenberg, M. Photocurrent measurements in topological insulator Bi2Se3 nanowires. Appl. Phys. Lett. 2020, 116, 172402. [Google Scholar] [CrossRef]
- Yue, C.; Jiang, S.; Zhu, H.; Chen, L.; Sun, Q.; Zhang, D.W. Device applications of synthetic topological insulator nanostructures. Electronics 2018, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Yu, W.; Shi, J.; Wang, Y. The property, preparation and application of topological insulators: A Review. Materials 2017, 10, 814. [Google Scholar] [CrossRef] [Green Version]
- Mishra, S.K.; Satpathy, S.; Jepsen, O. Electronic structure and thermoelectric properties of bismuth telluride and bismuth selenide. J. Phys. Condens. Matter. 1997, 9, 461–470. [Google Scholar] [CrossRef]
- Hsieh, D.; Xia, Y.; Wray, L.; Qian, D.; Pal, A.; Dil, J.H.; Meier, F.; Osterwalder, J.; Bihlmayer, G.; Kane, C.L.; et al. First direct observation of spin-textures in topological insulators: Spin-resolved ARPES as a probe of topological quantum spin Hall effect and Berry’s phase. Science 2009, 323, 919–933. [Google Scholar] [CrossRef] [Green Version]
- Fei, F.; Zhang, S.; Zhang, M.; Shah, S.A.; Song, F.; Wang, X.; Wang, B. The material efforts for quantized Hall devices based on topological insulators. Adv. Mater. 2020, 32, 1904593. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Shao, J.; Wang, Y.; Zhao, Z.; Yang, G. Ultra-broadband and high response of the Bi2Te3-Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale 2015, 7, 12535–12541. [Google Scholar] [CrossRef]
- Jung, M.; Lee, J.; Koo, J.; Park, J.; Song, Y.W.; Lee, K.; Lee, S.; Lee, J.H. A femtosecond pulse fiber laser at 1935 nm using a bulk-structured Bi2Te3 topological insulator. Opt. Express 2014, 22, 7865–7874. [Google Scholar] [CrossRef]
- Liu, B.; Xie, W.; Li, H.; Wang, Y.; Cai, D.; Wang, D.; Wang, L.; Liu, Y.; Li, Q.; Wang, T. Surrounding sensitive electronic properties of Bi2Te3 nanoplates-potential sensing applications of topological insulators. Sci. Rep. 2014, 4, 4639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götte, M.; Joppe, M.; Dahm, T. Pure spin current devices based on ferromagnetic topological insulators. Sci. Rep. 2016, 6, 36070. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Upadhyaya, P.; Kou, X.; Lang, M.; Takei, S.; Wang, Z.; Tang, J.; He, L.; Chang, L.T.; Montazeri, M.; et al. Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 2014, 13, 699–704. [Google Scholar] [CrossRef]
- Stern, A.; Lindner, N.H. Topological quantum computation-from basic concepts to first experiments. Science 2013, 339, 179–1184. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110. [Google Scholar]
- Lee, C.W.; Kim, G.H.; Kang, S.G.; Kang, M.A.; An, K.S.; Kim, H.; Lee, Y.K. Growth behavior of Bi2Te3 and Sb2Te3 thin films on graphene substrate grown by plasma-enhanced chemical vapor deposition. Phys. Status Solidi RRL 2017, 11, 1600369. [Google Scholar] [CrossRef]
- Hwang, T.H.; Kim, H.S.; Kim, H.; Kim, J.S.; Doh, Y.J. Electrical detection of spin-polarized current in topological insulator Bi1.5Sb0.5Te1.7Se1.3. Curr. Appl. Phys. 2019, 19, 917–923. [Google Scholar] [CrossRef] [Green Version]
- Fei, F.; Wei, Z.; Wang, Q.; Lu, P.; Wang, S.; Qin, Y.; Pan, D.; Zhao, B.; Wang, X.; Sun, J.; et al. Solvothermal synthesis of lateral heterojunction Sb2Te3/Bi2Te3 nanoplates. Nano Lett. 2015, 15, 5905–5911. [Google Scholar] [CrossRef] [PubMed]
- Bansal, N.; Cho, M.R.; Brahlek, M.; Koirala, N.; Horibe, Y.; Jing, C.; Wu, W.; Yun, D.P.; Oh, S. Transferring MBE-grown topological insulator films to arbitrary substrates and metal-insulator transition via Dirac gap. Nano Lett. 2014, 14, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Zastrow, S.; Gooth, J.; Boehnert, T.; Heiderich, S.; Toellner, W.; Heimann, S.; Schulz, S.; Nielsch, K. Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition. Semicond. Sci. Technol. 2013, 28, 035010. [Google Scholar] [CrossRef]
- Bendt, G.; Zastrow, S.; Nielsch, K.; Mandal, P.S.; Sánchezbarriga, J.; Rader, O.; Schulz, S. Deposition of topological insulator Sb2Te3 films by an MOCVD process. J. Mater. Chem. A 2014, 2, 8215–8222. [Google Scholar] [CrossRef] [Green Version]
- Le, P.H.; Wu, K.H.; Luo, C.W.; Leu, J. Growth and characterization of topological insulator Bi2Se3 thin films on SrTiO3 using pulsed laser deposition. Thin Solid Films 2013, 534, 659–665. [Google Scholar] [CrossRef]
- Fang, B.; Zeng, Z.; Yan, X.; Hu, Z. Effects of annealing on thermoelectric properties of Sb2Te3 thin films prepared by radio frequency magnetron sputtering. J. Mater. Sci. Mater. Electron. 2013, 24, 1105–1111. [Google Scholar] [CrossRef]
- Nam, H.; Xu, Y.; Miotkowski, I.; Tian, J.; Chen, Y.P.; Liu, C.; Hasan, M.Z.; Zhu, W.; Fiete, G.A.; Shih, C.K. Microscopic investigation of Bi2-xSbxTe3-xSey systems: On the origin of a robust intrinsic topological insulator. J. Phys. Chem. Solids 2019, 128, 251–257. [Google Scholar] [CrossRef]
- Bhattacharyya, B.; Sharma, A.; Kaur, M.; Singh, B.P.; Husale, S. Highly responsive broadband photodetection in topological insulator-Carbon nanotubes based heterostructure. J. Alloys Compd. 2021, 851, 156759. [Google Scholar] [CrossRef]
- Zhang, H.; Song, Z.; Li, D.; Xu, Y.; Li, J.; Bai, C.; Man, B. Near-infrared photodetection based on topological insulator P-N heterojunction of SnTe/Bi2Se3. Appl. Surf. Sci. 2020, 509, 145290. [Google Scholar] [CrossRef]
- Li, X.M.; Zhao, K.; Ni, H.; Zhao, S.Q.; Xiang, W.F.; Lu, Z.Q.; Yue, Z.J.; Wang, F.; Kong, Y.C.; Wong, H.K. Voltage tunable photodetecting properties of La0.4Ca0.6MnO3 films grown on miscut LaSrAlO4 substrates. Appl. Phys. Lett. 2010, 97, 044104. [Google Scholar] [CrossRef]
- Huang, S.M.; Huang, S.J.; Yan, Y.J.; Yu, S.H.; Chou, M.; Yang, H.W.; Chang, Y.S.; Chen, R.S. Extremely high-performance visible light photodetector in the Sb2SeTe2 nanoflake. Sci. Rep. 2017, 7, 45413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Bhattacharyya, B.; Srivastava, A.K.; Senguttuvan, T.D.; Husale, S. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. 2016, 6, 19138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.; Han, Q.; Liu, X.; Han, J.; Zhao, Y.; He, L.; Gou, J.; Wu, Z.; Wang, X.; Wang, J. Ultrahigh stability 3D TI Bi2Se3/MoO3 thin film heterojunction infrared photodetector at optical communication waveband. Adv. Funct. Mater. 2020, 30, 1909659. [Google Scholar] [CrossRef]
- Pejova, B.; Grozdanov, I. Chemical deposition and characterization of glassy bismuth(III) selenide thin films. Thin Solid Films 2002, 408, 6–10. [Google Scholar] [CrossRef]
- Pramanik, P.; Bhattacharya, R.N.A. Mondal, A chemical method for the deposition of thin films of Bi2Se3. J. Electrochem. Soc. 1980, 127, 1857. [Google Scholar] [CrossRef]
- Garcia, V.M.; Nair, M.T.S.; Nair, P.K.; Zingaro, R.A. Chemical deposition of bismuth selenide thin films using N,N-dimethylselenourea. Semicond. Sci. Technol. 1997, 12, 645–653. [Google Scholar]
- Manjulavalli, T.E.; Balasubramanian, T.; Nataraj, D. Structural and optical properties of thermally evaporated Bi2Se3 thin film. Chalcogenide Lett. 2008, 5, 297–302. [Google Scholar]
- Augustine, S.; Ampili, S.; Kang, J.K.; Mathai, E. Structural, electrical and optical properties of Bi2Se3 and Bi2Se(3−x)Tex thin films. Mater. Res. Bull. 2005, 40, 1314–1325. [Google Scholar] [CrossRef]
- Alemi, A.; Babalou, A.; Dolatyari, M.; Klein, A.; Meyer, G. Hydrothermal synthesis of NdIII doped Bi2Se3 nanoflowers and their physical properties. Z. Anorg. Allg. Chem. 2009, 635, 2053–2057. [Google Scholar] [CrossRef]
- Zheng, F.; Zhang, Q.; Meng, Q.; Wang, B.; Fan, L.; Zhu, L.; Song, F.; Wang, G. Electronic structures and magnetic properties of rare-earth (Sm, Gd) doped Bi2Se3. Chalcogenide Lett. 2017, 14, 551–560. [Google Scholar]
- Xin, X.; Guo, C.; Pang, R.; Zhang, M.; Shi, X.; Yang, X.; Zhao, Y. Theoretical and experimental studies of spin polarized carbon doped Bi2Se3. Appl. Phys. Lett. 2019, 115, 042401. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ueno, T.; Fujiwara, H.; Yokoya, T.; Akimitsu, J. Unusual upper critical field behavior in Nb-doped bismuth selenides. Phys. Rev. B 2017, 95, 180503. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, H.; Teng, J.; Guo, J.; Guo, Q.; Dai, X.; Fang, Z.; Wu, K. Quintuple-layer epitaxy of thin films of topological insulator Bi2Se3. Appl. Phys. Lett. 2009, 95, 053114. [Google Scholar] [CrossRef] [Green Version]
- Wagner, C.D.; Riggs, W.M.; Davis, L.E.; Moulder, J.F.; Muilenberg, G.E. Hand Book of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Eden Prairie, MN, USA, 1979; p. 162. [Google Scholar]
- Meng, A.; Yuan, X.; Shen, T.; Li, Z.; Jiang, Q.; Xue, H.; Lin, Y.; Zhao, J. One-step synthesis of flower-like Bi2O3/Bi2Se3 nanoarchitectures and NiCoSe2/Ni0.85Se nanoparticles with appealing rate capability for the construction of high-energy and long-cycle-life asymmetric aqueous batteries. J. Mater. Chem. A 2019, 7, 17613. [Google Scholar] [CrossRef]
- Green, A.J.; Dey, S.; An, Y.Q.; O′Brien, B.; O′Mullane, S.; Thiel, B.; Diebold, A.C. Surface oxidation of the topological insulator Bi2Se3. J. Vac. Sci. Technol. A 2016, 34, 061403. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.G.; Schmidt, M.; Bolger, C.T.; Georgiev, Y.M.; Fleming, P.; Morris, M.A.; Petkov, N.; Holmes, J.D.; Xiu, F.; Wang, K.L.; et al. Resist–substrate interface tailoring for generating high-density arrays of Ge and Bi2Se3 nanowires by electron beam lithography. J. Vac. Sci. Technol. B 2012, 30, 041602. [Google Scholar] [CrossRef] [Green Version]
- Botcha, V.D.; Hong, Y.; Huang, Z.; Li, Z.; Liu, Q.; Wu, J.; Lu, Y.; Liu, X. Growth and thermal properties of various In2Se3 nanostructures prepared by single step PVD technique. J. Alloys Compd. 2019, 773, 698–705. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Zhang, G.; Wang, Y.; Zhang, H.; Huang, F. Thermal decomposition of bismuth oxysulfide from photoelectric Bi2O2S to superconducting Bi4O4S3. ACS Appl. Mater. Interfaces 2015, 7, 4442–4448. [Google Scholar] [CrossRef]
- Lu, D.; Yue, C.; Luo, S.; Li, Z.; Xue, W.; Qi, X.; Zhong, J. Phase controllable synthesis of SnSe and SnSe2 films with tunable photoresponse properties. Appl. Surf. Sci. 2021, 541, 148615. [Google Scholar] [CrossRef]
- Mukhokosi, E.P.; Krupanidhi, S.B.; Nanda, K.K. Band gap engineering of hexagonal SnSe2 nanostructured thin films for infra-red photodetection. Sci. Rep. 2017, 7, 15215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Liu, C.; Lee, S.T.; Jie, J. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano 2016, 10, 5113–5122. [Google Scholar] [CrossRef]
- Kimura, K.; Hayashi, K.; Yashina, L.V.; Happo, N.; Nishioka, T.; Yamamoto, Y.; Ebisu, Y.; Ozaki, T.; Hosokawa, S.; Matsushita, T.; et al. Local structural analysis of In-doped Bi2Se3 topological insulator using X-ray fluorescence holography. Surf. Interface Anal. 2019, 51, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhao, M.; Yu, W.; Lu, Y.; Chen, C.; Xu, M.; Li, S.; Loh, K.P.; Bao, Q. Raman spectroscopy of two-dimensional Bi2TexSe3 − x platelets produced by solvothermal method. Materials 2015, 8, 5007–5017. [Google Scholar] [CrossRef]
- Pu, X.Y.; Zhao, K.; Liu, Y.; Wei, Z.T.; Jin, R.; Yang, X.S.; Zhao, Y. Structural and transport properties of iridium-doped Bi2Se3 topological insulator crystals. J. Alloys Compd. 2017, 694, 272–275. [Google Scholar] [CrossRef]
- Shahil, K.M.F.; Hossain, M.Z.; Goyal, V.; Balandin, A.A. Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. J. Appl. Phys. 2012, 111, 054305. [Google Scholar] [CrossRef] [Green Version]
- Basumatary, P.; Agarwal, P. Photocurrent transient measurements in MAPbI3 thin films. J. Mater. Sci. Mater. El. 2020, 31, 10047–10054. [Google Scholar] [CrossRef]
- Arumugam, J.; Raj, A.D.; Irudayaraj, A.A.; Thambidurai, M. Solvothermal synthesis of Bi2S3 nanoparticles and nanorods towards solar cell application. Mater. Lett. 2018, 220, 28–31. [Google Scholar] [CrossRef]
Sample | Lattice Constant | c/a Ratio | Concentration (×10−4 Mole) | ||||
---|---|---|---|---|---|---|---|
a (=b) | c | Bi | Se | In | Sn | ||
Bi2Se3 | 0.4142 | 2.8677 | 6.9236 | 4.78 | 12.7 | 0 | 0 |
In-doped Bi2Se3 | 0.4088 | 2.8767 | 7.0378 | 4.78 | 12.7 | 2.17 | 0 |
Sn-doped Bi2Se3 | 0.4140 | 2.8006 | 6.7641 | 4.78 | 12.7 | 0 | 2.11 |
(In, Sn)-doped Bi2Se3 | 0.4068 | 2.8719 | 7.0593 | 4.78 | 12.7 | 1.09 | 1.05 |
Sample | Average Diameter (μm) | Average Thickness (nm) | Bi (at.%) | Se (at.%) | In (at.%) | Sn (at.%) | Bi: Se |
---|---|---|---|---|---|---|---|
Bi2Se3 | 1.319 | 17.5 | 43.01 | 56.99 | 0.00 | 0.00 | 1:1.325 |
In-doped Bi2Se3 | 0.965 | 21.8 | 32.00 | 59.33 | 8.05 | 0.00 | 1:1.854 |
Sn-doped Bi2Se3 | 0.912 | 39.8 | 28.81 | 56.90 | 0.00 | 14.28 | 1:1.975 |
(In, Sn)-doped Bi2Se3 | 0.317 | 31.5 | 29.76 | 56.64 | 10.98 | 2.62 | 1:1.903 |
Sample | High-Resolution Images | SAD Patterns | |
---|---|---|---|
d-Spacings (nm) | Planes | Diffracted Planes | |
Bi2Se3 | 0.3470 | (0 1 2) | (1 0 1) |
0.3225 | (1 0 4) | (0 1 2) | |
(1 0 4) | |||
In-doped Bi2Se3 | 0.3404 | (0 1 2) | (1 0 1) |
0.2958 | (0 1 5) | (0 1 5) | |
(0 1 11) | |||
Sn-doped Bi2Se3 | 0.3011 | (0 1 5) | (0 1 5) |
(1 0 7) | |||
(1 0 10) | |||
(1 1 0) | |||
(In, Sn)-doped Bi2Se3 | 0.3546 | (1 0 1) | (1 0 1) |
0.3096 | (0 1 5) | (1 0 4) | |
(0 1 11) | |||
(1 1 3) |
Sample | Raman Shift (cm−1) | ||
---|---|---|---|
A1g1 | Eg2 | A1g2 | |
Bi2Se3 | 87.21 | 133.21 | 176.36 |
In-doped Bi2Se3 | 82.65 | 131.10 | 174.43 |
Sn-doped Bi2Se3 | 82.02 | 130.54 | 171.90 |
(In, Sn)-doped Bi2Se3 | 81.93 | 133.64 | 177.48 |
Sample | Imax (× 10−10 A) | Istable (× 10−10 A) | ΔIdecay (× 10−10 A) | τr (sec) | tdecay (sec) | τf (sec) | Iphoto/Idark (0 V Bias Voltage) |
---|---|---|---|---|---|---|---|
Bi2Se3 | 8.73 | 0.40 | 8.33 | 0.053 | 0.091 | 0.049 | 7.66 |
In-doped Bi2Se3 | 9.98 | 0.65 | 9.33 | 0.051 | 0.097 | 0.050 | 9.29 |
Sn-doped Bi2Se3 | 9.36 | 1.60 | 7.76 | 0.044 | 0.099 | 0.054 | 15.8 |
(In, Sn)-dopedBi2Se3 | 8.41 | 5.20 | 3.21 | 0.041 | 0.105 | 0.066 | 30.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-C.; Shieu, F.-S.; Shih, H.C. Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process. Nanomaterials 2021, 11, 1352. https://doi.org/10.3390/nano11051352
Wang C-C, Shieu F-S, Shih HC. Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process. Nanomaterials. 2021; 11(5):1352. https://doi.org/10.3390/nano11051352
Chicago/Turabian StyleWang, Chih-Chiang, Fuh-Sheng Shieu, and Han C. Shih. 2021. "Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process" Nanomaterials 11, no. 5: 1352. https://doi.org/10.3390/nano11051352
APA StyleWang, C. -C., Shieu, F. -S., & Shih, H. C. (2021). Photosensing and Characterizing of the Pristine and In-, Sn-Doped Bi2Se3 Nanoplatelets Fabricated by Thermal V–S Process. Nanomaterials, 11(5), 1352. https://doi.org/10.3390/nano11051352