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Abstract: In emerging artificial intelligence applications, massive matrix operations require high
computing speed and energy efficiency. Optical computing can realize high-speed parallel infor-
mation processing with ultra-low energy consumption on photonic integrated platforms or in free
space, which can well meet these domain-specific demands. In this review, we firstly introduce
the principles of photonic matrix computing implemented by three mainstream schemes, and then
review the research progress of optical neural networks (ONNs) based on photonic matrix computing.
In addition, we discuss the advantages of optical computing architectures over electronic processors
as well as current challenges of optical computing and highlight some promising prospects for the
future development.

Keywords: photonic matrix computing; photonic accelerators; artificial intelligence; optical neural
networks; photonic integrated platform; diffractive planes

1. Introduction

With the proliferation of artificial intelligence and the next-generation communica-
tion technology, the growing demand for high-performance computing has driven the
development of custom hardware to accelerate this specific category of computing. How-
ever, processors based on electronic hardware have hit the bottleneck of unsustainable
performance growth as the exponential scaling of electronic transistors reaches the physical
limit revealed by Moore’s law [1]. Photonic processors compute with photons instead of
electrons, and therefore optical computing can dramatically accelerate computing speed by
overcoming the inherent limitations of electronics. Unlike electrical circuit technologies,
photonic circuits have some extraordinary properties such as ultra-wide bandwidth, high
frequency, and low energy consumption. Furthermore, light has several dimensions such
as wavelength, polarization, and spatial mode to enable parallel data processing, result-
ing in remarkable acceleration against a conventional von Neumann computer, which
makes the optical computing approach a viable and competitive candidate for artificial
intelligence accelerators.

The matrix–vector multiplication (MVM) operation is one of the fundamental math-
ematical operations widely used in large-scale neuromorphic optoelectronic computing.
The weighted interconnections between adjacent photonic neurons in ONNs can be math-
ematically represented by a matrix whose entries are the weight values, and each entry
vector is multiplied by the input signal of a particular synapse [2], which matches the math-
ematical nature of MVM. To some extent, neuromorphic engineering is an attempt to move
computational processes of artificial intelligence algorithms to specific hardware, enabling
functions that are difficult to realize with conventional computing hardware. For example,
linear optical elements can calculate convolutions, Fourier transforms, random projections,
and many other operations through light–matter interaction or light propagation [3–6].

There has been rapid progress in research on photonic matrix computing, and different
photonic devices have been successfully used to implement matrix operations. Optical
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modulator arrays, such as electro-optic modulated direct-driven LED arrays and acousto-
optic Bragg devices, can perform matrix calculations at a much faster rate than existing
electronic devices [7–9]. The optical implementation of convolutional neural networks
with fast operation speed and high energy efficiency is appealing owing to its outstanding
capability of feature extraction [10]. In particular, convolutional processing based on MVM,
which is a computationally intensive operation in electronics, occupies over 80% of the total
processing time in convolutional neural networks [11], therefore computational acceleration
for convolutional neural networks can be achieved by matching hardware and MVM
operations. The MVM operation can be mathematically described as

Y = WX =


w11 w12
w21 w22

. . . w1N

. . . w2N
. . . . . .

wN1 wN2

. . . . . .

. . . wNN




x1
x2
. . .
xN

 (1)

where X is the input vector, W is the matrix, and Y = [y1, y2, . . . , yN ]
T is the output

vector. Optical MVMs can be implemented by three mainstream optical methods, as
shown in Figure 1, including the multiple plane light conversion (MPLC) method, the
wavelength division multiplexing (WDM) method, and the Mach–Zehnder interferometer
(MZI) method.
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In this review, we firstly survey recent researches and progress in optical MVMs
and photonic artificial intelligence hardware. After that, we describe the basic principles
of optical MPLC-MVM, WDM-MVM, and MZI-MVM methods. Finally, we discuss the
advantages of optical computing architectures over electronic processors as well as current
challenges of optical computing, and provide perspectives for further improvement of
optical computing architectures.

2. MPLC Matrix Core

Unlike integrated schemes such as microring and MZI matrix cores, the MPLC matrix
core builds computing capabilities directly above an optical field propagating in free space.
Among these three methods, MPLC was the first to be implemented in optical comput-
ing [12], and the initially programmable MVM was finished with spatial optical elements [9].
The MPLC matrix core is the only one that can currently support super-large-scale matrix
operation, which makes it valuable in pulse shaping [13], mode processing [14–16], and
machine learning [5,17–19].

The principle of the MPLC method is shown in Figure 2, and the architecture of the
MPLC matrix core consists of a series of planes encoded with amplitude and phase infor-
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mation, and reflective mirrors are only used to change the direction of light propagation to
reduce the spatial volume of the system. By configuring the parameters of these planes,
the light beam irradiated on the plane surface can be modulated to change amplitude and
phase. The incident light diffracts in free space and then incident to the first plane, after
that, it diffracts in free space and then incident into the second plane, and so on. After
passing through all planes, the final optical field will be output and then be detected by the
photodetector array.
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The transmission matrices Mi (i = 1, 2, . . . , N, N + 1) are fixed owing to the propagation
distance in free space being fixed. The transmission matrix of each plane is a diagonal
matrix, denoted as Ai (i = 1, 2, . . . , N). Therefore, the transmission matrix T of this MPLC
system can be expressed as

T = MN+1AN . . . M2A1M1. (2)

The arrangement of pixels in each plane relates to the matrix dimensions. For example,
if we assume that the pixels of each plane are p × q, then the dimensions of the matrices
Mi, Ai, and T are all pq × pq. From Equation (2), the multiplane transformation can be
mathematically expressed as the cross product of a series of fixed matrices and configurable
diagonal matrices. Theoretically, arbitrary matrix operation can be implemented as long as
there are enough planes, and the number of planes required is approximately equal to 2-
fold the number of input modes, but in fact, only a few planes are needed to approximately
achieve the function of target transmission matrix [20].

In practice, the transmission matrix T in Equation (2) is difficult to analyze or measure
experimentally. In general, parameters of each phase plane can be obtained by iterating
according to the input and target output. One commonly used method is the wavefront
matching method [21], as shown in Figure 3, where the input optical field is φ0(x, y), and
after forward propagation, the distribution of the optical field in front of the mth phase
plane is φm(x, y). On the other hand, Ψm(x, y), the distribution of the optical field after the
mth phase plane, can be obtained by the backward propagation of the output optical field
ΨN+1(x, y). Hence the theoretical phase distribution of the mth phase plane should be the
phase difference between the two fields, i.e., φm(x, y) and Ψm(x, y) :

Φm(x, y) = Λ[Ψm(x, y)φ∗
m(x, y)] (3)

where Λ means the function to get the phase angle. If there are multiple mode pairs of
input and output, then the phase value of the plane should be its weighted phase value:

Φm(x, y) = Λ

[
∑

j
Ψm,j(x, y)φ∗

m,j(x, y)

]
(4)
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where j represents the jth set of input–output mode pairs. By the means of iterating back
and forth to update the parameters of phase planes repeatedly, the algorithm will eventu-
ally converge. The key advantage of the wavefront matching method is that the iterative
speed is very fast, and the whole plane is updated each iterative process, thus the conver-
gence is exponential. Generally, it only needs fewer than 20 iterations back and forth to
achieve convergence.
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Here, in order to visually demonstrate the working mechanism of the MPLC matrix
core and verify its capability to implement large-scale optical computing, we theoretically
demonstrate a specific example of numeric holographic coding based on the MPLC scheme
(Figure 4). We designed a two-digit seven-segment display with 14 segments in total, re-
spectively powered by 14 different Laguerre-Gaussian (LG) modes. The two-digit numbers
range from 00 to 99 can be displayed and switched by setting the combination of input
modes, as shown in Figure 4b.
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How to efficiently deal with the increasing scale of neural network computing remains
a significant problem to be solved. Benefiting from the parallelism and minimal latency of
optical systems in free space, the MPLC scheme has the ability to implement large-scale
matrix operation, which makes it the potential candidate for large-scale neural networks.
In 2018, Lin et al. introduced the diffraction ONNs framework used for all-optical ma-
chine learning, i.e., D2NN, and experimentally demonstrated the image classification with
Modified National Institute of Standards and Technology (MNIST) handwritten digits
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and Fashion-MNIST datasets [5]. The optical D2NN architecture shows great potential for
machine learning applications, and it would be more complete if it included an optical
nonlinear activation function [22]. The image information is encoded in the amplitude
or phase channels of the input optical fields, and wave propagation in free space can be
mathematically described by Kirchhoff’s diffraction integral, which amounts to a convolu-
tion operation of the optical field with a trained kernel. In this work, the training process
of ONNs is still completed by an electronic computer to update parameters, and each
diffractive layer is fabricated by 3D printing technology. In 2021, Rahman et al. applied
a pruning algorithm to further improve the image classification accuracy of D2NNs [23].
On the image classification of the CIFAR-10 dataset released by Canadian Institute For
Advanced Research, whose test images are more complicated than MNIST and Fashion-
MNIST, the D2NN architecture combined with the pruning algorithm provides an inference
improvement of more than 16% compared to the average performance. In neuromorphic
optoelectronic computing, the functionality of input nodes and output neurons is imple-
mented with programmable diffractive optical devices, such as the digital micromirror
device (DMD) and spatial light modulator (SLM). The DMD provides a high optical con-
trast for encoding information. It allows encoding the binarized data into the amplitude
of coherent optical fields, where a phase SLM subsequently modulates their phase dis-
tribution to realize the diffractive modulation. Zhou et al. proposed an optoelectronic
fused computing architecture with a reconfigurable diffractive processing unit, which can
support different neural networks, and achieved excellent experimental accuracies for
image and video recognition over benchmark data sets [19]. It can be seen that the MPLC
scheme is of great potential to narrow the gap and surpass in classification performance
between optical computing architecture and state-of-the-art electronic computers.

Similar to the MPLC method demonstrated in free space, the MPLC matrix core can
also be realized on a chip, whose structure is shown in Figure 5. The integrated MPLC
matrix core is composed of multiple layers, including alternately arranged tunable layers
and unitary diffractive layers, to implement multichannel transformation described by
a unitary matrix. The tunable layer can be achieved by independent phase shifters or
time delay units, corresponding a unitary transfer matrix with diagonal form. The unitary
diffractive layers describe the interaction between channels, which can be implemented
by multimode interference (MMI) couplers or a region of coupled waveguides; therefore,
the transfer matrices of unitary diffractive layers are static because the structure of MMI
couplers and coupled waveguides cannot be changed once fabricated.
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In 2017, Tang et al. proposed a novel integrated architecture consisting of cascaded
MMI couplers and phase shifter arrays [24] to realize an n × n unitary transfer matrix. The
n × n unitary transfer matrix can be decomposed as M stages of unitary matrices with only
diagonal elements (i.e., the transfer matrices of phase shifter arrays) and another M − 1
stage of unitary matrices (i.e., the transfer matrices of MMI) when the path-dependent
coupling loss is not considered. After that, Saygin et al. made an in-depth analysis of this
integrated MPLC architecture, in which the flexibility and robustness of this architecture
have been thoroughly discussed. The transfer matrices of the static MMI blocks can be
randomly chosen from a continuous class of unitary matrices without sacrificing the quality
of approximation for the target unitary transformation, making this scheme insensitive
to errors [25]. The integrated MPLC matrix core provides an alternative viable solution
to decompose large unitary matrices into small ones with high flexibility and robustness,
and thus optical diffractive neural networks are possible to build on a chip based on
this method.

3. Microring Matrix Core

The MPLC scheme of photonic matrix computing was thoroughly discussed in
Section 2, from which we find that the predominant advantage of MPLC schemes is the
capability to implement a large-scale matrix operation at present. However, one major
drawback cannot be ignored—the MPLC scheme is usually limited by bulky optical instru-
ments, and hence they are difficult to highly integrate on a chip.

The microring has a very compact structure and its radius can be as small as a few
microns [26], which means the footprint of photonic devices can be greatly reduced, and
thus the integration density can be competitive. The microring has been widely used in on-
chip WDM systems [27–29], filtering systems [30–32], etc. In addition, a microring array can
also be used in the operations of incoherent matrix computation since each microring can
independently configure the transmission coefficient of a wavelength channel. Therefore,
the microring matrix core is well suited to implement WDM-MVM operation.

The implementations of matrix computation enabled by a microring array are shown
in Figure 6. The N × N-sized microring array in the right region of Figure 6 corresponds to
an N × N-sized matrix M, alternatively called a microring matrix core, and the input signal
X can be represented by a vector with a length of N. The input signal X can be generated
off-chip or on-chip. If it is generated off-chip, the microring array in the left region of
Figure 6, i.e., the microring front module, only serves as a wavelength division multiplexer
for combining multiple input wavelength channels. If it is generated on-chip, the microring
front module is used to modulate the input vector X to different wavelengths. After that,
the input signal is divided into multiple beams with equal power after passing through
the beam splitter, and each beam is sent to a different row of the microring matrix core
in the right region of Figure 6. Each row of the microring matrix core can independently
configure the transmission coefficient of each wavelength channel, and the total power is
finally detected from each output port by photodetectors.

The add-drop microring structure [33] is widely applied in on-chip optical computing
owing to the capability of difference processing. Since the power value is non-negative,
early work only utilized the through port, then the transmission matrix and the output
vector are non-negative, thus the matrix operation is limited in the non-negative number
domain. However, fundamental mathematical operations such as matrix–vector multipli-
cation and matrix–matrix multiplication are usually performed in the real number domain
in practice. In order to extend the matrix operation to the full real number domain, the
final results need to be obtained via the differential processing between the power values
of the drop port and the through port; in this way, the transmission matrix and final output
vector are both able to contain negative domain.

The drop transmission coefficient of the microring situated at the ith row and the jth

column of the microring matrix core is represented by mij, and the through transmission
coefficient is therefore represented by 1 − mij without considering the loss of the microring.
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Each microring situated at the same column merely modulates the optical signal with a
specific wavelength, hence the output of each row contains the power of N different wave-
lengths, and N is numerically equal to the number of microrings positioned in the same row.
Based on the microring matrix core model consisting of add-drop microring structure, we
assume that the input vector is X = [x1, x2, . . . , xN ]

T , thus the output power of drop ports
and through ports of each row can be calculated by Equations (5) and (6), respectively.

yi =
N

∑
j=1

mijxj (5)

yi =
N

∑
j=1

(1 − mij)xj (6)

the output vector of drop ports Y1 = [y1, y2, . . . , yN ]
T can be mathematically described as

Y1 =


m11 m12
m21 m22

. . . m1N

. . . m2N
. . . . . .

mN1 mN2

. . . . . .

. . . mNN




x1
x2
. . .
xN

 (7)

Similarly, the output vector of through ports Y2 can be written as

Y2 =


1 − m11 1 − m12
1 − m21 1 − m22

. . . 1 − m1N

. . . 1 − m2N
. . . . . .

1 − mN1 1 − mN2

. . . . . .

. . . 1 − mNN




x1
x2
. . .
xN

 (8)

then the final output matrix Y can be calculated by the differential processing as

Y = Y2 − Y1 =


1 − 2m11 1 − 2m12
1 − 2m21 1 − 2m22

. . . 1 − 2m1N

. . . 1 − 2m2N
. . . . . .

1 − 2mN1 1 − 2mN2

. . . . . .

. . . 1 − 2mNN




x1
x2
. . .
xN

 (9)
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Figure 6. The scheme of WDM-MVM. The microring front module can be positioned off-chip or
on-chip, which is designed to serve as a wavelength division multiplexer (off-chip) or to modulate
the input vector X to different wavelengths (on-chip). The microring matrix core is an N × N-sized
microring array corresponding to an N × N-sized matrix.

The microring matrix core was used for on-chip photonic matrix operation early in
2013, when Yang et al. proposed a matrix–vector multiplier based on a microring array
and experimentally demonstrated matrix multiplication and weighted interconnection [34].
A “broadcast-and-weight” scheme has been proposed [35,36] and demonstrated [37] to
implement large-scale reconfigurable optical interconnections and the integrated optical
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neural network enabled by microring resonators on a silicon photonic chip utilizing WDM
technique. In this scheme, each microring plays a role as a tunable filter and only oper-
ates at a specific wavelength. Optical signals are modulated in parallel by an array of
microrings [38]. The WDM-MVM scheme provides a viable solution to achieve orders of
magnitude improvements in both computational speed and energy consumption against
existing architectures based on electronic devices. In addition, the microring matrix core
can also be used in the linear computation part of the neural networks to achieve the
optical acceleration of the ONNs. In 2019, Feldmann et al. presented an all-optical spiking
neurosynaptic network successfully realizing pattern recognition directly in the optical
domain, in which a microring integrated with phase-change material (PCM) cell is able
to control whether to generate an output spike pulse by switching the PCM states to
change the optical resonance condition of the microring and its propagation loss [39]. A
scalable optical neural network architecture is implemented using the WDM technique.
Feldmann et al. improved their architecture and demonstrated an integrated photonic
hardware accelerator utilizing optical frequency combs and the WDM technique to achieve
parallel convolutional processing [40]. Recently, Xu et al. proposed an optical convolutional
neural network architecture based on WDM to accelerate computing speed by utilizing
broad optical bandwidth [41], which can be used for various convolutional operations to
realize handwritten digits recognition.

4. MZI Matrix Core

As one of the basic photonic devices, MZI has been widely used in optical modula-
tors [42,43], optical communication [44,45], and optical computing [46]. MZI is a natural
minimum matrix operation unit, and can be fabricated on a silicon platform to implement
the minimum matrix multiplication. The photonic matrix network built by MZIs can be
extended to arbitrary matrix multiplication without fundamental loss. In 1994, Reck et al.
firstly proposed a general algorithm, the triangular decomposition algorithm, for the design
of an experimental realization of any n × n unitary matrix [47]. In this case, unitary matrix
transforms can be achieved by the architecture consisting of beam splitters, phase shifters,
and mirrors arranged according to specific rules.

The structure of MZI is shown in Figure 7a. MZI is composed of two multimode
interference couplers and two interference arms [48]. The phase shifts on the internal and
external phase shifters of MZI can be expressed as θn, αn, and βn, respectively, moreover,
these phase shifters can be easily configured and controlled by thermally tuning the heaters.
The 2 × 2 unitary transformation matrix of a single MZI can be expressed as a standard
SU(2) rotation matrix:

UMZIn = R(n) =
1
2

[
eiαn
(
eiθn − 1

)
ieiαn

(
eiθn + 1

)
ieiβn

(
eiθn + 1

)
eiβn
(
1 − eiθn

) ] (10)
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Arbitrary n × n unitary transformation matrix SU(N) can be theoretically decomposed
into the product of a series of SU(2) rotation submatrices, and therefore the whole MZI
mesh can be equivalent to a reconfigurable black box as shown in Figure 7b to perform
any unitary transformation we desired. A typical example of a 4 × 4 network structure
enabled by an MZI matrix core is given in Figure 7c, which is composed of six MZIs, and
the matrix transformation relations of each port can be obtained by cutting the plane along
the dashed lines. The detailed process can be mathematically described as

U2 = R1,1U1 =

 1
1

R(1)

U1

U3 = R2,1R2,2U2 =

 1
1

R(3)

 1
R(2)

1

U2

U4 = R3,1R3,2R3,3U3 =

 1
1

R(6)

 1
R(5)

1

 R(4)
1

1

U3

(11)

Consequently, the 4 × 4 unitary transformation matrix SU(4) can be expressed as

SU(4) = R3,1R3,2R3,3R2,1R2,2R1,1 (12)

A similar principle can also be applied to any SU(N) matrix; in this way, an arbi-
trary n × n unitary matrix can always be decomposed into the product of n (n − 1)/2
rotation submatrices

SU(N) = RN−1,1RN−1,2 . . . RN−1,N−1 . . . R3,1R3,2R3,3R2,1R2,2R1,1 (13)

According to Equation (13), we can configure the MZI mesh to mimic the correspond-
ing unitary matrix. Furthermore, when it comes to a general n × n matrix, which is not
limited in unitary matrix, we know that a general complex-valued matrix M can be decom-
posed as M = UΣV† utilizing singular value decomposition (SVD) [49], where U is an m × m
unitary matrix, Σ is an m × n rectangular diagonal matrix, and V† is the complex conjugate
of the n × n unitary matrix V [50]. Thus, an arbitrary complex-valued matrix network
can be decomposed into a unitary MZI mesh, an array of tunable optical attenuators, and
another unitary MZI mesh (Figure 8), which can implement U, Σ, and V†, respectively
by tuning phase shifters and attenuators to change the transmission coefficient of each
signal channel.
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The above designs are all based on the triangular decomposition algorithm shown in
Figure 9a. However, the triangular structure has a large footprint and is not compact enough
for highly integrated applications. In 2016, Clements et al. optimized the design on the
basis of the triangular decomposition algorithm and proposed a rectangular decomposition
scheme (Figure 9b) [51]. The principles of these two schemes are similar for they are both
based on rotation submatrices decomposition, but the rectangular scheme is more compact
and neater than triangular scheme.
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The MZI matrix core has already shown its great potential for accelerating the linear
computation part of ONNs and offered the promise to overcome the bottlenecks of state-
of-the-art electronics. In 2017, Shen et al. proposed and experimentally demonstrated a
coherent optical computing architecture enabled by a cascaded programmable MZI mesh
utilizing SVD [50]. This design is capable of remarkably accelerating computing speed and
improving power efficiency using coherent light, which makes the MZI matrix core one
of the most significant building blocks of ONNs and optical computing acceleration. The
following year, Hughes et al. thoroughly discussed the training of ONNs by backpropa-
gation and gradient measurement [52], and this work provided a path toward effectively
implementing on-chip training and optimizing reconfigurable integrated optical platforms.
By applying on-chip training on the integrated optical platform, Zhou et al. proposed and
experimentally demonstrated an all-in-one silicon photonic polarization processor [53,54],
a universal matrix computing chip [55], and a self-configuring programmable signal proces-
sor [56], etc. Beyond the applications in machine learning, these works may also broaden
the access to intelligent optical information processing. In parallel, some recent progress in
network structures has been reported, including hexagonal MZI mesh for various filter op-
tical switch signal processing [57–61] and a programmable microwave photonic chip based
on a quadrilateral MZI mesh [62], etc. These works further enrich the matrix computation
functionalities and versatility of the MZI matrix core. Nevertheless, key issues such as the
large footprint of the MZI structure (usually over 10,000 µm2 per interferometer unit) and
extra energy consumption of thermo-optic modulation (approximately 10 mW per heater
of MZI) limit the application of a large-scale programmable optical neural network to a
certain extent.
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Nano-opto-electro-mechanical systems (NOEMS) are structures designed to maximize
both opto-mechanical and electro-mechanical interaction at the nanoscale [63]. Compared
to devices based on thermo-optical phase shifters, NOEMS-based devices can work without
static power dissipation because mechanical displacements require extra energy only for
switching to a different state. Experimental demonstrations of NOEMS-based devices on
silicon have been reported using in-plane motion of directional couplers [64], microring [65],
and MZI [66], demonstrating the great potential of NOEMS for static and microsecond-scale
reconfiguration of integrated photonic circuits and quantum photonic networks. However,
NOEMS require higher-precision lithography than conventional devices to ensure the
resolution and alignment accuracy of nanophotonic structures, and mechanical systems
generally need to be packaged to avoid the impact of the environment.

5. Discussion and Outlook

The MVM operations enabled by photonics have a remarkably higher speed and
lower energy consumption compared to those of their electronic counter parts, which
provides a feasible acceleration solution for the applications of artificial intelligence. On
the one hand, on-chip integrated photonic circuits are an ideal platform for artificial
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neural networks owing to their high compactness and great potential for competitive
integration density. In addition, fast electro-optical modulators and efficient nonlinear
optical components built on the LiNbO3-on-insulator (LNOI) platform are compatible with
silicon photonic circuits [67–69] and provide a promising alternative approach to realize
all-optical neural networks on one chip. On the other hand, the MPLC method based on
holography can achieve an ultra-large size of MVM operations due to the capability of high
parallel processing in free space, and a high model complexity with millions of neurons
has already been achieved with the architecture enabled by the MPLC matrix core. The
optical AI accelerator provides a hardware platform, which is completely different from
the conventional electronic architecture, used to support several universal neural network
algorithms to match specific artificial intelligence applications including image recognition,
human action recognition, and Google PageRank, etc.

Table 1 summarizes the comparison of different recently demonstrated photonic AI
accelerators with well-known analog and digital electronic hardware. The performance
parameters of photonic architectures were obtained by theoretically extrapolating from the
experimental performance index of a handful of photonic processing units. In complemen-
tary metal–oxide–semiconductor (CMOS), MVM operations are typically implemented
by systolic arrays [70] or single instruction multiple data (SIMD) units [71]. Due to the
properties of electronic components, performing simple operations requires a large number
of transistors to work together and an extra scheduler program to coordinate the data
movement involved in weights, while MVM operations can be easily implemented by fun-
damental photonic components such as microring, MZI, and diffractive plane. Therefore,
the rate of photonic computing is several orders of magnitude faster than electrons and
consumes much less power.

Table 1. Comparison of different photonic AI accelerators with well-known analog and digital electronic hardware.

Technology Computing Density
(TMACs/s/mm2) Energy/MAC Latency Precision

(bits)

MPLC with a reconfigurable diffractive processing unit [19] - 0.82 fJ/MAC - 8
Broadcast-and-weight based on WDM [72] 50 2.1 fJ/MAC <100 ps 5.1+

Photonic WDM/PCM in-memory computing [40]
(220 nm SOI platform) 81 17 fJ/MAC 250 ps 5

Optical convolutional accelerator based on WDM [41] - 1.58 pJ/MAC - 8
Coherent MZI mesh [50] 0.56 30 fJ/MAC <100 ps 5.1+
Google TPU (digital) [70] 0.58 0.43 pJ/MAC 1.4 ns 8

Flash (analog) [73] 18 7 fJ/MAC 15 ns 5

However, to turn experimental demonstrations into practical artificial intelligence
processors, several key emerging technologies are required to overcome the bottlenecks in
computing bandwidth, smart control strategies, and all-optical neural networks, so as to
further improve the performance and feasibility of optical computing architectures.

Chip-scale optical frequency combs and high-speed electro-optical modulators are
essential when it comes to enlarging computing bandwidth and achieving higher rates. As
a type of tailor-made light source, the optical frequency comb provides evenly spaced wave-
lengths aligned to standardized communication channels. Light has the capability of paral-
lel processing. Combined with WDM technology, an additional dimensional–wavelength
can be introduced. In this way, large amounts of data can be independently encoded on
different wavelengths and processed in parallel, hence the computing bandwidth of the
parallel photonic matrix operation will be increased by dozens of times. LNOI-based
electro-optical modulators benefit from outstanding properties such as a strong electro-
optical coefficient and their compatibility with silicon photonic devices, offering high
modulation frequencies over 100 GHz [69,74] and the on-chip electro-optic modulation
desired for nanophotonics.
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Currently, electronic technology is already mature for dataflow control, which is
difficult for photonic computing. For integrated photonic devices, especially resonant
devices, even slight changes in the environment will affect their normal operation, thus the
photonic circuits need to be tuned in real time using intelligent control strategies to resist
environmental variability, such as temperature and vibration. In addition, a nanostructure
fabrication error can lead to random parameter drifts for devices, which cannot be ignored
in large-scale array. A commonly used method is to respectively preprogram devices to
an ideal default state to compensate for the fabrication errors. Smart algorithms, such as
gradient descent and back propagation, are often used to intelligently configure photonic
processing units and build some neural network models.

Optical nonlinear activation function and the efficiency of electro-optical conversion
are of great significance to construct all-optical neural networks. Nonlinear activation
functions enable neural networks to build complex mappings between inputs and outputs.
At present, the nonlinear activation function is mainly realized by digital computers, where
new optical signals are generated and modulated and then fed to the subsequent layers.
Delays and power consumption in electro-optical conversion processes, as well as the
rate-constrained I/O ports of traditional processors, result in performance limitations of
the ONNs, especially in large matrix dimensions. To solve this challenging problem, optical
nonlinear materials, such as 2D materials and PCM, can be developed and integrated with
photonic devices to provide a variety of nonlinear responses while avoiding extra latency
and loss associated with frequent electro-optical conversion.

In conclusion, optical computing architectures based on integrated photonic circuits
and holography have shown great capabilities for high-speed matrix computing and
emerging artificial intelligence applications. However, developing general purpose optical
computing systems will remain challenging in the foreseeable future, whose high perfor-
mance can only be achieved through the flexible design combining hardware with software.
On the one hand, chip-scale optical frequency combs, high-speed modulators, and new op-
tical materials can be applied to further improve the performance of the hardware, mainly
including computing density, speed and latency. On the other hand, intelligent control
algorithms are used to solve the challenges of tunability and practicality. At present, optical
computing systems have already been used in computer vision, speech recognition, and
complex signal processing, and are expected to expand the frontiers of machine learning
and information processing applications.
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