Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rajeshwar, K.; de Tacconi, N.R.; Chanmanee, W. Solution combustion synthesis of oxide semiconductors for solar energy conversion and environmental remediation. Chem. Soc. Rev. 2009, 38, 1984–1998. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemannt, D.W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1971, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.M.; Al-Shahry, M.; Ingler, W.B., Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Ghicov, A.; Macak, J.M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Ion implantation and annealing for an efficient N-doping of TiO2 nanotubes. Nano Lett. 2006, 6, 1080–1082. [Google Scholar] [CrossRef]
- Khan, S.U.M.; Sultana, T. Photoresponse of n-TiO2 thin film and nanowire electrodes. Sol. Energy Mater. Sol. Cells 2003, 76, 211–221. [Google Scholar] [CrossRef]
- Zhao, Z.; Tian, J.; Sang, Y.; Cabot, A.; Liu, H. Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 2015, 27, 2557–2582. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Liu, B.; Sang, Y.; Liu, H. Heterostructures construction on TiO2 nanobelts: A powerful tool for building high-performance photocatalysts. Appl. Catal. B 2017, 202, 620–641. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Lee, Z.; Kim, E.T. Enhanced photocatalytic properties of TiO2 nanobelts via in situ doping of C and Fe. J. Electrochem. Soc. 2012, 159, K42–K45. [Google Scholar]
- Sakthivel, S.; Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 2003, 42, 4908–4911. [Google Scholar] [CrossRef] [PubMed]
- Klaysri, R.; Ratova, M.; Praserthdam, P.; Kelly, P.J. Deposition of visible light-active C-doped titania films via magnetron sputtering using CO2 as a source of carbon. Nanomaterials 2017, 7, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varnagiris, S.; Medvids, A.; Lelis, M.; Milcius, D.; Antuzevics, A. Black carbon-doped TiO2 films: Synthesis, characterization and photocatalysis. J. Photochem. Photobiol. A Chem. 2019, 382, 111941. [Google Scholar] [CrossRef]
- Jia, G.; Wang, Y.; Cui, X.; Zheng, W. Highly carbon-doped TiO2 derived from MXene boosting the photocatalytic hydrogen evolution. ACS Sustain. Chem. Eng. 2018, 6, 13480–13486. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, Y.; Miao, S.; Gong, M.; Liu, X. In situ synthesis of carbon doped TiO2 nanotubes with an enhanced photocatalytic performance under UV and visible light. Carbon 2017, 125, 544–550. [Google Scholar] [CrossRef]
- Shklover, V.; Nazeeruddin, M.K.; Zakeeruddin, S.M.; Barbe, C.; Kay, A.; Haibach, T.; Steurer, W.; Hermann, R.; Nissen, H.U.; Gratzel, M. Structure of nanocrystalline TiO2 powders and precursor to their highly efficient photosensitizer. Chem. Mater. 1997, 9, 430–439. [Google Scholar] [CrossRef]
- Hussein, G.A.M.; Sheppard, N.; Zaki, M.I.; Fahim, R.B. Infrared spectroscopic studies of the reactions of alcohols over group IVB metal oxide catalysts. Part 2.—Methanol over TiO2, ZrO2 and HfO2. J. Chem. Soc. Faraday Trans. 1991, 87, 2655–2659. [Google Scholar] [CrossRef]
- Kumar, P.M.; Badrinarayanan, S.; Sastry, M. Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: Correlation to presence of surface states. Thin Solid Films 2000, 358, 122–130. [Google Scholar] [CrossRef]
- Cho, Y.S.; Heo, J.S.; Kim, J.C.; Moon, S.H. Thermal decomposition of Ti (O-iPr)2(dpm)2 on a silicon surface analyzed by TPD and XPS. J. Electrochem. Soc. 2006, 153, C488–C495. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Kim, E.T. Self-catalytic growth of TiO2-δ nanobelts and nanosheets using metallorganic chemical vapor deposition. Electrochem. Solid State Lett. 2008, 11, K1–K3. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Lee, Z.; Kim, E.T. Nanographitic layer-mediated synthesis of carbon-TiO2 hybrid nanobelts by metalorganic chemical vapor deposition. Mater. Lett. 2012, 81, 20–22. [Google Scholar] [CrossRef]
- Carley, A.F.; Chalker, P.R.; Riviere, J.C.; Roberts, M.W. The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc. Faraday Trans. 1987, 83, 351–370. [Google Scholar] [CrossRef]
- Papirer, E.; Lacroix, R.; Donnet, J.B.; Nanse, G.; Fioux, P. XPS study of the halogenation of carbon black—Part 2. Chlorination. Carbon 1995, 33, 63–72. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Wakim, F.G.; Addiss, R.R., Jr. Photoelectronic processes in rutile. Phys. Rev. 1969, 184, 979–988. [Google Scholar] [CrossRef]
- Serpone, N.; Lawless, D.; Khairutdinov, R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J. Phys. Chem. 1995, 99, 16646–16654. [Google Scholar] [CrossRef]
- Justicia, I.; Ordejon, P.; Canto, G.; Mozos, J.L.; Fraxedas, J.; Battiston, G.A.; Gerbasi, R.; Figueras, A. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 2002, 14, 1399–1402. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, D.-B.; Bae, S.-S.; Kim, E.-T. Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials 2021, 11, 1377. https://doi.org/10.3390/nano11061377
Seo D-B, Bae S-S, Kim E-T. Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials. 2021; 11(6):1377. https://doi.org/10.3390/nano11061377
Chicago/Turabian StyleSeo, Dong-Bum, Sung-Su Bae, and Eui-Tae Kim. 2021. "Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping" Nanomaterials 11, no. 6: 1377. https://doi.org/10.3390/nano11061377
APA StyleSeo, D. -B., Bae, S. -S., & Kim, E. -T. (2021). Efficient Visible-Light Photocatalysis of TiO2-δ Nanobelts Utilizing Self-Induced Defects and Carbon Doping. Nanomaterials, 11(6), 1377. https://doi.org/10.3390/nano11061377