Enantioselective Self-Assembled Nanofibrillar Network with Glutamide-Based Organogelator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Preparing the G-CA assembly
2.3. Characterization
3. Results and Discussion
3.1. Detecting Nano-fibrillar G-CA Aggregation
3.2. Characterizing G-CA as a Chiral Host System
3.3. Enantioselective Response of the G-CA Aggregates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guijarro, A.; Yus, M. The Origin of Chirality in the Molecules of Life: A Revision from Awareness to the Current Theories and Perspectives of this Unsolved Problem; RSC: Cambridge, UK, 2008. [Google Scholar]
- Ihara, H.; Takafuji, M.; Sakurai, T. “Self-assembled nanofibers” in Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.S., Ed.; American Scientific Publishers: Stevenson Ranch, CA, USA, 2004; Volume 9, pp. 473–495. [Google Scholar]
- Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401–1444. [Google Scholar]
- Molecular Gels; Weiss, R.G.; Terech, P. (Eds.) Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Ihara, H.; Takafuji, M.; Kuwahara, Y.; Okazaki, Y.; Ryu, N.; Sagawa, T.; Oda, R. “Luminescent Supramolecular Gel for Light Management Technology” in Molecular Technology; Yamamoto, H., Kato, T., Eds.; Wiley-VCH: Weinheim, Germany, 2019; Volume 4, pp. 297–337, Chapter 11. [Google Scholar]
- Liu, P.; Chen, W.; Okazaki, Y.; Battie, Y.; Brocard, L.; Decossas, M.; Pouget, E.; Müller-Buschbaum, P.; Kauffmann, B.; Pathan, S.; et al. Optically active perovskite CsPbBr3 nanocrystals helically arranged on inorganic silica nanohelices. Nano Lett. 2020, 20, 8453–8460. [Google Scholar] [CrossRef] [PubMed]
- Ide, N.; Fukuda, T.; Miyamoto, T. Gelation of fully acylated cellobiose in alkane solution. Bull. Chem. Soc. Jpn. 1995, 68, 3423–3428. [Google Scholar] [CrossRef]
- Lia, K.; Xue, P. Self-assembly and anion-response of azobenzene-based L-valinamide derivative. Dyes Pigment. 2018, 156, 206–212. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, J.; Xu, S.; Zhang, S.; Sun, J.; Lu, R. Luminescent organogels generated from nucleosides functionalized with carbazole: Synthesis and probing for F–. Eur. J. Org. Chem. 2018, 16, 1910–1915. [Google Scholar] [CrossRef]
- Ihara, H.; Yoshitake, M.; Takafuji, M.; Yamada, T.; Sagawa, T.; Hirayama, C.; Hachisako, H. Detection of highly-oriented aggregation of L-glutamic acid-derived lipids in organic solution. Liq. Cryst. 1999, 26, 1021–1027. [Google Scholar] [CrossRef]
- Jintoku, H.; Takafuji, M.; Oda, R.; Ihara, H. Enantioselective recognition by highly ordered porphyrin assembly on chiral molecular gel. Chem. Commun. 2012, 48, 4881–4883. [Google Scholar] [CrossRef] [PubMed]
- Mashima, S.; Ryu, N.; Kuwahara, Y.; Takafuji, M.; Jintoku, H.; Oda, R.; Ihara, H. Multi-chiro-informative system created by a porphyrin-functionalized chiral molecular assembly. Chem. Lett. 2020, 49, 368–371. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.; Lv, K.; Qina, L.; Liu, M. Enantioselective recognition of a fluorescence-labeled phenylalanine by self-assembled chiral nanostructures. Chem. Commun. 2015, 51, 4234–4236. [Google Scholar] [CrossRef]
- Miao, W.; Zhang, L.; Wang, X.; Cao, H.; Jin, Q.; Liu, M. A Dual-functional metallogel of amphiphilic copper(II) quinolinol: Redox responsiveness and enantioselectivity. Chem. Eur. J. 2013, 9, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- Takafuji, M.; Ihara, H.; Hirayama, C.; Hachisako, H.; Yamada, K. Functional organic gels. Chirality induction through formation of highly-oriented structure. Liq. Cryst. 1995, 18, 97–99. [Google Scholar] [CrossRef]
- Ihara, H.; Takafuji, M.; Kuwahara, Y. Polymer functionalization by luminescent supramolecular gel. Polym. J. 2016, 48, 843–853. [Google Scholar] [CrossRef]
- Hong, Y.; Lam, W.Y.; Tang, B.Z. AIEE: Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, K.; Sawada, T.; Jintoku, H.; Takafuji, M.; Sagawa, T.; Ihara, H. Controlled aggregation-induced emission enhancement and quenching of low-molecular-weight thiophene derivatives. Tetrahedron Lett. 2010, 51, 4666–4669. [Google Scholar] [CrossRef]
- Xue, P.; Yao, B.; Zhang, Y.; Chen, P.; Li, K.; Liu, B.; Lu, R. A large dipole moment to promote gelation for 4-nitrophenylacrylonitrile derivatives with gelation-induced emission enhancement properties. Org. Biomol. Chem. 2014, 12, 7110–7118. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Ding, J.; Shen, Y.; Gao, H.; Zhao, J.; Sun, J.; Lu, R. Aggregation-induced emission nanofiber as dual sensor for aromatic amine and acid vapor. J. Mater. Chem. C 2017, 5, 11532–11541. [Google Scholar] [CrossRef]
- Ryu, N.; Okazaki, Y.; Pouget, E.; Takafuji, M.; Nagaoka, S.; Ihara, H.; Oda, R. Fluorescence emission originated from the H-aggregated cyanine dye with chiral gemini surfactant assemblies having a narrow absorption band and a remarkably large Stokes shift. Chem. Commun. 2017, 53, 8870–8873. [Google Scholar] [CrossRef] [PubMed]
- Harada, N.; Nakanishi, K. Circular Dichroic Spectroscopy: Exciton Coupling in Organic Stereochemistry; University Science Books: Mill Valley, CA, USA, 1983. [Google Scholar]
- Oishi, H.; Mashima, S.; Kuwahara, Y.; Takafuji, M.; Yoshida, K.; Oda, R.; Qiu, H.; Ihara, H. Polymer encapsulation and stabilization of molecular gel-based chiroptical information for strong, tunable circularly polarized luminescence film. J. Mater. Chem. C 2020, 8, 8732–8735. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nagatomo, N.; Oishi, H.; Kuwahara, Y.; Takafuji, M.; Oda, R.; Hamada, T.; Ihara, H. Enantioselective Self-Assembled Nanofibrillar Network with Glutamide-Based Organogelator. Nanomaterials 2021, 11, 1376. https://doi.org/10.3390/nano11061376
Nagatomo N, Oishi H, Kuwahara Y, Takafuji M, Oda R, Hamada T, Ihara H. Enantioselective Self-Assembled Nanofibrillar Network with Glutamide-Based Organogelator. Nanomaterials. 2021; 11(6):1376. https://doi.org/10.3390/nano11061376
Chicago/Turabian StyleNagatomo, Nao, Hisashi Oishi, Yutaka Kuwahara, Makoto Takafuji, Reiko Oda, Taisuke Hamada, and Hirotaka Ihara. 2021. "Enantioselective Self-Assembled Nanofibrillar Network with Glutamide-Based Organogelator" Nanomaterials 11, no. 6: 1376. https://doi.org/10.3390/nano11061376
APA StyleNagatomo, N., Oishi, H., Kuwahara, Y., Takafuji, M., Oda, R., Hamada, T., & Ihara, H. (2021). Enantioselective Self-Assembled Nanofibrillar Network with Glutamide-Based Organogelator. Nanomaterials, 11(6), 1376. https://doi.org/10.3390/nano11061376