Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thin Film Preparation
2.2. Transmission Electron Microscopy Observation
2.3. Three-Omega Method
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nat. Cell Biol. 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Yabuta, H.; Sano, M.; Abe, K.; Aiba, T.; Den, T.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hosono, H. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering. Appl. Phys. Lett. 2006, 89, 112123. [Google Scholar] [CrossRef]
- Nomura, K.; Takagi, A.; Kamiya, T.; Ohta, H.; Hirano, M.; Hosono, H. Amorphous oxide semiconductors for high-performance flexible thin-film transistors. Jpn. J. Appl. Phys. 2006, 45, 4303–4308. [Google Scholar] [CrossRef]
- Kim, M.; Jeong, J.H.; Lee, H.J.; Ahn, T.K.; Shin, H.S.; Park, J.-S.; Jeong, J.K.; Mo, Y.-G.; Kim, H.D. High mobility bottom gate InGaZnO thin film transistors with SiOx etch stopper. Appl. Phys. Lett. 2007, 90, 212114. [Google Scholar] [CrossRef]
- Lee, J.S.; Chang, S.; Koo, S.-M.; Lee, S.Y. High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature. IEEE Electron. Device Lett. 2010, 31, 225–227. [Google Scholar] [CrossRef]
- Ma, P.; Du, L.; Wang, Y.; Jiang, R.; Xin, Q.; Li, Y.; Song, A. Low voltage operation of IGZO thin film transistors enabled by ultrathin Al2O3 gate dielectric. Appl. Phys. Lett. 2018, 112, 023501. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Xiao, W.; Wu, W.; Liu, B. Research progress on flexible oxide-based thin film transistors. Appl. Sci. 2019, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Prušáková, L.; Hubík, P.; Aijaz, A.; Nyberg, T.; Kubart, T. Room temperature reactive deposition of InGaZnO and ZnSnO amorphous oxide semiconductors for flexible electronics. Coatings 2019, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Fortunato, E.M.C.; Barquinha, P.M.C.; Pimentel, A.; Gonçalves, A.; Marques, A.J.S.; Pereira, L.M.N.; Martins, R.F.P. Fully transparent ZnO thin-film transistor produced at room temperature. Adv. Mater. 2005, 17, 590–594. [Google Scholar] [CrossRef]
- Hsieh, H.-H.; Wu, C.-C. Scaling behavior of ZnO transparent thin-film transistors. Appl. Phys. Lett. 2006, 89, 041109. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-G.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Pham, A.T.T.; Ta, H.K.T.; Liu, Y.-R.; Aminzare, M.; Wong, D.P.; Nguyen, T.H.; Pham, N.K.; Le, T.B.N.; Seetawan, T.; Ju, H.; et al. Effect of annealing temperature on thermoelectric properties of Ga and In dually doped-ZnO thin films. J. Alloy. Compd. 2018, 747, 156–165. [Google Scholar] [CrossRef]
- Dastgeer, G.; Khan, M.F.; Cha, J.; Afzal, A.M.; Min, K.H.; Ko, B.M.; Liu, H.; Hong, S.; Eom, J. Black phosphorus-IGZO van der Waals diode with low-resistivity metal contacts. ACS Appl. Mater. Interfaces 2019, 11, 10959–10966. [Google Scholar] [CrossRef] [PubMed]
- Ozcariz, A. Development of copper oxide thin film for lossy mode resonance-based optical fiber Sensor. Proceedings 2018, 2, 893. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Urbiola, E.; Vorobiev, Y.; Bulat, L. Solar hybrid systems with thermoelectric generators. Sol. Energy 2012, 86, 369–378. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Uenuma, M.; Ishikawa, Y.; Uraoka, Y. Analysis of thermoelectric properties of amorphous InGaZnO thin film by controlling carrier concentration. AIP Adv. 2015, 5, 097209. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Ohta, H.; Uruga, T.; Hirano, M.; Hosono, H. Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment andab initiocalculations. Phys. Rev. B 2007, 75, 035212. [Google Scholar] [CrossRef]
- Kamiya, T.; Nomura, K.; Hosono, H. Electronic structure of the amorphous oxide semiconductor a-InGaZnO4−x: Tauc-Lorentz optical model and origins of subgap states. Phys. Status Solidi A 2009, 206, 860–867. [Google Scholar] [CrossRef]
- Cahill, D.G.; Goodson, K.; Majumdar, A. Thermometry and thermal transport in micro/nanoscale solid-state devices and structures. J. Heat Transf. 2001, 124, 223–241. [Google Scholar] [CrossRef]
- Ide, K.; Nomura, K.; Hiramatsu, H.; Kamiya, T.; Hosono, H. Structural relaxation in amorphous oxide semiconductor, a-In-Ga-Zn-O. J. Appl. Phys. 2012, 111, 073513. [Google Scholar] [CrossRef]
- Hiramatsu, T.; Nakashima, M.; Kikuchi, E.; Ishihara, N.; Tsubuku, M.; Dairiki, K.; Yamazaki, S. Correlation between crystallinity and oxygen vacancy formation in In–Ga–Zn oxide. Jpn. J. Appl. Phys. 2016, 55, 21203. [Google Scholar] [CrossRef]
- Yamazaki, S. (Invited) Crystalline oxide semiconductor using CAAC-IGZO and its application. ECS Trans. 2014, 64, 155–164. [Google Scholar] [CrossRef]
- Caffrey, D.; Zhussupbekova, A.; Vijayaraghavan, R.K.; Ainabayev, A.; Kaisha, A.; Sugurbekova, G.; Shvets, I.V.; Fleischer, K. Crystallographic characterisation of ultra-thin, or amorphous transparent conducting oxides—The case for raman spectroscopy. Materials 2020, 13, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, D.G. Thermal conductivity measurement from 30 to 750 K: The 3ω method. Rev. Sci. Instrum. 1990, 61, 802–808. [Google Scholar] [CrossRef]
- Wang, H.; Sen, M. Analysis of the 3-omega method for thermal conductivity measurement. Int. J. Heat Mass Transf. 2009, 52, 2102–2109. [Google Scholar] [CrossRef]
- Chernodoubov, D.A.; Inyushkin, A.V. Automatic thermal conductivity measurements with 3-omega technique. Rev. Sci. Instrum. 2019, 90, 024904. [Google Scholar] [CrossRef] [PubMed]
- Sputtering and Other Physical Deposition Processes; Lansdown, A.R. (Ed.) Tribology Series; Elsevier: Amsterdam, The Netherlands, 1999; Volume 35, pp. 153–178. [Google Scholar] [CrossRef]
- Kudo, S.; Hagino, H.; Tanaka, S.; Miyazaki, K.; Takashiri, M. Determining the thermal conductivity of nanocrystalline bismuth telluride thin films using the differential 3ω method while accounting for thermal contact resistance. J. Electron. Mater. 2015, 44, 2021–2025. [Google Scholar] [CrossRef]
- Cahill, D.G.; Pohl, R.O. Thermal conductivity of amorphous solids above the plateau. Phys. Rev. B 1987, 35, 4067–4073. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Zhang, J.; Tang, X.; Xu, S.; Wang, X. Thermal transport across atomic-layer material interfaces. Nanotechnol. Rev. 2015, 4, 533–555. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Yagi, T.; Oka, N.; Jia, J.; Yamashita, Y.; Hattori, K.; Seino, Y.; Taketoshi, N.; Baba, T.; Shigesato, Y. Thermal conductivity of amorphous indium-gallium-zinc oxide thin films. Appl. Phys. Express 2013, 6, 021101. [Google Scholar] [CrossRef]
- Li, M.; Yue, Y. Molecular dynamics study of thermal transport in amorphous silicon carbide thin film. RSC Adv. 2014, 4, 23010–23016. [Google Scholar] [CrossRef]
- Yang, Y.; Zhong, D.; Liu, Y.; Meng, D.; Wang, L.; Wei, N.; Ren, G.; Yan, R.; Kang, Y. Thermal transport in graphene oxide films: Theoretical analysis and molecular dynamics simulation. Nanomaterials 2020, 10, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, G.; Wang, L.; Chen, L.; Du, X.; Xu, C.; Zhang, X. Analysis of gas molecule mean free path and gaseous thermal conductivity in confined nanoporous structures. Int. J. Thermophys. 2015, 36, 2953–2966. [Google Scholar] [CrossRef]
- Zhu, W.; Zheng, G.; Cao, S.; He, H. Thermal conductivity of amorphous SiO2 thin film: A molecular dynamics study. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Cui, B.; Zeng, L.; Keane, D.T.; Bedzyk, M.J.; Buchholz, D.B.; Chang, R.P.H.; Yu, X.; Smith, J.; Marks, T.J.; Xia, Y.; et al. Thermal conductivity comparison of indium gallium zinc oxide thin films: Dependence on temperature, crystallinity, and porosity. J. Phys. Chem. C 2016, 120, 7467–7475. [Google Scholar] [CrossRef]
- Albar, I.; Donmezer, N. Mean free path–Thermal conductivity accumulation calculations for wurtzite gallium nitride: Two approaches. Nanoscale Microscale Thermophys. Eng. 2020, 24, 80–93. [Google Scholar] [CrossRef]
- Ju, Y.; Wang, M.; Wang, Y.; Wang, S.; Fu, C. Electrical properties of amorphous titanium oxide thin films for bolometric application. Adv. Condens. Matter Phys. 2013, 2013, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tritt, T.M. Thermal Conductivity: Theory, Properties and Apllications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 53, p. 9. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.; Ohtaki, M.; Hata, S.; Miyazaki, K.; Hattori, R. Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method. Nanomaterials 2021, 11, 1547. https://doi.org/10.3390/nano11061547
Khan R, Ohtaki M, Hata S, Miyazaki K, Hattori R. Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method. Nanomaterials. 2021; 11(6):1547. https://doi.org/10.3390/nano11061547
Chicago/Turabian StyleKhan, Rauf, Michitaka Ohtaki, Satoshi Hata, Koji Miyazaki, and Reiji Hattori. 2021. "Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method" Nanomaterials 11, no. 6: 1547. https://doi.org/10.3390/nano11061547
APA StyleKhan, R., Ohtaki, M., Hata, S., Miyazaki, K., & Hattori, R. (2021). Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method. Nanomaterials, 11(6), 1547. https://doi.org/10.3390/nano11061547