Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy
Abstract
:1. Introduction
2. Overview of AFM-IR and IR s-SNOM
3. AFM-IR and IR s-SNOM Application in Cellulose Materials
3.1. AFM-IR and IR s-SNOM Application in CNMs Characterization
3.2. AFM-IR and IR s-SNOM Application in CNMs Nanocomposites Characterization
3.3. AFM-IR and IR s-SNOM Application in CNMs Nanocomposites Characterization
3.4. AFM-IR and IR s-SNOM Application for Other Cellulose-Containing or Cellulose-Derived Materials
4. Challenge and Limitation of Nanoscale IR Spectroscopy in Cellulose Materials Characterization
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, J.; Yao, Q.; Ji, C.; Liu, J.; Zhu, Q. 3D printing with cellulose materials. Cellulose 2018, 25, 4275–4301. [Google Scholar] [CrossRef]
- Ray, U.; Zhu, S.; Pang, Z.; Li, T. Mechanics Design in Cellulose-Enabled High-Performance Functional Materials. Adv. Mater. 2020, 2002504. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, C.; Brozena, A.H.; Zhu, J.Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O.J.; Isogai, A.; Wågberg, L.; et al. Developing fibrillated cellulose as a sustainable technological material. Nat. Cell Biol. 2021, 590, 47–56. [Google Scholar] [CrossRef]
- Foster, E.J.; Moon, R.J.; Agarwal, U.P.; Bortner, M.J.; Bras, J.; Camarero-Espinosa, S.; Chan, K.J.; Clift, M.J.D.; Cranston, E.D.; Eichhorn, S.J.; et al. Current characterization methods for cellulose nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Yao, Q.; Sun, J.; Chen, H.; Xu, W.; Liu, J.; Wang, Q. Stimuli induced cellulose nanomaterials alignment and its emerging applications: A review. Carbohydr. Polym. 2020, 230, 115609. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Liu, S.; Sun, J.; Liu, J.; Kirubaharan, C.J.; Chen, H.; Xu, W.; Wang, Q. Stimuli-responsive cellulose nanomaterials for smart applications. Carbohydr. Polym. 2020, 235, 115933. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, Q.; Liu, J.; Sun, J.; Zhu, Q.; Chen, H. Processing nanocellulose to bulk materials: A review. Cellulose 2019, 26, 7585–7617. [Google Scholar] [CrossRef]
- Vanderfleet, O.M.; Cranston, E.D. Production routes to tailor the performance of cellulose nanocrystals. Nat. Rev. Mater. 2021, 6, 124–144. [Google Scholar] [CrossRef]
- Clarkson, C.M.; Azrak, S.M.E.A.; Forti, E.S.; Schueneman, G.T.; Moon, R.J.; Youngblood, J.P. Recent Developments in Cellulose Nanomaterial Composites. Adv. Mater. 2020, 2000718. [Google Scholar] [CrossRef] [PubMed]
- Mu, R.; Hong, X.; Ni, Y.; Li, Y.; Pang, J.; Wang, Q.; Xiao, J.; Zheng, Y. Recent trends and applications of cellulose nanocrystals in food industry. Trends Food Sci. Technol. 2019, 93, 136–144. [Google Scholar] [CrossRef]
- Mishnaevsky, L.; Mikkelsen, L.P.; Gaduan, A.N.; Lee, K.-Y.; Madsen, B. Nanocellulose reinforced polymer composites: Computational analysis of structure-mechanical properties relationships. Compos. Struct. 2019, 224, 111024. [Google Scholar] [CrossRef]
- Jabbar, A.; Militký, J.; Wiener, J.; Kale, B.M.; Ali, U.; Rwawiire, S. Nanocellulose coated woven jute/green epoxy composites: Characterization of mechanical and dynamic mechanical behavior. Compos. Struct. 2017, 161, 340–349. [Google Scholar] [CrossRef]
- Zhao, Y.; Man, Y.; Wen, J.; Guo, Y.; Lin, J. Advances in Imaging Plant Cell Walls. Trends Plant Sci. 2019, 24, 867–878. [Google Scholar] [CrossRef]
- Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding nanocellulose chirality and structure–properties relationship at the single fibril level. Nat. Commun. 2015, 6, 7564. [Google Scholar] [CrossRef] [Green Version]
- Gray, D.G.; Mu, X. Chiral Nematic Structure of Cellulose Nanocrystal Suspensions and Films; Polarized Light and Atomic Force Microscopy. Materials 2015, 8, 7873–7888. [Google Scholar] [CrossRef]
- Skogberg, A.; Mäki, A.-J.; Mettänen, M.; Lahtinen, P.; Kallio, P. Cellulose Nanofiber Alignment Using Evaporation-Induced Droplet-Casting, and Cell Alignment on Aligned Nanocellulose Surfaces. Biomacromolecules 2017, 18, 3936–3953. [Google Scholar] [CrossRef]
- Chundawat, S.P.S.; Donohoe, B.S.; Sousa, L.D.C.; Elder, T.; Agarwal, U.P.; Lu, F.; Ralph, J.; Himmel, M.E.; Balan, V.; Dale, B.E. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment. Energy Environ. Sci. 2011, 4, 973–984. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Liu, Y.-S.; Zeng, Y.; Himmel, M.E.; Baker, J.O.; Bayer, E.A. How Does Plant Cell Wall Nanoscale Architecture Correlate with Enzymatic Digestibility? Science 2012, 338, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, S.; Kai, W.; Isogai, A.; Iwata, T. Elastic Modulus of Single Cellulose Microfibrils from Tunicate Measured by Atomic Force Microscopy. Biomacromolecules 2009, 10, 2571–2576. [Google Scholar] [CrossRef] [PubMed]
- Lahiji, R.R.; Xu, X.; Reifenberger, R.; Raman, A.; Rudie, A.; Moon, R.J. Atomic Force Microscopy Characterization of Cellulose Nanocrystals. Langmuir 2010, 26, 4480–4488. [Google Scholar] [CrossRef]
- Xiao, N.; Bock, P.; Antreich, S.J.; Staedler, Y.M.; Schönenberger, J.; Gierlinger, N. From the Soft to the Hard: Changes in Microchemistry During Cell Wall Maturation of Walnut Shells. Front. Plant Sci. 2020, 11, 466. [Google Scholar] [CrossRef] [PubMed]
- Labb, N.; Rials, T.G.; Kelley, S.S. FTIR Imaging of Wood and Wood Composites. In Characterization of the Cellulosic Cell Wall; Stokke, D.D., Groom, L.H., Eds.; Wiley: Hoboken, NJ, USA, 2008; pp. 110–122. [Google Scholar]
- Mukherjee, T.; Tobin, M.J.; Puskar, L.; Sani, M.-A.; Kao, N.; Gupta, R.K.; Pannirselvam, M.; Quazi, N.; Bhattacharya, S. Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 2017, 24, 1717–1729. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Y. IN SITU visualization of water adsorption in cellulose nanofiber film with micrometer spatial resolution using micro-FTIR imaging. J. Wood Chem. Technol. 2018, 38, 361–370. [Google Scholar] [CrossRef]
- Yang, X.; Biswas, S.K.; Han, J.; Tanpichai, S.; Li, M.; Chen, C.; Zhu, S.; Das, A.K.; Yano, H. Surface and Interface Engineering for Nanocellulosic Advanced Materials. Adv. Mater. 2020, 2002264. [Google Scholar] [CrossRef]
- Keplinger, T.; Wittel, F.K.; Rüggeberg, M.; Burgert, I. Wood Derived Cellulose Scaffolds—Processing and Mechanics. Adv. Mater. 2020, 2001375. [Google Scholar] [CrossRef] [PubMed]
- Dazzi, A.; Prazeres, R.; Glotin, F.; Ortega, J.M. Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor. Opt. Lett. 2005, 30, 2388–2390. [Google Scholar] [CrossRef] [PubMed]
- Dendisová, M.; Jeništová, A.; Parchaňská-Kokaislová, A.; Matějka, P.; Prokopec, V.; Švecová, M. The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: A review. Anal. Chim. Acta 2018, 1031, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Unger, M.; Marcott, C. Recent Advances and Applications of Nanoscale Infrared Spectroscopy and Imaging. In Encyclopedia of Analytical Chemistry; Wiley: Hoboken, NJ, USA, 2017; pp. 1–26. [Google Scholar]
- Dazzi, A.; Prater, C.B. AFM-IR: Technology and Applications in Nanoscale Infrared Spectroscopy and Chemical Imaging. Chem. Rev. 2017, 117, 5146–5173. [Google Scholar] [CrossRef] [PubMed]
- Kurouski, D.; Dazzi, A.; Zenobi, R.; Centrone, A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem. Soc. Rev. 2020, 49, 3315–3347. [Google Scholar] [CrossRef] [PubMed]
- Rao, V.J.; Matthiesen, M.; Goetz, K.P.; Huck, C.; Yim, C.; Siris, R.; Han, J.; Hahn, S.; Bunz, U.H.F.; Dreuw, A.; et al. AFM-IR and IR-SNOM for the Characterization of Small Molecule Organic Semiconductors. J. Phys. Chem. C 2020, 124, 5331–5344. [Google Scholar] [CrossRef]
- Meyns, M.; Primpke, S.; Gerdts, G. Library Based Identification and Characterisation of Polymers with Nano-Ftir and Ir-Ssnom Imaging. Anal. Methods 2019, 11, 5195–5202. [Google Scholar] [CrossRef] [Green Version]
- Amenabar, I.; Poly, S.; Nuansing, W.; Hubrich, E.H.; Govyadinov, A.A.; Huth, F.; Krutokhvostov, R.; Zhang, L.; Knez, M.; Heberle, J.; et al. Structural analysis and mapping of individual protein complexes by infrared nanospectroscopy. Nat. Commun. 2013, 4, 2890. [Google Scholar] [CrossRef] [PubMed]
- Jarzembski, A.; Shaskey, C.; Park, K. Review: Tip-based vibrational spectroscopy for nanoscale analysis of emerging energy materials. Front. Energy 2018, 12, 43–71. [Google Scholar] [CrossRef]
- Prater, C.; Kjoller, K.; Shetty, R. Nanoscale infrared spectroscopy. Mater. Today 2010, 13, 56–60. [Google Scholar] [CrossRef]
- Kenkel, S.; Mittal, S.; Bhargava, R. Closed-loop atomic force microscopy-infrared spectroscopic imaging for nanoscale molecular characterization. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Huth, F.; Schnell, M.; Wittborn, J.; Ocelic, N.; Hillenbrand, R. Infrared-spectroscopic nanoimaging with a thermal source. Nat. Mater. 2011, 10, 352–356. [Google Scholar] [CrossRef]
- Huth, F. Nano-Ftir—Nanoscale Infrared Near-Field Spectroscopy. Ph.D. Thesis, Euskal Herriko Unibertsitatea-Universidad del Pais Vasco, Bilbao, Spain, 2015. [Google Scholar]
- Marcott, C.; Lo, M.; Dillon, E.; Kjoller, K.; Prater, C. Interface Analysis of Composites Using AFM-Based Nanoscale IR and Mechanical Spectroscopy. Microsc. Today 2015, 23, 38–45. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A.A.; Nguyen, D.D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers 2020, 12, 1142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Schultz, Z.D. Spectroscopic Imaging at the Nanoscale: Technologies and Recent Applications. Anal. Chem. 2018, 90, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Marcott, C.; Lo, M.; Kjoller, K.; Prater, C.; Gerrard, D.P. Applications of AFM-IR—Diverse Chemical Composition Analyses at Nanoscale Spatial Resolution. Microsc. Today 2012, 20, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Lerma, B.; Barandiaran, L.; Ugarte, L.; Larraza, I.; Reifs, A.; Olmos-Juste, R.; Barruetabeña, N.; Amenabar, I.; Hillenbrand, R.; Eceiza, A.; et al. High performance crystalline nanocellulose using an ancestral endoglucanase. Commun. Mater. 2020, 1, 1–10. [Google Scholar] [CrossRef]
- Hao, Y.; Cui, Z.; Yang, H.; Guo, G.; Liu, J.; Wang, Z.; Deniset-Besseau, A.; Remita, S. Adsorption of Cr (Vi) by Cellulose Adsorbent Prepared Using Ionic Liquid as a Green Homogeneous Reaction Medium. Cellul. Chem. Technol. 2018, 52, 485–494. [Google Scholar]
- Igarashi, T.; Hoshi, M.; Nakamura, K.; Kaharu, T.; Murata, K.-I. Direct Observation of Bound Water on Cotton Surfaces by Atomic Force Microscopy and Atomic Force Microscopy–Infrared Spectroscopy. J. Phys. Chem. C 2020, 124, 4196–4201. [Google Scholar] [CrossRef] [Green Version]
- Ugarte, L.; Santamaria-Echart, A.; Mastel, S.; Autore, M.; Hillenbrand, R.; Corcuera, M.A.; Eceiza, A. An alternative approach for the incorporation of cellulose nanocrystals in flexible polyurethane foams based on renewably sourced polyols. Ind. Crop. Prod. 2017, 95, 564–573. [Google Scholar] [CrossRef]
- Nair, S.S.; Chen, H.; Peng, Y.; Huang, Y.; Yan, N. Polylactic Acid Biocomposites Reinforced with Nanocellulose Fibrils with High Lignin Content for Improved Mechanical, Thermal, and Barrier Properties. ACS Sustain. Chem. Eng. 2018, 6, 10058–10068. [Google Scholar] [CrossRef]
- Jahng, J.; Yang, H.; Lee, E.S. Substructure imaging of heterogeneous nanomaterials with enhanced refractive index contrast by using a functionalized tip in photoinduced force microscopy. Light Sci. Appl. 2018, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.V.; Mariano, M.; Pinheiro, I.F.; Cazalini, E.M.; Souza, D.H.; Lepesqueur, L.S.; Koga-Ito, C.Y.; Gouveia, R.F.; Lona, L. Cellulose nanocrystal-based poly(butylene adipate-co-terephthalate) nanocomposites covered with antimicrobial silver thin films. Polym. Eng. Sci. 2019, 59, 356–365. [Google Scholar] [CrossRef]
- Tibolla, H.; Pelissari, F.; Martins, J.; Lanzoni, E.; Vicente, A.; Menegalli, F.; Cunha, R. Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydr. Polym. 2019, 207, 169–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tibolla, H.; Czaikoski, A.; Pelissari, F.; Menegalli, F.; Cunha, R. Starch-based nanocomposites with cellulose nanofibers obtained from chemical and mechanical treatments. Int. J. Biol. Macromol. 2020, 161, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Marcott, C.; Lo, M.; Kjoller, K.; Prater, C.; Shetty, R.; Jakes, J.; Noda, I. Nanoscale Infrared Spectroscopy of Biopolymeric Materials. In SAMPE Technical Conference Proceedings: Navigating the Global Landscape for the New Composites, Charleston, SC, USA, 22–25 October 2012 [CD-ROM]; Society for the Advancement of Material and Process Engineering: Diamond Bar, CA, USA, 2012; 9p. [Google Scholar]
- Soliman, M. Advanced Nanoscale Characterization of Plants and Plant-Derived Materials for Sustainable Agriculture and Renewable Energy. Ph.D. Thesis, University of Central Florida, Orlando, FL, USA, 2018. [Google Scholar]
- Ciaffone, N. Interplay of Molecular and Nanoscale Behaviors in Biological Soft Matter. Master’s Thesis, University of Central Florida, Orlando, FL, USA, 2018. [Google Scholar]
- Piqueras, S.; Füchtner, S.; De Oliveira, R.R.; Gómez-Sánchez, A.; Jelavić, S.; Keplinger, T.; de Juan, A.; Thygesen, L.G. Understanding the Formation of Heartwood in Larch Using Synchrotron Infrared Imaging Combined with Multivariate Analysis and Atomic Force Microscope Infrared Spectroscopy. Front. Plant Sci. 2020, 10, 1701. [Google Scholar] [CrossRef] [PubMed]
- Gusenbauer, C.; Jakob, D.S.; Xu, X.G.; Vezenov, D.V.; Cabane, É.; Konnerth, J. Nanoscale Chemical Features of the Natural Fibrous Material Wood. Biomacromolecules 2020, 21, 4244–4252. [Google Scholar] [CrossRef] [PubMed]
- Patri, A.S.; Mostofian, B.; Pu, Y.; Ciaffone, N.; Soliman, M.; Smith, M.D.; Kumar, R.; Cheng, X.; Wyman, C.E.; Tetard, L.; et al. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction. J. Am. Chem. Soc. 2019, 141, 12545–12557. [Google Scholar] [CrossRef]
- Wang, X.; Deng, Y.; Li, Y.; Kjoller, K.; Roy, A.; Wang, S. In situ identification of the molecular-scale interactions of phenol-formaldehyde resin and wood cell walls using infrared nanospectroscopy. RSC Adv. 2016, 6, 76318–76324. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, L.; Deng, Y.; Li, Y.; Wang, S. Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI). Holzforschung 2018, 72, 301–309. [Google Scholar] [CrossRef]
- Zancajo, V.M.R.; Lindtner, T.; Eisele, M.; Huber, A.J.; Elbaum, R.; Kneipp, J. FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls. Anal. Chem. 2020, 92, 13694–13701. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Flores-Borges, D.N.; Bittencourt, P.R.; Mayer, J.L.; Kiyota, E.; Araújo, P.; Jansen, S.; Freitas, R.O.; Oliveira, R.S.; Mazzafera, P. Infrared Nanospectroscopy Reveals the Chemical Nature of Pit Membranes in Water-Conducting Cells of the Plant Xylem. Plant Physiol. 2018, 177, 1629–1638. [Google Scholar] [CrossRef] [Green Version]
- Purohit, H.S.; Taylor, L.S. Miscibility of Itraconazole–Hydroxypropyl Methylcellulose Blends: Insights with High Resolution Analytical Methodologies. Mol. Pharm. 2015, 12, 4542–4553. [Google Scholar] [CrossRef]
- Li, N.; Taylor, L.S. Nanoscale Infrared, Thermal, and Mechanical Characterization of Telaprevir–Polymer Miscibility in Amorphous Solid Dispersions Prepared by Solvent Evaporation. Mol. Pharm. 2016, 13, 1123–1136. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-J.; Chen, C.-J.; Wu, Q.-L. Evolution of Functional Groups During the Preparation of Cellulose-Based Carbon Fibers Characterized by Nanoscale Infrared Spectroscopy. New Carbon Mater. 2019, 34, 296–301. (in Chinese). [Google Scholar] [CrossRef]
- De Morais, V.B.; Corrêa, C.C.; Lanzoni, E.M.; Costa, C.A.R.; Bufon, C.C.B.; Santhiago, M. Wearable binary cooperative polypyrrole nanofilms for chemical mapping on skin. J. Mater. Chem. A 2019, 7, 5227–5233. [Google Scholar] [CrossRef]
- Ruggeri, F.S.; Mannini, B.; Schmid, R.; Vendruscolo, M.; Knowles, T.P.J. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Mester, L.; Govyadinov, A.A.; Chen, S.; Goikoetxea, M.; Hillenbrand, R. Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 2020, 11, 3359. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Zhang, W. Hybrid AFM for Nanoscale Physicochemical Characterization: Recent Development and Emerging Applications. Small 2017, 13, 1603525. [Google Scholar] [CrossRef] [PubMed]
Technique | Advantages | Disadvantages |
---|---|---|
AFM-IR |
|
|
IR s-SNOM |
|
|
Sample | Sample Preparation | Instrument | AFM Tip | Spatial Resolution | Spectral Range /cm−1 | Research Area/Topic | Reference |
---|---|---|---|---|---|---|---|
Cellulose Nanomaterials | |||||||
Microfibrilated cellulose (MFC) | Solution deposition; spin coating; microtomed | NanoIR | NA. | 50 nm | 1200–1800 | Local crystallinity analyses | [46] |
Cellulose Nanocrystals (CNCs) | Single CNC particles | neaSNOM | Au-coated tips | nanoscale | 800–3600 | Cellulose polymorphy and sulfur analyses | [47] |
Microcrystalline cellulose (MCC) | Solution deposition | NanoIR | NA. | NA. | 1160, 1490, 1735 | Distribution of functional groups | [48] |
Single cotton cellulose fiber | Single fibers | NanoIR2 | NA. | 10 nm | 2600–3800 | Observation of water on cellulose surfaces | [49] |
CNMs Nanocomposites | |||||||
CNCs/polyurethane (PU) foams | foam cross sections | neaSNOM system | Pt-Si or Au coated tips | a few ten nanometers | 900–1400 | CNCs distribution in PF foam | [50] |
Nanocellulose fibrils with high lignin content (NCFHL)/polylactic acid (PLA) composites | Microtomed; several nanometers | NanoIR2 | Au coated silicon nitride tip | tens of nanometers | 800–4000 | Dispersion of various phases and interfacial regions | [51] |
CNCs/Polyacrylonitrile (PAN) nanofiber | Nanofiber from electrospinning | VistaScope microscope + quantum cascade lasers | NCH-Au 300 kHz noncontact tip | nanoscale resolution | 800–1800 | Heterogeneous substructure of PAN/CNCs nanofiber | [52] |
CNCs/ poly(butylene adipate-co-terephthalate) (PBAT) nanocomposites | Suspension deposition | NanoIR2-s | AFM tip | NA. | 1600–1800 | Dispersion of CNCs and modified CNCs in PBAT | [53] |
Starch/cellulose nanofibers (CNF) nanocomposites | Film casting on gold-coated silicon substrate | NanoIR2-s | AFM tip | 10 nm | 1530–1845 | Topography correlated with local chemical analyses | [54,55] |
Plant Cell Wall | |||||||
Wood cell wall | Microtomed; 500 nm | NanoIR | AFM tip | 100 nm | 1200–1800 | Microdomains spectroscopic characterization | [56] |
Wood cell wall | Microtomed; 5 μm | NanoIR2 | Au-coated tip | nanoscale resolution | 1530–1810 | Chemical alterations and inhomogeneity of cell wall | [57,58] |
Wood cell wall | Microtomed; 10 μm | NanoIR | AFM tip | NA. | 1200–1800 | Heartwood formation process | [59] |
Wood cell wall | Microtomed; smooth surfaces | Homemade nanoscale IR | Pt-coated silicon probe | 16 nm | 900–1800 | Nanoscale chemical features of wood substrates | [60] |
Wood cell wall | Microtomed | NanoIR2 | NA. | sub-100 nm | 1550–1800 | Local chemical changes and lignin rearrangement | [61] |
Wood cell wall /polymer composites | Microtomed; 200 nm | NanoIR2 | Au-coated silicon nitride tip | 100 nm | 900–1800 | Molecular-scale interactions of polymer and cell wall | [62,63] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Zhou, R.; Liu, J.; Sun, J.; Wang, Q. Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. Nanomaterials 2021, 11, 1353. https://doi.org/10.3390/nano11051353
Zhu Q, Zhou R, Liu J, Sun J, Wang Q. Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. Nanomaterials. 2021; 11(5):1353. https://doi.org/10.3390/nano11051353
Chicago/Turabian StyleZhu, Qianqian, Rui Zhou, Jun Liu, Jianzhong Sun, and Qianqian Wang. 2021. "Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy" Nanomaterials 11, no. 5: 1353. https://doi.org/10.3390/nano11051353
APA StyleZhu, Q., Zhou, R., Liu, J., Sun, J., & Wang, Q. (2021). Recent Progress on the Characterization of Cellulose Nanomaterials by Nanoscale Infrared Spectroscopy. Nanomaterials, 11(5), 1353. https://doi.org/10.3390/nano11051353