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Abstract: Graphene oxide (GO)-based materials have demonstrated promising potential for ad-
sorption and purification applications. Due to its amphiphilic nature, GO offers the possibility of
removing various kinds of contaminants, including heavy metal ions and organic pollutants from
aqueous environments. Here, we present size-selective ion adsorption in GO-based laminates by
directly measuring the weight uptake of slats. Adsorption studies were conducted in graphene oxide
purchased from Nisina Materials Japan prepared using a controlled method. We tuned the interlayer
spacing of GO membranes via cationic control solutions using intercalation of very small salts ions
(i.e., K+, Na+, Cl−) very precisely to facilitate the adsorption of larger ions such as [Fe(CN)6]4− and
[Fe(CN)6]3−. This study demonstrates that if the opening of nanocapillaries within the laminates is
bigger than the hydrated diameter of ions, the adsorption occurs within the membranes while for
smaller opening, with no ion entrance the sorption occurs on the surface of the membranes.

Keywords: adsorption; graphene oxide; size effect

1. Introduction

As an emerging solution-processable class of nanomaterials, graphene oxide (GO)
has shown enormous potential for use in molecular sieving [1,2], ion separations [3–5], de-
salination [6–9], purification [10–12], supercapacitors [13], electronics [14,15], and lithium
ion-based batteries [16]. By stacking the GO sheets layer by layer, the assembled mem-
brane has a laminated structure where the interlayer spacing determines mass transport
behaviour. Pristine GO membrane shows a strict rejection of ions and molecules with a
hydrated radius larger than 4.75 Å [17]. To this end, the excellence of GO membranes for
practical applications primarily relies on the control of interlayer spacings which indeed,
has been a subject of interest for many studies [1,4,18–23]. However, due to the hydrophilic
nature of graphene oxide [24], the laminates swell when hydrated, expanding the interlayer
spacing to more than one nanometer [25]. Efforts have been made to avoid the swelling of
graphene oxide laminates. For example, Nair et al. control the interlayer spacing of GO
membranes between epoxy for desalination purposes [26]. Further, when GO membranes
are intercalated with cations, the negatively charged oxygen functional groups can be
interlinked by the ions to prevent the swelling of the laminates [2].

Given the electrostatic interaction with cations, graphene oxide has been studied
extensively as a heavy metal ion adsorbent in an aqueous environment. The electrostatic
force makes negatively charged graphene oxide flakes attractive to heavy metal cations, and
thus provides excellent sorption performance in aqueous solutions [2]. Indeed, graphene
oxide-based adsorbents have been reported to effectively remove ions such as palladium,
gold, mercury, and lead [2,27–29]. It is also shown that GO-based adsorbents share excellent
reproducibility regardless of the assembly method [2]. Apart from removing cations
by physicochemical adsorption, graphene oxide can also act as a surfactant to remove
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organic molecules with larger molecular radius, such as emerging organic contaminants
(EOCs) [30] and polycyclic aromatic hydrocarbons (PAHs) [31] from aqueous sources. GO-
based adsorbent can soak hydrophilic as well as hydrophobic contaminants from water
because the hydrophobic graphitic area and hydrophilic functional groups make each GO
flake an individual surfactant sheet [32].

Figure 1 summarizes the radius of ions and molecules identified as major contaminants
and their uptake amount by GO-based adsorbents. As Figure 1 demonstrates, very few
studies have focused on adsorption of ions and molecules with a hydrated diameter
between 8.5 to 10 Å, using GO-based adsorbents. Depending on the preparation method,
the interlayer spacing of GO laminates varies from 8.5 to 10 Å [33–35]. The GO-based
adsorbents have not been used significantly in the past due to the possible variation of
interlayer spacing of GO in the presence of water [25,36]. As a result, it is difficult to obtain
reliable adsorption amount from the contaminants with a radius in this range. However,
artificial system with size-dependent separation function is of great interest for modern
separation technology such as the extraction of Li+ from seawater and removal of ions such
as Cs+ from radioactive waste.
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Figure 1. Adsorption amount of ions and molecules by GO-based adsorbent, including heavy metal
ions [27–29,37], Emerging organic contaminants (EOCs) [30] and polycyclic aromatic hydrocarbons
(PAHs) [31].

This work is the first attempt to systematically study the secondary adsorption of ions
close to the interlayer spacing of a graphene-based laminated adsorbent. A wide variety of
parameters on sorption behaviour has been studied, including temperature, concentration,
oxygen functional groups and sorption time. We used cationic control to regulate the
interlayer spacing of GO laminates for studying its adsorption properties to ions with
a diameter between 8 to 10 Å. We have selected especially the two ions [Fe(CN)6]4−

and [Fe(CN)6]3−. Here, the adsorbates (Fe (II) and Fe (III)) were chosen based on two
considerations: (1) similar molecular structure so that the chemical sorption component can
be neglected; and (2) slightly different hydrated diameter (8.44 Å for [Fe(CN)6]4− and 9.50
Å for [Fe(CN)6]3−, [38]) which is close to the reported diameter cut-off for GO membrane
filtration [17]. Graphene oxide membranes were prepared by vacuum filtration, as this
method provides appropriate simplicity and stable laminated structure [39].
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2. Materials and Methods
2.1. Preparation of GO Membranes

The GO nanosheets (size < 500 nm) used in this study prepared via modified Hum-
mer’s method (further modified) were supplied by Nisina Materials (Okayama-city, Japan)
and to exfoliate, the solution was further ultrasonicated, followed by centrifugation to
separate the layers. The obtained suspension was washed following the reported pro-
cess [40] to exclude the remaining ions. The graphene oxide suspension was then filtered
through a polyvinylidene fluoride (PVDF) substrate to obtain graphene oxide membranes.
The as-prepared GO membranes were stored in desiccators before analysis. The size of
nanoflakes as well as the charge in membranes may have important role in adsorption and
diffusion. Small flake size of GO or large flake- to- flake lateral distance may lead to higher
effective porosity in membranes.

2.2. Interlayer Spacing Control of GO Membranes and Swelling Test

It is known that the interlayer spacing of GO membranes varies when it is soaked in
different salt solutions [2]. To ensure the reliability of our experiment, all GO membranes
used in this study were taken from the same stock solution. The GO membranes were
soaked with salt solutions (KCl, NaCl, CaCl2, and MgCl2) at controlled concentration and
temperature for two hours. After the sorption, the membranes were carefully transferred
into dry centrifuge tubes. The remaining solution was removed by centrifuging the mem-
brane at 3000 rpm for 10 min. X-ray diffraction was utilized to monitor the interlayer
spacing change before and after the interlayer spacing control process. For studying the
swelling behavior, the GO membranes with cationic control were washed by deionized
water, and test again by X-ray Diffraction (XRD) analysis. This method of determining
swelling behaviour was described in detail in literature [41].

2.3. Salt Adsorption under Interlayer Spacing Control

To obtain the adsorption amount of salt in GO membranes with cationic control, we
adopted a method reported in the literature [2]. Briefly, the membranes were immersed
in cationic control solutions for 1 h, analyzed by XRD, and then immersed in cyanide
solution for 1 h, and again analyzed by XRD. This method reported here is based on
two assumptions: (1) volume change of adsorbate solution caused by GO membrane is
negligible; (2) adsorption of cation and anion on GO membrane is nearly stoichiometric so
that the amount of salt being adsorbed relates to the number of ions being adsorbed. To
calculate the salt uptake, GO membranes with known weight (M) were firstly immersed in
0.25 mol/L of chloride salts (KCl, NaCl, CaCl2, and MgCl2), and then moved to adsorbate
solutions of K4[Fe(CN)6] and K3[Fe(CN)6] with a concentration of 0.1 M, 0.5 M and 0.7 M
with a volume V. The samples were stored at different temperatures for at least two hours
until the equilibrium was considered as reached. In the tested temperature range, the
swelling of GO membrane is considered minimal. The concentration of adsorbate before
and after adsorption (CB and CA) was measured by inductively coupled plasma optical
emission spectrometry (ICP-OES). The weight uptake of adsorbates (Quptake (T)) can be
expressed by:

Quptake(T) =
(CB − CA)V

M
, (1)

The temperature of the solution was maintained by a water bath, with a standard
error of ±0.1 ◦C. The concentration of the ions of interest was obtained by inductively
coupled plasma optical emission spectrometry (systemic error 10−5 mol/L), where the Fe
was selected as a benchmark element for all related ions. The weight of the membranes was
recorded by a high precision electrical balance, with a measured standard error of 0.01%.

2.4. Characterizations

Morphology observation of the membranes was carried out by scanning electron
microscopy (SEM, NanoSEM 450, FEI Nova, Hillsboro, OR, USA), and transmission elec-
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tron microscopy (TEM, cm200, Philips, Amsterdam, The Netherlands). A cross-sectional
TEM specimen was prepared by focused ion beam (FIB, FEI Nova Nanolab 200, Hillsboro,
OR, USA). The X-ray diffraction (XRD) signals were collected from an Empyrean I system
(Malvern PANalytical, Westborough, MA, USA). To check if there is residual salt, all XRD
signals weres recorded up to 50 degrees. Measurement of the solution-soaked membrane
with XRD was carried out on membranes sealed with polycarbonate bags to avoid evapo-
ration. The X-ray photoemission spectroscopy data was collected from a Thermo Fisher
ESCALAB250Xi instrument (Thermo Fisher, Waltham, MA, USA). The determination of
concentration was carried out on an inductively coupled plasma optical emission spectrom-
eter (ICP-OES, Optima, Perkin Elmer, Waltham, MA, USA). The specific surface area of the
membrane was calculated from the nitrogen physisorption isotherms of 20 milligrams of
the sample at 77 K, which was obtained on a Tristar 3000 device (Micromeritics, Cumming,
GA, USA).

3. Results and Discussion

The GO membranes prepared by the vacuum filtration share a similar thickness of
2 µm, and a similarly wrinkled membrane surface (Figure 2A). The specific surface area
of the membranes is 45 ± 5 m2/g, which origininates from to the porous structure as
observed by cross-sectional FIB-TEM (Figure 2B). The average interlayer spacing (using
XRD analysis) of GO laminates was observed to be 7.8 ± 0.2 Å, which is typical for our
membranes (Figure 2C). The carbon to oxygen ratio for the membranes is 2.40 ± 0.05, with
an identical distribution of carboxyl, hydroxyl and ester groups (Figure 2D).

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 10 
 

 

was recorded by a high precision electrical balance, with a measured standard error of 
0.01%.  

2.4. Characterizations  
Morphology observation of the membranes was carried out by scanning electron mi-

croscopy (SEM, NanoSEM 450, FEI Nova, Hillsboro, OR, USA), and transmission electron 
microscopy (TEM, cm200, Philips, Amsterdam, Netherlands). A cross-sectional TEM spec-
imen was prepared by focused ion beam (FIB, FEI Nova Nanolab 200, Hillsboro, OR, 
USA). The X-ray diffraction (XRD) signals were collected from an Empyrean I system 
(Malvern PANalytical, Westborough, MA, USA). To check if there is residual salt, all XRD 
signals weres recorded up to 50 degrees. Measurement of the solution-soaked membrane 
with XRD was carried out on membranes sealed with polycarbonate bags to avoid evap-
oration. The X-ray photoemission spectroscopy data was collected from a Thermo Fisher 
ESCALAB250Xi instrument (Thermo Fisher, Waltham, MA, USA). The determination of 
concentration was carried out on an inductively coupled plasma optical emission spec-
trometer (ICP-OES, Optima, Perkin Elmer, Waltham, MA, USA). The specific surface area 
of the membrane was calculated from the nitrogen physisorption isotherms of 20 milli-
grams of the sample at 77 K, which was obtained on a Tristar 3000 device (Micromeritics, 
Cumming, GA, USA). 

3. Results and Discussion 
The GO membranes prepared by the vacuum filtration share a similar thickness of 2 

μm, and a similarly wrinkled membrane surface (Figure 2A). The specific surface area of 
the membranes is 45 ± 5 m2/g, which origininates from to the porous structure as observed 
by cross-sectional FIB-TEM (Figure 2B). The average interlayer spacing (using XRD anal-
ysis) of GO laminates was observed to be 7.8 ± 0.2 Å, which is typical for our membranes 
(Figure 2C). The carbon to oxygen ratio for the membranes is 2.40 ± 0.05, with an identical 
distribution of carboxyl, hydroxyl and ester groups (Figure 2D).  

 
Figure 2. (A) SEM image of as-prepared graphene oxide membrane. Scale bar: 5 μm. (B) Cross-
sectional view of as-prepared graphene oxide membrane by FIB-TEM. Scale bar: 1 μm. (C) XRD 
spectra of as-prepared graphene oxide membrane. (D) XPS spectra of as-prepared graphene oxide 
membrane, with a labelled composition of carboxyl, hydroxyl, and carbon to carbon bond. 

Figure 2. (A) SEM image of as-prepared graphene oxide membrane. Scale bar: 5 µm. (B) Cross-
sectional view of as-prepared graphene oxide membrane by FIB-TEM. Scale bar: 1 µm. (C) XRD
spectra of as-prepared graphene oxide membrane. (D) XPS spectra of as-prepared graphene oxide
membrane, with a labelled composition of carboxyl, hydroxyl, and carbon to carbon bond.

Our experiments show that GO membranes, when immersed in deionized water
without external pressure, swell by water molecules and thus enlarges its interlayer spacing
to more than 1 nm. As the thickness of monolayer graphene is 3.4 Å [42], it is essential to
precisely confine the interlayer spacing of GO membranes between 11.4 to 13.4 Å to study
the adsorption of ions with a diameter between 8 to 10 Å.
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3.1. Cationic Control of the Interlayer Spacing of GO Membranes

To minimize swelling during the adsorption process of GO membranes, we used
cationic control method [2]. Graphene oxide membranes were firstly dipped in cationic
control solutions, then moved to deionized water for the swelling test. Specifically, the
interlayer spacing of GO membranes controlled by KCl exhibit an average value of 11.4 Å,
while intercalation of NaCl, CaCl2, and MgCl2 further enlarges the interlayer spacing of GO
membranes to 11.8 Å, 12.1 Å and 13.6 Å, respectively (Figure 3A, red columns). The value
of interlayer spacing for cationic controlled GO membranes was averaged from multiple
measurements on three different membranes. Here, we use the term such as KCl-GO to
represent the GO membranes with cationic controlled interlayer spacing.
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Figure 3. (A) Interlayer spacing of GO membranes with cationic control, and the swelling behaviour
of GO membranes immersed in deionized water and K4[Fe(CN)6] solution. (B) Schematic of GO
membranes with cationic control and adsorption uptake analysis. (C,D) Salt uptake by GO membrane
with cationic control for K4[Fe(CN)6] and K3[Fe(CN)6] with temperature. (E,F) Salt uptake by GO
membrane with cationic control for K4[Fe(CN)6] and K3[Fe(CN)6] with concentration.

Evaluation of the swelling behaviour was conducted in the XRD chamber, with a
method described elsewhere in detail [41]. Briefly, GO membranes were immersed in deion-
ized water, then scanned by XRD. Opposite to the unmodified ones, the GO membranes
with cationic control exhibit resistance to swelling in deionized water (Figure 3A, blue
columns). It has been reported that GO membranes with cationic control by Ca2+, Mg2+ and
Mn2+ can keep their structural integrity in deionized water for over one month [2,40], sig-
nificantly longer than the time required for adsorbates to reach equilibrium inside/outside
the membrane.
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3.2. Adsorption Properties of GO Membranes under Cationic Control

We then evaluated the adsorption properties of GO membranes toward the [Fe(CN)6]4−

and [Fe(CN)6]3− in the membranes as a function of temperature. Prior to the adsorption
analysis, it is necessary (as discussed in the introduction.) to check the swelling properties
of GO membranes with cationic control in adsorbate solutions. Therefore, the as-prepared
GO membranes were soaked with cationic control solutions (KCl, NaCl, MgCl2 and CaCl2)
respectively, and then immersed in 0.1M of K4[Fe(CN)6] solution. The membrane (im-
mersed) was analyzed by XRD to check the swelling properties. The schematic for the
adsorption experiment under cationic control is shown in Figure 3B. We found that the
GO membranes with cationic control were comparably stable in the adsorbate solution, as
shown in Figure 3A (green columns). Based on these results, we attempted to calculate the
amount of adsorbed K4[Fe(CN)6] and K3[Fe(CN)6] as described in the experimental section.

Figure 3C,D present how the temperature affects the weight uptakes of those cationic
controlled GOMs upon being placed in the 0.1M K4[Fe(CN)6] and K3[Fe(CN)6] solutions.
For the smaller ion ([Fe(CN)6]4−, 8.44 Å), the amount of ion adsorption for all controlled
samples (NaCl-GO, MgCl2-GO, and CaCl2-GO) shows an uptrend under an increased
temperature (Figure 3C), indicating a relatively low energy barrier for adsorption. In the
case of the KCl-GO sample (black curve in Figure 3C), which has a quite narrow laminated
structure, the adsorption keeps almost constant. This is reasonable as a high energy
barrier is required to overcome for the [Fe(CN)6]4− ion entering such a small opening at
this temperature.

The impact of interlayer spacing become more apparent in the adsorption of [Fe(CN)6]3−

ion. As Figure 3D shows, the adsorption amount for [Fe(CN)6]3− is not increasing with
temperature, except the GO membrane with the largest opening (CaCl2-GO, green line). The
average opening for the CaCl2-GO sample is 13.6 − 3.4 = 10.2 Å, which is bigger than the
diameter of hydrated [Fe(CN)6]3− (9.50 Å). However, it is worth to note that the remaining
Mn2+ from the oxidation process [40] could lead to unexpected enlargement of KCl-GO, NaCl-
GO and MgCl2-GO interlayer spacing, which results in similar increasement of adsorption
amount for the larger ion [Fe(CN)6]3−.

Apart from using temperature as driving force, we have also studied the adsorption
amount of [Fe(CN)6]4− and [Fe(CN)6]3− with a concentration of 0.1M, 0.3M, 0.5 M and
0.7 M. As shown in Figure 3E,F, the concentration driven adsorption of both ions show
similar behaviour to the temperature-driven adsorption. That is, the KCl-GO sample gives
the least adsorption of [Fe(CN)6]4− ion while the CaCl2-GO gives the increasing adsorption
amount. The CaCl2-GO is the only group of the sample that allows [Fe(CN)6]3− to enter in
the nanocapillaries within interlayer spacing due to larger opening (10.2 Å). Therefore, it is
safe to say that in our experimental conditions (temperature and concentration), the energy
barrier cannot be overcome for [Fe(CN)6]4− and [Fe(CN)6]3− to be adsorbed through a
channel with openings smaller than their hydrated size. However, we cannot exclude the
possibility of another driving force that allows adsorption of these ions to GO membrane
with a well-confined interlayer spacing.

4. Conclusions

We have studied the size effect for adsorption in GO membranes with precisely
confined interlayer spacing. With suppressed swelling of GO laminates, adsorption of two
selected ion species with different sizes has been analyzed with changing temperature and
concentration. If the opening is bigger than the hydrated diameter of ions, the adsorption
is possible, and its amount increases with temperature and ion concentration. A larger
opening of ~10.2 Å provided by interaction of Ca2+ allows the sorption of both Fe-cyanide
ions but GO modified by smaller ions only allow the smaller Fe-cyanide to penetrate.
Neither elevated temperature nor higher concentration could offer the energy required for
diffusion of the larger Fe-cyanide ion into the interlayer controlled by smaller ions in the
tested range. The observed adsorption of secondary (larger) ions via intercalation of smaller
ions through cationic control within the capillaries is a novel phenomenon and requires
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more detailed research. Our study opens new avenues to understand the adsorption on
GO membranes where not only the size of ionic species but also the GO flake size, charge
and porosity can play important roles which need further investigations.
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