Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem
Abstract
:1. Introduction
2. Calculational Methods and Details
3. Calculation Results
3.1. Electric Field Effects
3.2. Image-Potential States
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
2D | Two-dimensional |
IPS | Image-potential state |
STM | Scanning-tunneling microscopy |
DFT | Density-functional theory |
LDA | Local-density approximation |
BZ | Brillouin zone |
References
- Visscher, P.B.; Falicov, L.M. Dielectric screening in a layered electron gas. Phys. Rev. B 1971, 3, 2541–2547. [Google Scholar] [CrossRef]
- Pietronero, L.; Strässler, S.; Zeller, H.R.; Rice, M.J. Charge distribution in c direction in lamellar graphite acceptor intercalation compounds. Phys. Rev. Lett. 1978, 41, 763–767. [Google Scholar] [CrossRef]
- Pietronero, L.; Strässler, S.; Zeller, H.R. Nonlinear screening in layered semimetals. Solid State Commun. 1979, 30, 399–401. [Google Scholar] [CrossRef]
- Safran, S.A.; Hamann, D.R. Electrostatic interactions and staging in graphite intercalation compounds. Phys. Rev. B 1980, 22, 606–612. [Google Scholar] [CrossRef]
- DiVincenzo, D.P.; Mele, E.J. Self-consistent effective-mass theory for intralayer screening in graphite intercalation compounds. Phys. Rev. B 1984, 29, 1685–1694. [Google Scholar] [CrossRef]
- DiCenzo, S.D.; Wertheim, G.K.; Basu, S.; Fischer, J.E. Charge distribution in potassium graphite. Phys. Rev. B 1981, 24, 2270–2273. [Google Scholar] [CrossRef]
- DiCenzo, S.D.; Basu, S.; Wertheim, G.K.; Buchanan, D.N.E.; Fischer, J.E. In-plane charge distribution in potassium-intercalated graphite. Phys. Rev. B 1982, 25, 620–626. [Google Scholar] [CrossRef]
- Grunes, L.A.; Ritsko, J.J. Valence and core excitation spectra in K, Rb, and Cs alkali-metal stage-1 intercalated graphite. Phys. Rev. B 1983, 28, 3439–3446. [Google Scholar] [CrossRef]
- Peres, N.M.R.; Guinea, F.; Neto, A.H.C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 2006, 73, 125411. [Google Scholar] [CrossRef] [Green Version]
- Polini, M.; Tomadin, A.; Asgari, R.; MacDonald, A.H. Density functional theory of graphene sheets. Phys. Rev. B 2008, 78, 115426. [Google Scholar] [CrossRef] [Green Version]
- Yu, E.K.; Stewart, D.A.; Tiwari, S. Ab initio study of polarizability and induced charge densities in multilayer graphene films. Phys. Rev. B 2008, 77, 195406. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.-N.; Dong, G.-Y.; Wang, S.-F.; Fu, G.-S.; Wang, J.-L. Intra- and inter-layer charge redistribution in biased bilayer graphene. AIP Adv. 2016, 6, 035213. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.L.; Okada, S. Carrier distribution control in bilayer graphene under a perpendicular electric field by interlayer stacking arrangements. Appl. Phys. Express 2021, 14, 035001. [Google Scholar] [CrossRef]
- Lang, N.D.; Kohn, W. Theory of metal surfaces: Induced surface charge and image potential. Phys. Rev. B 1973, 7, 3541–3550. [Google Scholar] [CrossRef]
- Serena, P.A.; Soler, J.M.; Garcia, N. Self-consistent image potential in a metal surface. Phys. Rev. B 1986, 34, 6767–6769. [Google Scholar] [CrossRef] [PubMed]
- Inglesfield, J.E. The screening of an electric field at an Al(001) surface. Surf. Sci. 1987, 188, L701–L707. [Google Scholar] [CrossRef]
- Eguiluz, A.G.; Hanke, W. Evaluation of the exchange-correlation potential at a metal surface from many-body perturbation theory. Phys. Rev. B 1989, 39, 10433–10436. [Google Scholar] [CrossRef] [PubMed]
- Kiejna, A. Image plane position at a charged surface of stabilized jellium. Surf. Sci. 1993, 287–288, 618–621. [Google Scholar] [CrossRef]
- McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403(R). [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomicall thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Grillo, A.; Di Bartolomeo, A.; Urban, F.; Passacantando, M.; Caridad, J.M.; Sun, J.; Camilli, L. Observation od 2D conduction in ultrathin germanium arsenide field-effect transistors. ACS Appl. Mater. Interfaces 2020, 12, 12998–13004. [Google Scholar] [CrossRef]
- Echenique, P.M.; Pendry, J.B. Existence and detection of Rydbeg states at surfaces. J. Phys. C Solid State Phys. 1978, 11, 2065–2075. [Google Scholar] [CrossRef]
- Echenique, P.M.; Pendry, J.B. Theory of image states at metal surfaces. Prog. Surf. Sci. 1989, 32, 111–159. [Google Scholar] [CrossRef]
- Silkin, V.M.; Zhao, J.; Guinea, F.; Chulkov, E.V.; Echenique, P.M.; Petek, H. Image potential states in graphene. Phys. Rev. B 2009, 80, 121408(R). [Google Scholar] [CrossRef] [Green Version]
- de Andres, P.L.; Echenique, P.M.; Niesner, D.; Fauster, T.; Rivacova, A. One-dimensional potential for image-potential states on graphene. New J. Phys. 2014, 16, 023012. [Google Scholar] [CrossRef] [Green Version]
- Borca, B.; Barja, S.; Garnica, M.; Sánchez-Portal, D.; Silkin, V.M.; Chulkov, E.V.; Hermanns, C.F.; Hinarejos, J.J.; Vxaxzquez de Parga, A.L.; Arnau, A.; et al. Potential energy landscape for hot electrons in periodically nanostructured graphene. Phys. Rev. Lett. 2010, 105, 036804. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.G.; Hu, H.; Pan, Y.; Mao, J.H.; Gao, M.; Guo, H.M.; Du, S.X.; Greber, T.; Gao, H.-J. Graphene based quantum dots. J. Phys. Condens. Matter 2010, 22, 302001. [Google Scholar] [CrossRef] [Green Version]
- Niesner, D.; Fauster, T.; Dadap, J.I.; Zaki, N.; Knox, K.R.; Yeh, P.-C.; Bhandari, R.; Osgood, R.M.; Petrović, M.; Kralj, M. Trapping surface electrons on graphene layers and islands. Phys. Rev. B 2012, 85, 081402(R). [Google Scholar] [CrossRef] [Green Version]
- Armbrust, N.; Güdde, J.; Jakob, P.; Höfer, U. Time-resolved two-photon photoemission of unoccupied electronic states of periodically rippled graphene on Ru(0001). Phys. Rev. Lett. 2012, 108, 056801. [Google Scholar] [CrossRef]
- Nobis, D.; Potenz, M.; Niesner, D.; Fauster, T. Image-potential states of graphene on noble-metal surfaces. Phys. Rev. B 2013, 88, 195435. [Google Scholar] [CrossRef] [Green Version]
- Niesner, D.; Fauster, T. Image-potential states and work function of graphene. J. Phys.: Condens. Matter 2014, 26, 393001. [Google Scholar] [CrossRef] [Green Version]
- Craes, F.; Runte, S.; Klinkhammer, J.; Kralj, M.; Michely, T.; Busse, C. Mapping image potential states on graphene quantum dots. Phys. Rev. Lett. 2013, 111, 056804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achilli, S.; Tognolini, S.; Fava, E.; Ponzoni, S.; Drera, G.; Cepek, C.; Patera, L.L.; Africh, C.; del Castillo, E.; Trioni, M.I.; et al. Surface states characterization in the strongly interacting graphene/Ni(111) system. New J. Phys. 2018, 20, 103039. [Google Scholar] [CrossRef]
- Lin, Y.; Li, Y.-Z.; Sadowski, J.T.; Jin, W.-C.; Dadap, J.I.; Hybertsen, M.S.; Osgood, R.M., Jr. Excitation and characterization of image potential state electrons on quasi-free-standing graphene. Phys. Rev. B 2018, 97, 165413. [Google Scholar] [CrossRef] [Green Version]
- Tognolini, S.; Achilli, S.; Ponzoni, S.; Longetti, L.; Mariani, C.; Trioni, M.I.; Pagliara, S. On- and off-resonance measurement of the Image State lifetime at the graphene/Ir(111) interface. Surf. Sci. 2019, 679, 11–16. [Google Scholar] [CrossRef]
- Bose, S.; Silkin, V.M.; Ohmann, R.; Brihuega, I.; Vitali, L.; Michaelis, C.H.; Mallet, P.; Veuillen, J.Y.; Schneider, M.A.; Chulkov, E.V.; et al. Image potential states as a quantum probe of graphene interfaces. New J. Phys. 2010, 12, 023028. [Google Scholar] [CrossRef]
- Sandin, A.; Pronschinske, A.; Rowe, J.E.; Dougherty, D.B. Incomplete screening by epitaxial graphene on the Si face of 6H-SiC(0001). Appl. Phys. Lett. 2010, 97, 113104. [Google Scholar] [CrossRef]
- Takahashi, K.; Imamura, M.; Yamamoto, I.; Azuma, J.; Kamada, M. Image potential states in monolayer, bilayer, and trilayer epitaxial graphene studied with time- and angle-resolved two-photon photoemission spectroscopy. Phys. Rev. B 2014, 89, 155303. [Google Scholar] [CrossRef]
- Gugel, D.; Niesner, D.; Eikhoff, C.; Wagner, S.; Weinelt, M.; Fauster, T. Two-photon photoemission from image-potential states of epitaxial graphene. 2D Mater. 2015, 2, 045001. [Google Scholar] [CrossRef] [Green Version]
- Ambrosio, G.; Achilli, S.; Pagliara, S. Resonance intensity of the n = 1 image potential state of graphene on SiC via two-photon photoemission. Surf. Sci. 2021, 703, 121722. [Google Scholar] [CrossRef]
- Hamada, I.; Hamamoto, Y.; Morikawa, Y. Image potential states from the van der Waals density functional. J. Phys. Chem. 2017, 147, 044708. [Google Scholar] [CrossRef] [PubMed]
- Armbrust, N.; Güdde, J.; Höfer, U. Formation of image-potential states at the graphene/metal interface. New J. Phys. 2015, 17, 103043. [Google Scholar] [CrossRef]
- Silkin, V.M.; Chulkov, E.V.; Sklyadneva, I.Y.; Panin, V.E. Self-consistent pseudopotential calcualtion of the aluminum energy spectrum. Soviet Phys. J. 1984, 27, 762–767. [Google Scholar] [CrossRef]
- Troullier, N.; Martins, J.L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006. [Google Scholar] [CrossRef]
- Ceperley, D.M.; Alder, B.J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Zunger, A. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 1981, 23, 5048–5079. [Google Scholar] [CrossRef] [Green Version]
- Krasovskii, E.E. Ab initio theory of photoemission from graphene. Nanomaterials 2021, 11, 1212. [Google Scholar] [CrossRef]
- Kogan, E.; Nazarov, V.U.; Silkin, V.M.; Kaveh, M. Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations. Phys. Rev. B 2014, 89, 165430. [Google Scholar] [CrossRef] [Green Version]
- Kogan, E.; Silkin, V.M. Electronic structure of graphene: (Nearly) free electron bands versus tight-binding bands. Phys. Status Solidi B 2017, 254, 1700035. [Google Scholar] [CrossRef] [Green Version]
- Nazarov, V.U.; Krasovskii, E.E.; Silkin, V.M. Scattering resonances in two-dimensional crystals with application to graphene. Phys. Rev. B 2013, 87, 041405. [Google Scholar] [CrossRef] [Green Version]
- Chulkov, E.V.; Silkin, V.M.; Echenique, P.M. Image potential states on metal surfaces: Binding energies and wave functions. Surf. Sci. 1999, 437, 330–352. [Google Scholar] [CrossRef]
- Posternak, M.; Balderischi, A.; Freeman, A.J.; Wimmer, E.; Weinelt, M. Prediction of electronic interlayer states in graphite and reinterpretation of alkali bands in graphite intercalation compounds. Phys. Rev. Lett. 1983, 50, 761–764. [Google Scholar] [CrossRef]
- Posternak, M.; Balderischi, A.; Freeman, A.J.; Wimmer, E. Prediction of electronic surface states in layered materials: Graphite. Phys. Rev. Lett. 1984, 52, 863–866. [Google Scholar] [CrossRef]
- Tsirkin, S.S.; Zaitsev, N.L.; Nechaev, I.A.; Tonner, R.; Höfer, U.; Chulkov, E.V. Inelastic decay of electrons in Shockley-type metal-organic interface states. Phys. Rev. B 2015, 92, 235434. [Google Scholar] [CrossRef] [Green Version]
- Armbrust, N.; Schiller, F.; Güdde, J.; Höfer, U. Model potential for the description of metal/organic interface states. Sci. Rep. 2017, 7, 46561. [Google Scholar] [CrossRef]
- Eschmann, L.; Sabitova, A.; Temirov, R.; Tautz, F.S.; Kruger, P.; Rohlfing, M. Electric and thermoelectric transport in graphene and helical metal in finite magnetic fields. Phys. Rev. B 2019, 100, 125155. [Google Scholar] [CrossRef]
- Marks, M.; Armbrust, N.; Güdde, J.; Höfer, U. Impact of interface-state formation on the charge-carrier dynamics at organic-metal interfaces. New J. Phys. 2020, 22, 093042. [Google Scholar] [CrossRef]
- Stalberg, K.; Shibuta, M.; Höfer, U. Temperature effects on the formation and the relaxation dynamics of metal-organic interface states. Phys. Rev. B 2020, 102, 121401. [Google Scholar] [CrossRef]
- Feng, M.; Zhao, J.; Petek, H. Atomlike, hollow-core-bound molecular orbitals of C60. Science 2008, 320, 359–362. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, M.; Yang, J.; Petek, H. The superatom states of fullerenes and their hybridization into the nearly free electron bands of fullerites. ACS Nano 2009, 3, 853–864. [Google Scholar] [CrossRef] [PubMed]
- Dutton, G.J.; Dougherty, D.B.; Jin, W.; Reutt-Robey, J.E.; Robey, S.W. Superatom orbitals of C60 on Ag(111): Two-photon photoemission and scanning tunneling spectroscopy. Phys. Rev. B 2011, 84, 195435. [Google Scholar] [CrossRef]
- Zhao, J.; Zheng, Q.J.; Petek, H.; Yang, J.L. Nonnuclear nearly free electron conduction channels induced by doping charge in nanotube-molecular sheet composites. J. Phys. Chem. A 2014, 118, 7255–7260. [Google Scholar] [CrossRef]
- Gumbs, G.; Balassis, A.; Iurov, A.; Fekete, P. Strongly localized image states of spherical graphitic particles. Sci. World J. 2014, 2014, 726303. [Google Scholar] [CrossRef] [Green Version]
- Knorzer, J.; Fey, C.; Sadeghpour, H.R.; Schmelcher, P. Control of multiple excited image states around segmented carbon nanotubes. J. Chem. Phys. 2015, 143, 204309. [Google Scholar] [CrossRef] [Green Version]
- Johansson, J.O.; Bohl, E.; Campbell, E.E.B. Super-atom molecular orbital excited states of fullerenes. Philos. Trans. R. Soc. A 2016, 374, 20150322. [Google Scholar] [CrossRef]
- Shibuta, M.; Yamamoto, K.; Guo, H.L.; Zhao, J.; Nakajima, A. Highly dispersive nearly free electron bands at a 2D-assembled C60 monolayer. J. Phys. Chem. C 2020, 124, 734–741. [Google Scholar] [CrossRef]
- Borca, B.; Castenmiller, C.; Tsvetanova, M.; Sotthewes, K.; Rudenko, A.N.; Zandvliet, H.J.W. Image potential states of germanene. 2D Mater. 2020, 7, 035021. [Google Scholar] [CrossRef]
- Kong, L.J.; Liu, L.R.; Chen, L.; Zhong, Q.; Cheng, P.; Li, H.; Zhang, Z.H.; Wu, K.H. One-dimensional nearly free electron states in borophene. Nanoscale 2019, 11, 15605–15611. [Google Scholar] [CrossRef]
- Khazaei, M.; Ranjbar, A.; Ghorbani-Asi, M.; Arai, M.; Sasaki, T.; Liang, Y.Y.; Yunoki, S. Nearly free electron states in MXenes. Phys. Rev. B 2016, 93, 205125. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Kuklin, A.V.; Baev, A.; Ge, Y.Q.; Ågren, H.; Zhang, H.; Prasad, P.N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58. [Google Scholar] [CrossRef]
- Wang, M.Y.; Khazaei, M.; Kawazoe, Y.; Liang, Y.Y. First-principles study of a topological phase transition induced by image potential states in MXenes. Phys. Rev. B 2021, 103, 035433. [Google Scholar] [CrossRef]
- Wella, S.A.; Sawada, H.; Kawaguchi, N.; Muttaqien, F.; Inagaki, K.; Hamada, I.; Morikawa, Y.; Hamamoto, Y. Hybrid image potential states in molecular overlayers on graphene. Phys. Rev. Mater. 2017, 1, 061001. [Google Scholar] [CrossRef] [Green Version]
1.048 | 1.6 | 1.58 | 0.84 | 0.29 | 0.21 | 0.12 |
0 | 1.6 | 1.47 | 0.72 | 0.25 | 0.19 | 0.11 |
−1.048 | 1.6 | 1.43 | 0.64 | 0.21 | 0.16 | 0.10 |
2.1 | 1.30 | 0.52 | 0.19 | 0.15 | 0.11 | |
2.6 | 1.27 | 0.49 | 0.20 | 0.15 | 0.10 | |
LDA | 1.17 | 0.25 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silkin, V.M.; Kogan, E.; Gumbs, G. Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem. Nanomaterials 2021, 11, 1561. https://doi.org/10.3390/nano11061561
Silkin VM, Kogan E, Gumbs G. Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem. Nanomaterials. 2021; 11(6):1561. https://doi.org/10.3390/nano11061561
Chicago/Turabian StyleSilkin, Vyacheslav M., Eugene Kogan, and Godfrey Gumbs. 2021. "Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem" Nanomaterials 11, no. 6: 1561. https://doi.org/10.3390/nano11061561
APA StyleSilkin, V. M., Kogan, E., & Gumbs, G. (2021). Screening in Graphene: Response to External Static Electric Field and an Image-Potential Problem. Nanomaterials, 11(6), 1561. https://doi.org/10.3390/nano11061561