Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. One-Pot Polyol Synthesis of PAA-Coated Ln2O3 NPs (Ln = Tb and Ho)
2.3. General Characterizations
2.4. In Vitro Cellular Cytotoxicity Measurements
2.5. Relaxometric Property Measurements
2.6. In Vivo T2 MR Image Measurements
3. Results
3.1. Particle Diameter (d), Hydrodynamic Diameter (a), Zeta Potential (ξ), and Crystal Structure
3.2. Surface-Coating Results
3.3. In Vitro Cellular Cytotoxicity Results
3.4. Magnetic Properties
3.5. r1 and r2 Values
3.6. In Vivo T2 MR Images at 9.4 T MR Field
4. Discussion
5. Conclusions
- (1)
- Both samples exhibited excellent colloidal stability and good biocompatibility resulting from PAA-coating on the NP surfaces.
- (2)
- The appreciable r2 values at a 3.0 T MR field (3.19 s−1∙mM−1 for the PAA-coated Tb2O3 NPs and 1.44 s−1∙mM−1 for the PAA-coated Ho2O3 NPs), enhanced r2 values at a 9.4 T MR field (16.40 s−1∙mM−1 for the PAA-coated Tb2O3 NPs and 9.20 s−1∙mM−1 for the PAA-coated Ho2O3 NPs), and negligible r1 values at all MR fields for both samples, indicated their exclusive induction of T2 relaxations with negligible induction of T1 relaxations at all MR fields, and a stronger induction of T2 relaxations at a higher MR field.
- (3)
- The strong negative contrast enhancements in the in vivo T2 MR images of mice at a 9.4 T MR field confirmed the effectiveness of the NPs as T2 MRI contrast agents at high MR fields.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rudin, M. Molecular Imaging: Basic Principles and Applications in Biomedical Research; Imperial College Press: London, UK, 2005. [Google Scholar]
- Weissleder, R.; Mahmood, U. Molecular Imaging. Radiology 2001, 219, 316–333. [Google Scholar] [CrossRef]
- Massoud, T.F.; Gambhir, S.S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev. 2003, 17, 545–580. [Google Scholar] [CrossRef] [Green Version]
- Pankhurst, Q.; Thanh, N.T.K.; Jones, S.K.; Dobson, J. Progress in applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224001. [Google Scholar] [CrossRef] [Green Version]
- Roca, A.G.; Costo, R.; Rebolledo, A.F.; Veintemillas-Verdaguer, S.; Tartaj, P.; Gonzalezcarreno, T.; Morales, M.D.P.; Serna, C.J. Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J. Phys. D: Appl. Phys. 2009, 42, 224002. [Google Scholar] [CrossRef]
- Berry, C.C. Progress in functionalization of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 2009, 42, 224003. [Google Scholar] [CrossRef]
- Pankhurst, Q.A.; Connolly, J.; Jones, S.K.; Dobson, J. Applications of magnetic nanoparticles in biomedicine. J. Phys. D Appl. Phys. 2003, 36, R167–R181. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Kattel, K.; Park, J.Y.; Chang, Y.; Kim, T.J.; Lee, G.H. Paramagnetic nanoparticle T1 and T2 MRI contrast agents. Phys. Chem. Chem. Phys. 2012, 14, 12687–12700. [Google Scholar] [CrossRef]
- Kim, T.J.; Chae, K.S.; Chang, Y.; Lee, G.H. Gadolinium Oxide Nanoparticles as Potential Multimodal Imaging and Therapeutic Agents. Curr. Top. Med. Chem. 2013, 13, 422–433. [Google Scholar] [CrossRef]
- Park, J.; Chang, Y.; Lee, G. Multi-modal imaging and cancer therapy using lanthanide oxide nanoparticles: Current status and perspectives. Curr. Med. Chem. 2015, 22, 569–581. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Butterworth-Heinemann: New York, NY, USA, 1997; p. 1243. [Google Scholar]
- Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Alam Bony, B.; Heo, W.C.; Lee, J.J.; Jin, S.; Baeck, J.S.; et al. A Facile Synthesis, In vitro and In vivo MR Studies of d-Glucuronic Acid-Coated Ultrasmall Ln2O3 (Ln = Eu, Gd, Dy, Ho, and Er) Nanoparticles as a New Potential MRI Contrast Agent. ACS Appl. Mater. Interfaces 2011, 3, 3325–3334. [Google Scholar] [CrossRef]
- Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Alam Bony, B.; Heo, W.C.; Jin, S.; Baeck, J.S.; Chang, Y.; et al. Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials 2012, 33, 3254–3261. [Google Scholar] [CrossRef]
- Norek, M.; Kampert, E.; Zeitler, U.; Peters, J.A. Tuning of the Size of Dy2O3Nanoparticles for Optimal Performance as an MRI Contrast Agent. J. Am. Chem. Soc. 2008, 130, 5335–5340. [Google Scholar] [CrossRef]
- Norek, M.; Pereira, G.A.; Geraldes, C.F.G.C.; Denkova, A.; Zhou, W.; Peters, J.A. NMR Transversal Relaxivity of Suspensions of Lanthanide Oxide Nanoparticles. J. Phys. Chem. C 2007, 111, 10240–10246. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Blasiak, B.; Marenco, A.J.; Trudel, S.; Tomanek, B.; Van Veggel, F.C.J.M. Design and Regulation of NaHoF4 and NaDyF4 Nanoparticles for High-Field Magnetic Resonance Imaging. Chem. Mater. 2016, 28, 3060–3072. [Google Scholar] [CrossRef]
- Hainfeld, J.F.; Slatkin, D.N.; Focella, T.M.; Smilowitz, H.M. Gold nanoparticles: A new X-ray contrast agent. Br. J. Radiol. 2006, 79, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Ipe, B.I.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of nano-particles. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [PubMed] [Green Version]
- Longmire, M.; Choyke, P.L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine 2008, 3, 703–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roch, A.; Gillis, P.; Muller, R.N. Theory of proton relaxation induced by superparamagnetic particles. J. Chem. Phys. 1999, 110, 5403–5411. [Google Scholar] [CrossRef]
- Gueron, M. Nuclear relaxation in macromolecules by paramagnetic ions: A novel mechanism. J. Magn. Reson. (1969) 1975, 19, 58–66. [Google Scholar] [CrossRef]
- Lauffer, R.B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: Theory and design. Chem. Rev. 1987, 87, 901–927. [Google Scholar] [CrossRef]
- Babić-Stojić, B.; Jokanović, V.; Milivojević, D.; Požek, M.; Jagličić, Z.; Makovec, D.; Orsini, N.J.; Marković, M.; Arsikin, K.; Paunović, V. Ultrasmall iron oxide nanoparticles: Magnetic and NMR relaxometric properties. Curr. Appl. Phys. 2018, 18, 141–149. [Google Scholar] [CrossRef]
- Demortière, A.; Panissod, P.; Pichon, B.P.; Pourroy, G.; Guillon, D.; Donni, B.; Bégin-Colin, S. Size-dependent properties of magnetic iron oxide nanocrystals. Nanoscale 2011, 3, 225–232. [Google Scholar] [CrossRef]
- Cotton, F.A.; Wilkinson, G. Advanced Inorganic Chemistry, 4th ed.; A Wiley-Interscience Publication: New York, NY, USA, 1980; pp. 646, 984. [Google Scholar]
- Koehler, W.C.; Wollan, E.O.; Wilkinson, M.K. Paramagnetic and Nuclear Scattering Cross Sections of Holmium Sesquioxide. Phys. Rev. 1958, 110, 37–40. [Google Scholar] [CrossRef]
- Wolf, W.P.; Meissner, H.; Catanese, C.A. Magnetic Properties of Rare Earth Hydroxides. J. Appl. Phys. 1968, 39, 1134–1136. [Google Scholar] [CrossRef]
- Lal, H.B.; Pratap, V.; Kumar, A. Magnetic susceptibility of heavy rare-earth sesquioxides. Solids 1978, 10, 409–412. [Google Scholar] [CrossRef]
- Palui, G.; Aldeek, F.; Wang, W.; Mattoussi, H. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating. Chem. Soc. Rev. 2014, 44, 193–227. [Google Scholar] [CrossRef] [Green Version]
- Ling, D.; Hackett, M.J.; Hyeon, T. Surface ligands in synthesis, modification, assembly and biomedical applications of nanopar-ticles. Nano Today 2014, 9, 457–477. [Google Scholar] [CrossRef]
- Yim, E.S.; Zhao, B.; Myung, D.; Kourtis, L.C.; Frank, C.W.; Carter, D.; Smith, R.L.; Goodman, S.B. Biocompatibility of poly(ethylene glycol)/poly(acrylic acid) interpenetrating polymer network hydrogel particles in RAW 264.7 macrophage and MG-63 osteoblast cell lines. J. Biomed. Mater. Res. Part A 2009, 91, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Freitas, M.; Costa, V.M.; Chisté, R.C.; Almeida, A.; Lopez-Quintela, M.A.; Rivas, J.; Freitas, P.; Silva, P.; Carvalho, F.; et al. Biodistribution of polyacrylic acid-coated iron oxide nanoparticles is associated with proinflammatory acti-vation and liver toxicity. J. Appl. Toxicol. 2016, 36, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Cheung, E.N.M.; Alvares, R.D.A.; Oakden, W.; Chaudhary, R.; Hill, M.L.; Pichaandi, J.; Mo, G.C.H.; Yip, C.; Macdonald, P.M.; Stanisz, G.J.; et al. Polymer-Stabilized Lanthanide Fluoride Nanoparticle Aggregates as Contrast Agents for Magnetic Reso-nance Imaging and Computed Tomography. Chem. Mater. 2010, 22, 4728–4739. [Google Scholar] [CrossRef]
- Padwal, P.; Bandyopadhyaya, R.; Mehra, S. Polyacrylic Acid-Coated Iron Oxide Nanoparticles for Targeting Drug Resistance in Mycobacteria. Langmuir 2014, 30, 15266–15276. [Google Scholar] [CrossRef]
- Miao, X.; Ho, S.L.; Tegafaw, T.; Cha, H.; Chang, Y.; Oh, I.T.; Yaseen, A.M.; Marasini, S.; Ghazanfari, A.; Yue, H.; et al. Stable and non-toxic ultrasmall gadolinium oxide nanoparticle colloids (coating material = polyacrylic acid) as high-performance T1 magnetic resonance imaging contrast agents. RSC Adv. 2018, 8, 3189–3197. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.Y.; Ahmad, W.; Yue, H.; Ho, S.L.; Park, J.A.; Jung, K.-H.; Cha, H.; Marasini, S.; Ghazanfari, A.; Liu, S.; et al. In Vivo Positive Magnetic Resonance Imaging Applications of Poly(methyl vinyl ether-alt-maleic acid)-coated Ultra-small Paramagnetic Gadolinium Oxide Nanoparticles. Molecules 2020, 25, 1159. [Google Scholar] [CrossRef] [Green Version]
- Jang, Y.J.; Liu, S.; Yue, H.; Park, J.A.; Cha, H.; Ho, S.L.; Marasini, S.; Ghazanfari, A.; Ahmad, M.Y.; Miao, X.; et al. Hydrophilic biocompatible poly(acrylic acid-co-maleic acid) polymer as a surface-coating ligand of ultrasmall Gd2O3 nanoparticles to obtain a high r1 value and T1 MR images. Diagnostics 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, Z.; Ma, S.; Wu, L.; Yang, S.; Xu, J. Complexation behavior of poly(acrylic acid) and lanthanide ions. Polymer 2014, 55, 1183–1189. [Google Scholar] [CrossRef]
- Söderlind, F.; Pedersen, H.; Petoral, R.M., Jr.; Käll, P.-O.; Uvdal, K. Synthesis and characterization of Gd2O3 nanocrystals func-tionalized by organic acids. J. Colloid Interface Sci. 2005, 288, 140–148. [Google Scholar] [CrossRef]
- Akkiliç, N.; Mustafaeva, Z.; Mustafaev, M. High performance liquid chromatography study of water-soluble complexes and covalent conjugates of polyacrylic acid with bovine serum albumin. J. Appl. Polym. Sci. 2007, 105, 3108–3120. [Google Scholar] [CrossRef]
- Card No. 03-065-6985 for Tb2O3 and 00-010-0194 for Ho2O3. X’pert HighScore; Version 2.0a (2.0.1); PANalytical B. V.: Almelo, The Netherlands, 2004.
- Dubinskya, S.; Graderb, G.S.; Shterb, G.E.; Silversteina, M.S. Thermal degradation of poly(acrylic acid) containing copper nitrate. Polym. Degrad. Stabil. 2004, 86, 171–178. [Google Scholar] [CrossRef]
- Hug, S.J.; Bahnemann, D. Infrared spectra of oxalate, malonate and succinate adsorbed on the aqueous surface of rutile, anatase and lepidocrocite measured with in situ ATR-FTIR. J. Electron Spectrosc. Relat. Phenom. 2006, 150, 208–219. [Google Scholar] [CrossRef]
- Mendive, C.B.; Bredow, T.; Blesa, M.A.; Bahnemann, D.W. ATR-FTIR measurements and quantum chemical calculations con-cerning the adsorption and photoreaction of oxalic acid on TiO2. Phys. Chem. Chem. Phys. 2006, 8, 3232–3247. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar]
- Miao, X.; Xu, W.; Cha, H.; Chang, Y.; Oh, I.T.; Chae, K.S.; Tegafaw, T.; Ho, S.L.; Kim, S.J.; Lee, G.H. Ultrasmall Gd2O3 nano-particles surface-coated by polyacrylic acid (PAA) and their PAA-size dependent relaxometric properties. Appl. Surf. Sci. 2019, 477, 111–115. [Google Scholar] [CrossRef]
- Benoit, D.N.; Zhu, H.; Lilierose, M.H.; Verm, R.A.; Ali, N.; Morrison, A.N.; Fortner, J.D.; Avendano, C.; Colvin, V.L. Measuring the Grafting Density of Nanoparticles in Solution by Analytical Ultracentrifugation and Total Organic Carbon Analysis. Anal. Chem. 2012, 84, 9238–9245. [Google Scholar] [CrossRef] [Green Version]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, Internet Version; CRC Press: Boca Raton, FL, USA, 2005; pp. 4–89. [Google Scholar]
- Marasini, S.; Yue, H.; Ho, S.L.; Jung, K.-H.; Park, J.A.; Cha, H.; Ghazanfari, A.; Ahmad, M.Y.; Liu, S.; Jang, Y.J.; et al. D-glucuronic acid-coated ultrasmall paramagnetic Ln2O3 (Ln = Tb, Dy, and Ho) nanopar-ticles: Magnetic properties, water proton relaxivities, and fluorescence properties. Eur. J. Inorg. Chem. 2019, 34, 3832–3839. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef]
- Kim, S.J.; Xu, W.; Ahmad, M.W.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Kim, T.J.; Park, J.A.; Lee, G.H. Synthesis of nanoparticle CT contrast agents: In vitro and in vivo studies. Sci. Technol. Adv. Mater. 2015, 16, 055003. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Atabaev, T.S.; Shin, Y.C.; Song, S.-J.; Han, D.-W.; Hong, N.H. Toxicity and T2-weighted magnetic resonance imaging po-tentials of holmium oxide nanoparticles. Nanomaterials 2017, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Caro, C.; Paez-Muñoz, J.M.; Beltrán, A.M.; Leal, M.P.; García-Martín, M.L. PEGylated Terbium-Based Nanorods as Multimodal Bioimaging Contrast Agents. ACS Appl. Nano Mater. 2021, 4, 4199–4207. [Google Scholar] [CrossRef]
NP | Particle Dimension | ξavg (mV) | Surface-Coating Amount | Net M 4 (emu/g) | Water Proton Spin Relaxivity (s−1∙mM−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
davg (nm) | aavg (nm) | P 1 (wt.%) | σ 2 (1/nm2) | NPAA 3 | 3.0 T | 9.4 T | |||||
r1 | r2 | r1 | r2 | ||||||||
Tb2O3 | 1.8 ± 0.1 | 13.5 ± 0.2 | −25.0 ± 0.1 | 50.6 ± 0.2 | 0.80 ± 0.05 | 6.4 ± 0.1 | 3.8 ± 0.1 | 0.10 ± 0.01 | 3.19 ± 0.01 | 0.30 ± 0.01 | 16.40 ± 0.01 |
Ho2O3 | 1.7 ± 0.1 | 12.7 ± 0.2 | −32.9 ± 0.1 | 45.5 ± 0.2 | 0.85 ± 0.05 | 7.4 ± 0.1 | 4.1 ± 0.1 | 0.13 ± 0.01 | 1.44 ± 0.01 | 0.53 ± 0.01 | 9.20 ± 0.01 |
Sample | Size (nm) | Coating Ligand | Applied Field (T) | r2 (s−1∙mM−1) | References |
---|---|---|---|---|---|
Tb2O3 | 2.0 | D-glucuronic acid | 1.5 | 7.68 | [49] |
Tb2O3 | 2.0 | D-glucuronic acid | 3.0 | 33.97 | [49] |
Tb2O3 | 2.0 | D-glucuronic acid | 9.4 | 53.67 | [49] |
Ho2O3 | 1.9 | D-glucuronic acid | 1.5 | 7.76 | [49] |
Ho2O3 | 1.9 | D-glucuronic acid | 3.0 | 35.21 | [49] |
Ho2O3 | 1.9 | D-glucuronic acid | 9.4 | 56.33 | [49] |
Tb2O3 | 1.8 | PAA, 1800 amu | 3.0 | 3.19 | This study |
Tb2O3 | 1.8 | PAA, 1800 amu | 9.4 | 16.40 | This study |
Ho2O3 | 1.7 | PAA, 1800 amu | 3.0 | 1.44 | This study |
Ho2O3 | 1.7 | PAA, 1800 amu | 9.4 | 9.20 | This study |
Ho2O3 | 67–81 | PEG1, 4000 amu | 1.5 | 23.47 | [53] |
Tb-nanorod | 9.0 × 2.1 | GA-PEG, 3170 amu | 1.44 | 10.5 | [54] |
Tb-nanorod | 9.0 × 2.1 | GA-PEG, 3170 amu | 9.4 | 48.5 | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marasini, S.; Yue, H.; Ho, S.L.; Park, J.A.; Kim, S.; Jung, K.-H.; Cha, H.; Liu, S.; Tegafaw, T.; Ahmad, M.Y.; et al. Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. Nanomaterials 2021, 11, 1355. https://doi.org/10.3390/nano11051355
Marasini S, Yue H, Ho SL, Park JA, Kim S, Jung K-H, Cha H, Liu S, Tegafaw T, Ahmad MY, et al. Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. Nanomaterials. 2021; 11(5):1355. https://doi.org/10.3390/nano11051355
Chicago/Turabian StyleMarasini, Shanti, Huan Yue, Son Long Ho, Ji Ae Park, Soyeon Kim, Ki-Hye Jung, Hyunsil Cha, Shuwen Liu, Tirusew Tegafaw, Mohammad Yaseen Ahmad, and et al. 2021. "Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles" Nanomaterials 11, no. 5: 1355. https://doi.org/10.3390/nano11051355
APA StyleMarasini, S., Yue, H., Ho, S. L., Park, J. A., Kim, S., Jung, K. -H., Cha, H., Liu, S., Tegafaw, T., Ahmad, M. Y., Ghazanfari, A., Chae, K. -S., Chang, Y., & Lee, G. H. (2021). Synthesis, Characterizations, and 9.4 Tesla T2 MR Images of Polyacrylic Acid-Coated Terbium(III) and Holmium(III) Oxide Nanoparticles. Nanomaterials, 11(5), 1355. https://doi.org/10.3390/nano11051355