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Abstract: With the presence of a driving field applied to double quantum dots and a control field
applied on the cavity, the transmission performance and group delay effect of a probe field have been
theoretically studied in a hybrid optomechanical system (HOMS). Due to the interaction between
the mechanical mode and the double quantum dots system, double optomechanically induced
transparency (OMIT) arises in the HOMS. With the assistance of a driving field, the system can be
tuned to switch on any one of the two OMIT windows, switch on both of the two OMIT windows
or switch off both of the two OMIT windows by dynamically adjusting control of the optical field
and the driving field. Furthermore, the transmitted probe fields of the two OMIT windows can be
tuned to be absorbed or amplified with proper parameters of the driving field and control field.
Moreover, the transmission properties of the two OMIT windows are asymmetrical. One can obtain
the maximum group delay time of the probe field by optimizing the amplitude and phase of the
driving field. These results provide a new way for constructing optically controlled nanostructured
photonic switch and storage devices.

Keywords: hybrid optomechanical system; electromagnetically induced transparency; group delay;
nano-opto-electro-mechanical devices

1. Introduction

Cavity optomechanics has attracted much attention in the past decade [1]. Cavity
optomechanics focuses on the study of the interaction between optical and mechanical
degrees of freedom, and it builds a connection between the fields of nanophotonics and
nanomechanics. The cavity optomechanical system has broad applications in the fields of
ground-state cooling of the mechanical mode [2], ultrasensitive sensing [3], optical field
squeezing [4], etc. Interestingly, it has been demonstrated that quantum interference leads
to optomechanically electromagnetically induced transparency (OMIT) [5,6], which is an
analog of electromagnetically induced transparency (EIT) in three-level Λ-type atoms [7].
OMIT has many advanced applications in the optics field, such as slow light [8], charge
measurement [9] and light storage [10]. In this paper, we study OMIT in an optomechanical
system that consists of an optical cavity that interacts with a mechanical resonator coupled
to an artificial two-level system (TLS) realized by double quantum dots (DQDs) driven by
an electrical field.

Early OMIT can provide a single transparency window [5] which would limit its
application in modern multichannel optical communication. Thus, it is natural to extend
single-window OMIT to double-window OMIT and multiple-window OMIT. One method
is by coupling the cavity field to two mechanical resonators to realize double-window
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OMIT in an optomechanical system [11–13]; it can be generalized to multiple-window
OMIT by introducing more mechanical oscillators. The other important approach is that
double-window OMIT can be obtained by introducing the interaction between a mechanical
resonator and a two-level system (TLS) [14,15], such as two-level atoms, two-level defects,
two-level quantum dot, nitrogen vacancy centers and superconducting qubit circuits. In
such an optomechanical system, two transparency windows can be realized because of the
destructive interference of the probe field with the Stokes scattering light. Furthermore,
one can tune the frequencies of double OMIT by changing the parameters related to the
TLS. Double EIT can be used for double-channel optical communication [16], tunable
cross-phase modulation [17], high-speed optical switches [18], phonon heat transport
controller [19] and a single phonon generator [20–22].

Atomic coherence is one of the key points to EIT, while mechanical coherence is the
counterpart to OMIT; therefore, mechanical oscillation can be used to control OMIT [23].
Mechanical driving in an optomechanical system would result in mechanical phase-
dependent OMIT, where the transmission properties of the probe field are sensitive to the
phase of the mechanical mode. The transmission of the probe light field can be controlled
by this new degree of freedom [24–31].

Here, we discuss the transmission properties of a probe field incident on a HOMS,
where the cavity is pumped by a strong optical control field and the DQD is driven by a
weak driving field. We make use of DQDs to construct a pseudo two-level system where
its parameters can be changed freely [32]. The single quantum dot can be modeled as
a two-level system consisting of the ground state and the single exciton state [33]. The
coupling between quantum dot (QD) excitons and acoustic phonons is unavoidable in self-
assembled systems. The coupling between exciton and phonon will result in the formation
of a polaron [34] and the frequency shift in a QD [35]. Exciton–phonon can also serve as an
interface to induce and optically control the quantum state of localized phonon modes [36]
or even the macroscopic motion of mechanical oscillators [37].

In this paper, we focus on the influences of the driving field applied on DQDs and
the properties of the OMIT in an optomechanical system. It is shown that one can not only
switch on either of the two OMIT windows but can also switch on both of the two OMIT
windows or switch off both of the two OMIT windows by adjusting the driving field to the
DQDs. The transmission properties of the two OMIT windows are asymmetrical in our
situation. The transmission performances and the group time delay of the output field are
discussed in detail.

In this paper, the Hamiltonian model and theoretical formalizations of the HOMS are
presented, and the analytical expressions of the probe transmission are obtained based on
Langevin equations in Section 2. Then, the effects of the driving field on the transmission
performances and the group time delay of the probe light field are presented in Section 3.
Finally, Section 4 is the conclusions.

2. Model and Theoretical Formalism

Figure 1a shows the principle diagram of the HOMS studied in this paper. The optical
cavity interacts with a mechanical resonator which is coupled to an artificial TLS driven
by an electrical or optical field. The artificial TLS can usually be realized by two-level
defects, two-level quantum dots, nitrogen vacancy centers and superconducting qubit
circuits [38–40]. In this paper, we use DQDs to realize artificial TLSs. The practical structure
sketch map of our proposed HOMS is presented in Figure 1b, which has been studied in
detail in References [41–43].
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Figure 1. (a) Principle diagram of the HOMS. The optical cavity is coupled to a mechanical resonator, which is also coupled 

to a two-level system (TLS). The cavity is pumped by a control optical field with frequency 𝜔𝑐  and is driven by a weak 

probe field with frequency 𝜔𝑝, and 𝑎𝑜𝑢𝑡 is the output of the cavity field. The TLS is driven by a driving field with fre-

quency 𝛥 = 𝜔𝑝 − 𝜔𝑐. (b) Structure sketch map of the HOMS. The movable mirror can be realized by a cantilever, and the 

artificial TLS can be realized by double quantum dots (DQDs). (c) Energy level diagram of the HOMS with single-photon 

and single-phonon excitation. 𝛥𝑎 = 𝜔𝑎 − 𝜔𝑐 . |0𝑎, 0𝑚⟩ and |1𝑎, 0𝑚⟩ represent the states of the system with 0 or 1 particle, 

a and m denote the cavity and mechanical modes, respectively. |0𝑎, 1𝑚 ±⟩ are the dressed states due to the coupling be-

tween the TLS and the mechanical mode. |0𝑎, 1𝑚 ±⟩ = (|0𝑎, 1𝑚, 𝑒⟩ ± |0𝑎, 1𝑚, 𝑔⟩)/√2. 

In order to realize the artificial TLS by DQD systems [38,39,44], only one electron can 

occupy the DQDs at a time because of the small distance between the two QDs. When the 

left dot is occupied by one electron, it is labeled as |𝐿⟩, and it is labeled as |𝑅⟩ if the right 

dot is occupied by one electron. The state |𝐿⟩ corresponds to the ground state and |𝑅⟩ 

corresponds to the excited state [45]. The energy level and the tunneling amplitude of 

DQDs can be tuned by adjusting the gate voltages [38]. The interaction between a single 

QD and the nanomechanical mode can be described by the spin-boson model because the 

longitudinal strain will affect the energy of the QD exciton states due to deformation po-

tential coupling [46,47], which has been studied experimentally [37]. If the energy level 

difference between the two QDs is much less than the tunneling amplitude between the 

two QDs, the interaction between the DQDs and the mechanical mode can be simplified 
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is the creation (annihilation) operator of the mechanical mode. 𝑔0 is the vacuum optome-

chanical coupling strength between the cavity field and the mechanical mode, which is 

expressed in frequency. 

A weak probe field with frequency 𝜔𝑝 and a strong control field with frequency 𝜔𝑐 

are used to drive the cavity field. Furthermore, applying an alternative driving voltage 

with frequency 𝛥 = 𝜔𝑝 − 𝜔𝑐  and phase 𝜙𝑞  to the plunger gates of DQDs to induce a 

small amplitude oscillation of energy level difference between the two QDs, where the 

Hamiltonian of the driving effect is ℏ𝜀′ sin(𝛥𝑡 + 𝜙𝑞) {|𝐿⟩⟨𝐿| − |𝑅⟩⟨𝑅|} [48,51], and 𝜀′ is 

proportional to the amplitude of driving voltage. If the energy level difference between 

the two QDs is much less than the tunneling amplitude between the two QDs, rewriting 

the driving Hamiltonian in the space of hybridized eigenstates of the isolated DQDs [48] 

and making rotating wave approximation, then in a rotating frame with the frequency of 

𝜔𝑐, the total Hamiltonian could be rewritten as: 

Figure 1. (a) Principle diagram of the HOMS. The optical cavity is coupled to a mechanical resonator, which is also coupled
to a two-level system (TLS). The cavity is pumped by a control optical field with frequency ωc and is driven by a weak
probe field with frequency ωp, and aout is the output of the cavity field. The TLS is driven by a driving field with frequency
∆ = ωp −ωc. (b) Structure sketch map of the HOMS. The movable mirror can be realized by a cantilever, and the artificial
TLS can be realized by double quantum dots (DQDs). (c) Energy level diagram of the HOMS with single-photon and
single-phonon excitation. ∆a = ωa −ωc |0a, 0m〉 and |1a, 0m〉 represent the states of the system with 0 or 1 particle, a and m
denote the cavity and mechanical modes, respectively. |0a, 1m±〉 are the dressed states due to the coupling between the TLS
and the mechanical mode. |0a, 1m±〉 = (|0a, 1m, e〉±|0a, 1m, g)/

√
2.

In order to realize the artificial TLS by DQD systems [38,39,44], only one electron
can occupy the DQDs at a time because of the small distance between the two QDs.
When the left dot is occupied by one electron, it is labeled as |L〉, and it is labeled as
|R〉 if the right dot is occupied by one electron. The state |L〉 corresponds to the ground
state and |R〉 corresponds to the excited state [45]. The energy level and the tunneling
amplitude of DQDs can be tuned by adjusting the gate voltages [38]. The interaction
between a single QD and the nanomechanical mode can be described by the spin-boson
model because the longitudinal strain will affect the energy of the QD exciton states due to
deformation potential coupling [46,47], which has been studied experimentally [37]. If the
energy level difference between the two QDs is much less than the tunneling amplitude
between the two QDs, the interaction between the DQDs and the mechanical mode can be
simplified to the following Hamiltonian [48–50], Hqm = }J

(
σ+b + σ−b†), where rotating

wave approximation has been made. Here, J is the coupling coefficient, and σ+(σ−) is the
raising (lowering) operator of the TLS. σ+ = |e〉〈g| and σ− = |g〉〈e| are the Pauli operators
of the TLS, with |g〉 representing the ground hybridized eigenstate and |e〉 representing
the excited hybridized eigenstate of the isolated DQDs [48]. The vibration energy density
becomes larger as the effective phonon mode volume decreases. Large vibrations will
modify the energy of the electronic states of quantum dots through deformation potential
coupling [46]. J will increase with the decrease of effective phonon mode volume.

Hom = −}g0a†a
(
b† + b

)
is the Hamiltonian between the cavity and the mechanical

mode. Here, a†(a) is the creation (annihilation) operator of the cavity mode, and b†(b) is the
creation (annihilation) operator of the mechanical mode. g0 is the vacuum optomechanical
coupling strength between the cavity field and the mechanical mode, which is expressed
in frequency.

A weak probe field with frequency ωp and a strong control field with frequency ωc
are used to drive the cavity field. Furthermore, applying an alternative driving voltage
with frequency ∆ = ωp − ωc and phase φq to the plunger gates of DQDs to induce a
small amplitude oscillation of energy level difference between the two QDs, where the
Hamiltonian of the driving effect is }ε′ sin

(
∆t + φq

)
{|L〉 〈L|−|R〉〈R| } [48,51], and ε′ is

proportional to the amplitude of driving voltage. If the energy level difference between the
two QDs is much less than the tunneling amplitude between the two QDs, rewriting the
driving Hamiltonian in the space of hybridized eigenstates of the isolated DQDs [48] and
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making rotating wave approximation, then in a rotating frame with the frequency of ωc,
the total Hamiltonian could be rewritten as:

H = }∆aa†a + }ωmb†b + }ωqσz/2 + Hom + Hqm + Hdr (1)

Hdr= i}εc

(
a† − a

)
+i}εp

(
a†e−i∆t−iφpc − aei∆t+iφpc

)
+i}εq

(
σ+e−i∆t−iφq − σ−ei∆t+iφq

)
(2)

where ∆a = ωa −ωc is the detuning between the cavity-field frequency ωa and the control-
field frequency ωc, the mechanical mode frequency is ωm, and ωq is the transition frequency
of the TLS. Here, σz = |e〉〈 e| − |g〉〈 g|, and φpc = φp − φc is the phase difference between
the control optical field and the probe field. εc is the amplitude of the control field, εp is
the amplitude of the probe field, and εq = ε′/2 is the driving amplitude of the TLS induced
by the driving field in the space of hybridized eigenstates of the isolated DQDs [48].

From the total Hamiltonian of the HOMS, one can get the quantum Langevin equations
(QLEs) of the system as follows:

.
a = −(γa + i∆a)a + ig0a

(
b† + b

)
+ εc + εpe−i∆t−iφpc (3a)

.
b = −(γm + iωm)b + ig0a†a− iJσ− (3b)

.
σ− = −

(
γq/2 + iωq

)
σ− + iJσzb + εc − εqσze−i∆t−iφq (3c)

.
σz = −γq(σz + 1)− 2iJ

(
σ+b− b†σ−

)
+ εc + 2εq

(
σ+e−i∆t−iφq + σ−ei∆t+iφq

)
(3d)

where γa, is the decay rate of the cavity field, γm is the decay rate of mechanical resonator,
and γq is the decay rate of the TLS. In this paper, we neglect the quantum and thermal noise
because we focus on the mean optical response of the HOMS. Usually, the performance of
the system could not be deteriorated by the thermal noise terms. However, the quantum
and thermal noise are more critical in deteriorating the performance of the single-photon
device based on the system proposed here. To reduce the detrimental effects of thermal
noise, one can cool the system down to cryogenic temperatures. After some algebra, one
can get the systems steady-state solutions as the following:

α = 〈a〉s = εc/
(
γa + i∆′a

)
(4a)

β = 〈b〉s =
(

ig0|α|2 − i JL0

)
/(γm + iωm) (4b)

L0 = 〈σ〉−s = i JβW0/
(
γq/2 + iωq

)
(4c)

W0 =
(

γ2
q + 4ω2

q

)
/
(

γ2
q + 4ω2

q + 8J2|β|2
)

(4d)

where ∆′a = ∆a − g(β∗ + β). The steady-state solutions are the same as that of the HOMS
without a driving field applied on the TLS [15].

Here, the cavity is assumed to be driven at the red sideband regime (i.e., ∆a ≈ ωm).
Under the condition of the resolved sideband limit ωm � γa, gα, we can make use
of rotating wave approximation (RWA) here [28]. Thus, we can set a = α + δae−i∆t,
b = β + δbe−i∆t, σ− = L0 + δσ−e−i∆t, σz = W0 + δσze−i∆t, then the following equations
are obtained:

δ
.
a = −(γa + i∆a − i∆)δa + iGδb + εpe−iφpc (5a)
.

δb = −(γm + iωm − i∆)δb + iG∗δa− i Jδσ− (5b)

δ
.
σ− = −

(
γq/2 + iωq − i∆

)
σ− + i J(βδσz + W0δb)− εqW0e−iφq (5c)

δ
.
σz = −

(
γq − i∆

)
δσz − 2i J(L∗0δb− β∗δσ−) + 2εqL∗0e−iφq (5d)
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where G = g0α. Under the steady-state condition, one can obtain

〈δa〉 =
ξεpe−iφpc +

{
2i J2GβL∗0 − GJW0

(
γq − i∆

)}
εqe−iφq

ξ(γa + iω1) + ψ|G|2
(6)

here, ξ = ψ(γm + iω2) + 2i J3βL∗0 − J2W0
(
γq − i∆

)
, ψ =

(
γq/2 + iω3

)(
γq − i∆

)
+ 2J2|β|2,

ω1 = ∆′a − ∆, ω2 = wm − ∆, ω3 = ωq − ∆. The cavity field oscillates in the frequency of ∆.
It reflects the Rabi oscillations of the dressed states.

Using the input–output theory, we could obtain 〈εout〉+ εc + εpe−i∆t−iφpc = 2ηγa〈δa〉 [5,28].
Here, η is the coupling efficiency [52]. The quadratures of the output field at the frequency
of the probe field are defined as εT = 2ηγa〈δa〉

εpe−iφpc = υp + iυ̃p [5]. Thus, the transmission

coefficient of the probe field can be obtained as [5,28]:

tp =
ke〈δa〉 − εpe−iφpc

εpe−iφpc
= t1 + t2 (7)

with
t1 =

ξke

ξ(γa + iω1) + ψ|G|2
− 1 (8)

t2 =
iGke

{
2J2βL∗0 + i JW0

(
γq − i∆

)}
re−iφ

ξ(γa + iω1) + ψ|G|2
(9)

where r = εq/εp, φ = φq − φpc which is the phase difference between the driving field and
φpc, and ke = 2ηγa is the external decay rate of the cavity [52]. Here, t1 is the corresponding
part influenced by the control optical field, and t2 is the corresponding part influenced
by the driving field on the probe transmission. The probe transmission coefficient is
dominated by the interference between t1 and t2, especially if it is remarkably affected by
the phase difference φ.

3. Results and Discussion

In order to study the phase-controlled probe transmission spectrum, we numeri-
cally calculate the probe transmission coefficient with the parameters chosen from pre-
vious works [14,15,28]. We assume: ωm = ωq = 2π × 100 MHz, g0 = 2π × 10 MHz,
γa = 2π× 3 MHz, γm = 2π×2 kHz, γq = 2π×0.1 MHz, J = 2π×1 MHz, εc = 2π× 10 MHz,
η = 0.45, and ∆a = ωm.

3.1. Phase-Controlled Two-Channel Selective Transmission

Figure 2 shows that the probe transmission
∣∣tp
∣∣2 varies with φ/π and the detuning

between probe field and pump field ∆ωm . It shows that the variations of the probe
transmission at ∆ = ωm ± J with the phase difference φ = φq − φpc are asymmetric. The

probe transmission
∣∣tp
∣∣2 attains the maximum value at ∆/ωm = 0.99 while it reaches the

minimum value at ∆/ωm = 1.01 for fixed φ = 0, and vice versa for φ = π. We can select
which channel of ωm ± J to switch on by varying the phase of the driving field applied on
DQDs at the fixed φpc = φp − φc.
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Figure 2. (a) A 3D mesh picture and (b) contour image of the probe transmission |𝑡𝑝|2 versus 𝜙 𝜋⁄  

and probe-control field detuning 𝛥 ⁄ 𝜔𝑚. 𝜔𝑚 = 𝜔𝑞 = 2𝜋 × 100 MHz,𝑔0 = 2𝜋 × 10 MHz, 𝛾𝑎 = 2𝜋 ×

3.2 MHz , 𝛾𝑚 = 2𝜋 × 2 kHz ,  𝛾𝑞 = 2𝜋 × 0.1 MHz , 𝐽 = 2𝜋 × 1 MHz , 𝜀𝑐 = 2𝜋 × 10 MHz , 𝑟 = 0.35 , 𝜂 =

0.45 and 𝛥𝑎 = 𝜔𝑚. 
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sents the probe transmission without the driving field applied on the DQDs system, and 
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structive interference between 𝑡1 and 𝑡2, while |𝑡𝑝|2 is almost zero around 𝛥 = 𝜔𝑚 + 𝐽 

(𝛥 𝜔𝑚⁄ = 1.01 ) because of the destructive interference between 𝑡1  and  𝑡2 . Figure 3d 

demonstrates that |𝑡1|2 does not vary with an increase of the amplitude of the driving 

field, but |𝑡2|2 increases monotonically as r varies. With the increase of the driving-field 

amplitude, |𝑡𝑝|2 at 𝛥 𝜔𝑚⁄ = 0.99 becomes larger and larger due to the constructive in-

terference between 𝑡1 and 𝑡2. Figure 3b demonstrates that the transmission properties of 

the probe field |𝑡𝑝|2  around 𝛥 𝜔𝑚⁄ = 0.99  and 𝛥 𝜔𝑚⁄ = 1.01  as 𝜙 = 𝜋  is adverse to 

that for the situation as 𝜙 = 0. 

0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2  

 / 
m

 

 


/ 

 

0.5

1

1.5

2

2.5

3

Figure 2. (a) A 3D mesh picture and (b) contour image of the probe transmission
∣∣tp
∣∣2 versus

φ/π and probe-control field detuning ∆ωm , ωm = ωq = 2π × 100 MHz, g0 = 2π × 10 MHz,
γq = 2π × 3.2 MHz, γm = 2π × 2 KHz, γq = 2π × 0.1 MHz, J = 2π × 1 MHz, εc = 2π × 10 MHz,
r = 0.35, η = 0.45 and ∆a = ωm.

It is also found that the probe transmission
∣∣tp
∣∣2 can be larger than unity in the two

channels ∆ = ωm ± J when φ varies, which means that the output probe field can be
amplified in certain variation ranges of φ. The probe field can be amplified because of
the following transition process that the system transitions from the ground state |0a, 0m〉
to |1a, 0m〉 through absorbing one driving field particle and one pump field particle and
then emitting one probe field particle with the transition from |1a, 0m〉 down to |0a, 0m〉 (see
Figure 1c), in which the energy of pump field and driving field can be transferred to the
probe field.

Figure 3a–c exhibit that the curves of
∣∣tp
∣∣2, |t1|2, |t2|2 vary with the probe-pump field

detuning ∆/ωm when φ is set to (a) 0, (b) π and (c) π/2, respectively. |t1|2 represents the
probe transmission without the driving field applied on the DQDs system, and double
OMIT is observed around ∆ = ωm ± J due to the interference of the probe field with
the anti-Stokes field resulting from the radiation pressure [14,15,28]. There are two main
transition pathways as the system transitions from the ground state |0a, 0m〉 to |1a, 0m〉,
which are |0a, 0m〉 →|0a, 1m±〉→|1a, 0m〉 and |0a, 0m〉 →|1a, 0m〉. The destructive interfer-
ence between two excitation pathways leads to the presence of double OMITs [14]. |t2|2
represents the influence of the driving field applied on the DQDs on the probe transmission.
The driving field can affect the phase and probability amplitude of the transition pathway
of the transition process of |0a, 0m〉 →|0a, 1m±〉→|1a, 0m〉, which results in the controlling
of the transmission properties of the probe field by adjusting the amplitude and phase of
the driving field.

Comparing the red dashed line with the blue dotted line in Figure 3a,b, we find |t1|2

and |t2|2 remain the same as φ varies. However, if we set φ = 0,
∣∣tp
∣∣2 is much larger than

both |t1|2 and |t2|2 around ∆ = ωm − J(∆/ωm = 0.99), which results from the constructive
interference between t1 and t2, while

∣∣tp
∣∣2 is almost zero around ∆ = ωm + J (∆/ωm = 1.01)

because of the destructive interference between t1 and t2. Figure 3d demonstrates that
|t1|2 does not vary with an increase of the amplitude of the driving field, but |t2|2 in-
creases monotonically as r varies. With the increase of the driving-field amplitude,

∣∣tp
∣∣2

at ∆/ωm = 0.99 becomes larger and larger due to the constructive interference between
t1 and t2. Figure 3b demonstrates that the transmission properties of the probe field

∣∣tp
∣∣2

around ∆/ωm = 0.99 and ∆/ωm = 1.01 as φ = π is adverse to that for the situation as
φ = 0.
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Figure 3. Curves of
∣∣tp
∣∣2, |t1|2, |t2|2 vary with the probe-pump field detuning ∆/ωm when φ equals to (a) 0, (b) π and

(c) π/2, respectively. (d) Curves of
∣∣tp
∣∣2, |t1|2, |t2|2 at ∆ = ωm − J vary with r = µεq/εp when the phase difference φ = 0.

(e) Curves of
∣∣tp
∣∣2, |t1|2, |t2|2 vary with the probe-pump field detuning ∆/ωm for φ = 0 when the pump field amplitude εc

equals to 0.15ωm and r = 0.52. (f) Curves of
∣∣tp
∣∣2 at ∆ = ωm − J vary with pump field amplitude εc/2π for different phase

difference φ when r=0.35. The other parameters are the same as those in Figure 2.

From Figure 3c, one can find that double OMIT is observed around ∆ = ωm ± J
when φ = π/2, although the maximum probe transmissions around ∆ = ωm ± J are
little smaller than the corresponding maximum values on Figure 3a,b. Tuning the phase
difference φ form π/2 to π, the probe transmission around ∆/ωm = 0.99 would be tuned
from remarkable amplification to perfect absorption, while the variation of the probe
transmission around ∆/ωm = 1.01 goes in the opposite direction.

In order to obtain the enhanced amplitude of the probe transmission coefficient
∣∣tp
∣∣2

at a selected channel, such as ∆ = ωm − J (∆/ωm = 0.99), one could increase parameter r.
However, the probe transmission coefficient

∣∣tp
∣∣2 at the other channel ∆/ωm = 1.01 will no

longer stay at zero if r varies from the original value of 0.35. If one wants to switch on one
channel and switch off the other at the same time, one should adjust the other parameters;
for example, one can set the pump field amplitude εc = 0.15ωm as shown in Figure 3e.

Figure 3f shows that the probe transmissions
∣∣tp
∣∣2 at ∆/ωm = 0.99 vary with the

increase of the pump-field amplitude εc/2π for different phase difference φ. For φ = 0,
the probe transmission

∣∣tp
∣∣2 at ∆/ωm = 0.99 would be enhanced by the constructive

interference between t1 and t2, but it is suppressed by the destructive interference for
φ = π. At the crossover point, the complete destructive interference between t1 and t2

results in
∣∣tp
∣∣2 = 0 for φ = π. Thus, one can control the amplitude of

∣∣tp
∣∣2 by varying the

pump-field amplitude εc.
Figure 4 shows how the curves of

∣∣tp
∣∣2, |t1|2, |t2|2 vary with the probe-pump field

detuning ∆/ωm as the phase difference φ is set to (a) π/2 and (b) 3π/2, respectively. From
the red dashed line in Figure 4a, one can find that |t1|2 around the two OMIT windows is
very small because the small pump-field amplitude reduces the interference between the
probe field and the anti-Stokes field. From the blue dotted line in Figure 4a, we can find
that |t2|2 is obviously enhanced around the two OMIT windows, and |t2|2 has the same
value as that of |t1|2 at ∆ = ωm ± J. Comparing Figure 4a with Figure 4b, we can find that
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the deconstructive interference between t1 and t2 leads to
∣∣tp
∣∣2 = 0 at ∆ = ωm ± J for

φ = π/2, while the constructive interference between t1 and t2 results in the maximum of
the probe transmission

∣∣tp
∣∣2 at ∆ = ωm ± J for φ = 3π/2.
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Figure 4. Curves of
∣∣tp
∣∣2, |t1|2, |t2|2 vary with the probe-pump field detuning ∆/ωm for (a) φ = π/2

and (b) φ = 3π/2. The other parameters are the same as those in Figure 2 except for εc = 0.0055ωm

3.2. Group Time Delay Effect

Since rapid phase dispersion would result in a group time delay effect within the
transparency window, we will discuss how to control the phase dispersion by tuning the
pump field and the driving field in this subsubsection.

The group time delay of the transmitted probe field is defined as [28]:

τg =
dφt
(
ωp
)

dωp
=

d
{

arg
[
tp
(
ωp
)]}

dωp
(10)

Figure 5 gives the curves of the group time delay τg that vary with the pump-field
amplitude εc/2π for different driving-field amplitudes. If the driving field amplitude is
set to zero, the maximum group delay time is τg = 2.24 µs . The group time delay τg is
obviously influenced by the additional driving field, especially if it is dominated by the
phase difference φ.

If r = 0.35 and φ = 0, the maximum group delay time τg at ∆/ωm = 0.99 can be
extended to about 4.47 µs with the amplified probe field; If we set r = 0.35 and φ = π/3,
the maximum group delay τg at ∆/ωm = 0.99 increases to about 6.12 µs;

The maximum group time delay τg at ωm ± J can be extended to about 9.82 µs at
εc/2π = 0.9 MHz if r = 0.35 and φ = π/2 for dual-channel operation mode. Further-
more, the fast light effect appears because the group time delay τg is negative around
εc/2π = 0.3 MHz. From Figure 3f, we can find that the probe transmission coefficient at
εc/2π = 0.9 MHz is about 0.1, and the probe transmission coefficient at εc/2π = 0.3 MHz
is about 0.03, while the probe transmission around the negative group delay region is
approximately equal to zero in reference [28]. Thus, one should make a trade-off between
long group time delay and high probe transmittance. Parameters should be selected to
guarantee that

∣∣tp
∣∣2 is non-zero.
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Figure 5. Curves of group time delay τg vary with the pump-field amplitude εc/2π and driving
field amplitude at ∆/ωm = 0.99 for different phase differences. The other parameters are the same as
those in Figure 2.

For a fixed pump field, the group time delay effect can be affected by the amplitude
and the phase of the driving field. Figure 6 shows that τg varies with r for φ = 0, π/3, and
π/2, respectively. One can find that τg at ∆ = ωm − J (∆/ωm = 0.99) raises monotonically
as r increases at φ = 0. For φ = π/3 and π/2, the group delay firstly grows and then
descends gradually as r increases. The group delay time can be extended as the phase
difference φ increases.

Nanomaterials 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

 

Figure 5. Curves of group time delay τg vary with the pump-field amplitude 𝜀𝑐 2𝜋⁄  and driving 

field amplitude at 𝛥 𝜔𝑚⁄ = 0.99 for different phase differences. The other parameters are the same 

as those in Figure 2. 

The maximum group time delay 𝜏𝑔 at 𝜔𝑚 ± 𝐽 can be extended to about 9.82𝜇𝑠 at 

𝜀𝑐 2𝜋⁄ = 0.9 MHz if r = 0.35 and 𝜙 = 𝜋 2⁄  for dual-channel operation mode. Furthermore, 

the fast light effect appears because the group time delay 𝜏𝑔 is negative around 𝜀𝑐 2𝜋⁄ =

0.3 MHz. From Figure 3f, we can find that the probe transmission coefficient at 𝜀𝑐 2𝜋⁄ =

0.9 MHz is about 0.1, and the probe transmission coefficient at 𝜀𝑐 2𝜋⁄ = 0.3 MHz is about 

0.03, while the probe transmission around the negative group delay region is approxi-

mately equal to zero in reference [28]. Thus, one should make a trade-off between long 

group time delay and high probe transmittance. Parameters should be selected to guar-

antee that |𝑡𝑝|2 is non-zero. 

For a fixed pump field, the group time delay effect can be affected by the amplitude 

and the phase of the driving field. Figure 6 shows that 𝜏𝑔 varies with r for 𝜙 = 0, π/3, 

and 𝜋/2, respectively. One can find that 𝜏𝑔 at 𝛥 = 𝜔𝑚 − 𝐽 (𝛥 𝜔𝑚⁄ = 0.99) raises mono-

tonically as r increases at 𝜙 = 0. For 𝜙 = 𝜋/3 and 𝜋/2, the group delay firstly grows and 

then descends gradually as r increases. The group delay time can be extended as the phase 

difference 𝜙 increases. 

 

Figure 6. Curves of group delay 𝜏𝑔 at 𝛥 𝜔𝑚⁄ = 0.99 vary with 𝑟 = 𝜇εq εp⁄  for different phase dif-

ference. The inset of Figure 6 shows the curve of 𝜏𝑔 varies with 𝜙 at r = 0.3. The other parameters 

are the same as those in Figure 2 except for 𝜀𝑐 2𝜋⁄ = 0.9 MHz. 

In addition, the inset of Figure 6 shows that the group delay 𝜏𝑔 varies with ϕ for 

fixed r = 0.3. It can be found that the group delay time 𝜏𝑔 has a maximum as the variation 

of 𝜙 for fixed r.  

Figure 7 presents a schematic figure of the possible functions that can be realized by 

the system proposed here. The system can realize a two-channel selective-switch function 

0 5 10 15 20 25 30 35 40 45 50
-5

0

5

10


c
/2 (MHz)

G
ro

u
p
 d

e
la

y
 

g
 (


s
) 

 

 

0 1 2
-10

0

10


c
/2 (MHz)

 r = 0.35,  = 0

 r = 0.35,  = /3

 r = 0.35,  = /2

 r = 0

0 0.5 1 1.5 2
-4

-2

0

2

4

6

8

10

12

 r 

G
ro

u
p
 d

e
la

y
 

g
 (


s
) 

 

 

0 0.5 1 1.5 2
0

10

20

/ 

G
ro

u
p
 d

e
la

y
 

g
 (


s
) 

 

 

 r=0.3

 = 0

 = /3

 = /2

Figure 6. Curves of group delay τg at ∆/ωm = 0.99 vary with r = µεq/εp for different phase
difference. The inset of Figure 6 shows the curve of τg varies with φ at r = 0.3. The other parameters
are the same as those in Figure 2 except for εc/2π = 0.9 MHz.

In addition, the inset of Figure 6 shows that the group delay τg varies with φ for fixed
r = 0.3. It can be found that the group delay time τg has a maximum as the variation of φ
for fixed r.

Figure 7 presents a schematic figure of the possible functions that can be realized by
the system proposed here. The system can realize a two-channel selective-switch function
by adjusting the phase of the driving field applied on the DQDs, and one can turn on any
single channel, turn on both channels or turn off both channels by modulating the driving-
field phase. The transmitted probe field would be tuned from remarkable amplification to
perfect absorption by changing the driving-field phase. Furthermore, the group time delay
can reach a maximum, and negative group delay can be realized with nonzero probe field
transmission for proper parameters.
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The properties of the transmitted probe field can be controlled flexibly by adjusting
the driving field and the pump optical field.

4. Conclusions

In summary, the driving field can obviously affect the transmission properties of the
weak probe field through the HOMS.

Firstly, the system can be tuned to switch on any one channel of the two OMIT
windows, switch on both channels of the two OMIT windows or switch off both channels
of the two OMIT windows by modulating the driving-field amplitude and phase. The
transmission properties of two OMIT windows are asymmetrical.

Secondly, the transmission of the probe field in the double OMIT window can be
tuned into amplification or absorption, and the group time delay of the probe field can
be obviously enhanced if one chooses proper parameters for amplitude and phase for the
driving field on DQDs.

In brief, the system can act as a two-channel selective switch and a light storage, and
its properties can be adjusted by dynamically modulating the driving field and the pump
optical field.
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