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Abstract: In the past two decades, we have learned a great deal about self-assembly of dendritic
metal oxide structures, partially inspired by the nanostructures mimicking the aesthetic hierarchical
structures of ferns and corals. The self-assembly process involves either anisotropic polycondensation
or molecular recognition mechanisms. The major driving force for research in this field is due to the
wide variety of applications in addition to the unique structures and properties of these dendritic
nanostructures. Our purpose of this minireview is twofold: (1) to showcase what we have learned so
far about how the self-assembly process occurs; and (2) to encourage people to use this type of material
for drug delivery, renewable energy conversion and storage, biomaterials, and electronic noses.
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1. Introduction

A dendritic structure exhibits a tree-like shape containing stems and branches. It can
be a macromolecule, supramolecule, or nanostructure. Despite appearing otherwise in
literature, herein “dendrites” mean the dendritic structures of crystals or metals (such as
gold, silver, and copper) [1,2], while dendrimers refer to highly branched macromolecules
or supramolecules.

Since the discovery of dendrimers in 1978 [3], the number of reports regarding the
syntheses of these types of materials has grown exponentially. Most dendrimers reported in
literature are organic oligomers, macromolecules, and supramolecules, which may contain
metal- or silicon-ligand moieties [4–8]. Specifically, the dendritic transition-metal complexes
and metallodendrimers were well discussed by Astruc and Chardac [9]. Figure 1 shows
the dendrimers of polyethylene and polyglycerol, which have been graphed on ceramic
membranes using -OSiO- bond as a link. The resulting composite materials were found to
efficiently remove aromatic hydrocarbons and trihalogen methanes from water [10].

Not so long ago, dendritic nanostructures of metal oxides or organic-inorganic hy-
brids emerged from the field of material science. These dendritic structures are composed
of organized 1D or 2D inorganic particulates [11], and the latter is made of 1D or 2D
macromolecules/supramolecules (Scheme 1). Noticeably, most of these materials are pre-
pared through self-assembly via a sol-gel or hydrothermal route, which often involves
supramolecular organization via molecular recognition between the specially designed
species (e.g., between the oligomers and surfactants) [12]. Chemical vapor deposition and
electrodeposition are also well-established approaches for making sophisticated nanostruc-
tures [13,14], but the sol-gel and hydrothermal methods are more scalable for commercial-
ization. Due to their special hierarchical nanostructures, dendritic metal oxides exhibit
open macropores (>50 nm) and the large mesopores (2–50 nm). This makes most of their
surface area available for large molecules or causes a situation where mass transfer is the
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bottleneck of a process. In a water splitting process, for instance, the produced hydrogen
bubbles can be trapped within the pores of electrodes, which makes it difficult for water
molecules to access the active sites of the catalyst [15]. This problem can be solved by using
the electrode with a dendritic nanostructure.
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Figure 1. Examples of dendritic oligomers that are used to modify ceramic filters to remove organic contaminants
from water [10].
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ternatively, one can use a stainless-steel view cell reactor that can be heated and pres-
surized to 35 megapascals [41]. By taking advantage of better mass and heat transfer in 
supercritical carbon dioxide (scCO2), self-assembly of titanium-oxo‒alkoxyl‒acetate 
complexes (Ti6O6(OAc)6(OiPr)6) results in dendritic nanostructures of Ti6O9(OAc)6. The 
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Dendritic metal oxides are potentially useful in the fields of medicine [16–18], biomaterials [19],
heterogeneous catalysis [20], protective coatings [21–24], molecular machines [25], energy
conversion and storage [26], sensing electronics [27–29], and low-voltage transistors [30–33].
Recently, another type of dendritic structure has caught people′s attention: dendritic meso-
pores. These radially aligned channels are generated within spherical particles [34,35].
These dendritic pores are different from the parallel mesopore channels within silicate
MCM-41, a milestone work performed by Mobil Oil Cooperation [36].

The purpose of this paper is to review, from the synthesis and application perspectives,
metal oxide-based dendritic nanostructures.

2. Synthesis of Dendritic Metal Oxides
2.1. Sol-Gel Method

The first documented sol-gel synthesis appeared in 1939, when Geffcken and Berger
described their novel oxide coating technique [37]. Because sol-gel processing is easy for
scale-up and process control, this technique has been commercialized for coating thin films
and making ceramic fibers and/or aerogels [38]. During the past few decades, sol-gel
technologies have made significant progress towards developing mesoporous materials,
nanoparticles (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional
(3D) metal oxides [39–42]. Conventional sol-gel reactions involve hydrolysis and poly-
condensation of metal salts or alkoxides in a solvent medium, such as water, an organic
solvent, ionic liquid, or a supercritical fluid. For making a well-defined nanostructure,
one needs to control the rates of reaction between a metal precursor (such as titanium
isopropoxide) and water. This can be achieved by addition of carboxylic acids, alcohols,
or surfactants [43]. It was found that addition of propylene oxide in the starting materials
facilitates gel formation [44,45]. The bench-top equipment for sol-gel synthesis can be as
simple as a round-bottom flask sitting on a hot plate and stirrer. Alternatively, one can use
a stainless-steel view cell reactor that can be heated and pressurized to 35 megapascals [41].
By taking advantage of better mass and heat transfer in supercritical carbon dioxide (scCO2),
self-assembly of titanium-oxo-alkoxyl-acetate complexes (Ti6O6(OAc)6(OiPr)6) results in
dendritic nanostructures of Ti6O9(OAc)6. The later can be calcined in air to form titania
(TiO2) (Figure 2a,b) [46]. When isopropanol is used, interestingly, dendritic TiO2 can be
prepared which is composed of 2D structures (Figure 2c,d) [47]. Due to a high surface area
and large pore size, this type of material shows advantages over traditional catalysts for
industrial applications [48–50]. The sol-gel self-assembly will be discussed further in the
following section.

A spin coating of sol-gel fluid can be used for preparing dendritic zinc stannate in a
thin film, which is a sensor material for detecting certain chemicals in liquified petroleum,
such as ethanol, formaldehyde, and hydrogen sulfide [51]. The hierarchical structures
exhibit an open surface that facilitates diffusion of target molecules in a liquid phase. In
addition, the dendritic structures are more anti-fouling than microporous counterparts,
even though the latter often exhibit a higher surface area. Polyethylene glycol may play
multiple roles, such as in preventing precipitation of the metal precursors in sol-gel process,
as well as in avoiding shrinkage and cracking upon drying [52].

By using cetyltrimethylammonium bromide (CTAB) as a surfactant, hydrolysis and
polycondensation of tetraethyl orthosilicate (TEOS) can produce a dendritic microstructure
of silica with encapsulated phenolphthalein, which can form an opto-chemical sensor
device [53]. Alternatively, a thin film of dendritic polymer/SiO2 can be prepared by
polycondensation of mixed silicon alkoxide: Si(OR)4, R′Si(OR)3, and R′HSi(OR)2, where
R and R′ stand for CH3 and C2H5 alkyl groups, respectively [54]. Because the R′-Si
bond is inert and hydrolysis and condensation only occur on the -OR ligands, anisotropic
condensation can be expected from sol-gel reactions of R′Si(OR)3 and R′HSi(OR)2. Hence, it
is not surprising to observe dendritic structures from these precursors. By using tetraethyl
orthosilicate and metal (Fe, Ni, and Co) chlorides as precursors, a dendritic magnetic
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nanocomposite structure can be obtained via a sol-gel route, followed by annealing up to
1373 K [55]. The resulting materials can be used for medical or information storage systems.

Nanomaterials 2021, 11, x FOR PEER REVIEW 4 of 22 
 

 

shows advantages over traditional catalysts for industrial applications [48–50]. The 
sol‒gel self-assembly will be discussed further in the following section. 

 
Figure 2. SEM images of TiO2 dendritic nanostructures prepared via sol‒gel reactions of titanium isopropoxide with ace-
tic acid in scCO2 (a,b) and isopropanol (c,d). 

A spin coating of sol‒gel fluid can be used for preparing dendritic zinc stannate in a 
thin film, which is a sensor material for detecting certain chemicals in liquified petrole-
um, such as ethanol, formaldehyde, and hydrogen sulfide [51]. The hierarchical struc-
tures exhibit an open surface that facilitates diffusion of target molecules in a liquid 
phase. In addition, the dendritic structures are more anti-fouling than microporous 
counterparts, even though the latter often exhibit a higher surface area. Polyethylene 
glycol may play multiple roles, such as in preventing precipitation of the metal precur-
sors in sol‒gel process, as well as in avoiding shrinkage and cracking upon drying [52]. 

By using cetyltrimethylammonium bromide (CTAB) as a surfactant, hydrolysis and 
polycondensation of tetraethyl orthosilicate (TEOS) can produce a dendritic microstruc-
ture of silica with encapsulated phenolphthalein, which can form an opto-chemical sen-
sor device [53]. Alternatively, a thin film of dendritic polymer/SiO2 can be prepared by 
polycondensation of mixed silicon alkoxide: Si(OR)4, R′Si(OR)3, and R′HSi(OR)2, where R 
and R′ stand for CH3 and C2H5 alkyl groups, respectively [54]. Because the R′‒Si bond is 
inert and hydrolysis and condensation only occur on the ‒OR ligands, anisotropic con-
densation can be expected from sol‒gel reactions of R′Si(OR)3 and R′HSi(OR)2. Hence, it is 
not surprising to observe dendritic structures from these precursors. By using tetraethyl 
orthosilicate and metal (Fe, Ni, and Co) chlorides as precursors, a dendritic magnetic 
nanocomposite structure can be obtained via a sol‒gel route, followed by annealing up to 
1373 K [55]. The resulting materials can be used for medical or information storage sys-
tems. 

Self-assembly also is a powerful tool for synthesizing hydrogels with an internal 
dendritic structure. For example, Ga3+ anionic metal‒organic cubes were linked together 
by using ammonium or amine-based ions as a binder to form dendritic supramolecules 

Figure 2. SEM images of TiO2 dendritic nanostructures prepared via sol-gel reactions of titanium isopropoxide with acetic
acid in scCO2 (a,b) and isopropanol (c,d).

Self-assembly also is a powerful tool for synthesizing hydrogels with an internal
dendritic structure. For example, Ga3+ anionic metal-organic cubes were linked together by
using ammonium or amine-based ions as a binder to form dendritic supramolecules [56].
This type of material is useful for gel-chromatographic separation of dyes, and it can also
be an intermediate for hybrid metal oxides.

In Table 1, both the advantages and disadvantages of sol-gel method are summa-
rized, which can be compared with other synthesis methods in terms of their advantage,
scalability, and production cost for a commercial scale production.

Table 1. Comparison of synthesis methods for making dendritic metal oxides.

Methods Advantages Disadvantages Scalability Cost

Sol-gel
mild synthesis
conditions, low

reaction temperature

long reaction time, organic
solvents high low

Hydro-
/solvothermal short reaction time

anti-corrosive and pressure
vessels, organic solvents, and

surfactants
high high

Electrochemical involving less
chemicals energy intensive relatively

low high

Supramolecular
self-assembly

mild synthesis
conditions, low

reaction temperature

organic solvents and
surfactants high low
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2.2. Hydrothermal and Solvothermal Methods

The discovery of this method can be dated back to the middle of 19th century, when
K.F.E. Schafthaul synthesized quartz crystals within supercritical water [57]. By taking
advantage of a high temperature, high density, and high viscosity of water or other solvents
above ambient pressure, one can grow both microscopic and macroscopic crystals. In
the past two decades hydrothermal/solvothermal methods have been widely used for
preparing metal oxides with different sizes and morphologies. The operation temperature
can be diversified from as high as 673 K to as low as 353 K [58]. In the early days, Bunsen
used thick-walled glass barometer tubing for his synthesis of BaCO3 and SrCO3 crystals
at 473 K and 1.5 megapascal [59]. Nowadays, a Teflon-lined stainless-steel autoclave is
widely available for bench-scale synthesis. The starting materials can be varied from metal
alkoxide to salts and even a metal oxide itself [60].

Hydrothermal or solvothermal techniques are also useful for synthesizing dendritic
TiO2, as reviewed by Wu and coworkers [61]. It was found that the synthesis conditions,
especially the aggregation of surfactant by molecular recognition, plays an important
role in controlling the size and shape of the final products. More detail regarding the
nanostructure formation mechanism will be described in the following section.

Aside from TiO2, other metal oxides in dendritic form also have been prepared in
hydrothermal autoclaves. For example, in a cosolvent of ethanol and water, Zhang et al.
prepared the dendritic structures of SnO2 in rutile phase at 353 K by using stannous
chloride as a precursor with added diammonium phosphate [62]. Based on the SEM
images in Figure 3, it seemed that the product morphology was affected by the amount of
phosphate. The authors claimed that (1) the pH value of the liquid phase was controlled by
the amount of phosphate, which influenced the hydrolysis of stannous salt, and (2) different
concentrations of phosphate could change the nucleation rates. Indeed, phosphate anions
might form coordination transition metal cations [63], which would control the nucleation
rate for the self-assembly process. A similar approach was used to synthesize many other
dendritic oxides, such as cupric oxide [64], cuprous oxide [65], zinc oxide [66–69], cobalt
oxide [70], cobalt doped nickel oxide [71], CaTiO3 [72], CuCo2O4 [73], and LaFeO3 [74].
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2.3. Electrochemical Synthesis

Surface roughness of materials is an important factor for friction, imbibition, wetting,
and surface area [75,76]. To increase surface roughness of metal and oxides, one can use
an electrochemical technique [77]. For example, Jeun and coworkers have demonstrated
that a dendrite form of tin oxide can be prepared via an electrical deposition route. In their
experiment, they selected electrolytes containing tin sulfate and sulfuric acid. The tin foam
obtained was oxidized into dendritic tin oxide after annealing in air at 973 K, as revealed
under electron microscope at different magnifications (Figure 4a,b) [78].
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2.4. Organic-Inorganic Hybrid materials

Nature has created remarkable organic-inorganic composite nanostructures, such as
the materials found in diatom and mollusk shells in the past hundred million years of evolu-
tion on our planet. Humans have also learned a great deal on how to synthesize composite
materials and have used them in a variety of applications such as Maya blue paint, dental
fillers, and the structural materials for auto and aerospace industries [79]. To achieve de-
sired chemical and physical properties, such as plasticity (from polymers) and mechanical
strength (from inorganic fillers), self-assembly techniques are utilized to synthesize well-
defined organic-inorganic composite materials [80,81]. For example, in-situ self-assembly
can be carried out either by sol-gel reactions within polymer matrix or by polymerization
of organic monomers from the surface of inorganic nanoparticles. Sometimes it is possible
to simultaneously synthesize both organic and inorganic components [82–84].

One strategy for growing polymers from metal oxides is to modify the metal oxide
surface with bifunctional molecules such as methacrylic acid, which has both carboxylic
group and carbon double bonds. While carboxylic group can be anchored to TiO2, the
double bond can be used for the consequent in-situ polymerization of methyl methacrylate.
As shown in Figure 5, poly(methyl methacrylate) (PMMA) can be pictured as branches
on the titania domains [85]. The resulting materials provided improved dynamic Young’s
moduli with potential use as dental and bone fillers. Without chemical bond between
the polymers and the TiO2 fibers, the mechanical strength of the nanocomposite was
found to be lower. This indicates that a dendritic polymer/inorganic nanocomposite has
a better mechanical property than the counterpart made by a mechanical mixing of the
organic and inorganic components. Besides the carboxylic functional group, phosphate
groups can also be used to provide a chemical linkage between the organic and inorganic
moieties [33,86,87]. Phosphorous dendrimers have been used to synthesize TiO2 anatase
crystals at a reaction temperature as low as 333 K without further calcination [75]. This
approach may open a new avenue for one-pot or in-situ synthesis of organic-inorganic
composite materials, as it avoids the normally required calcination procedure which can
destroy the organic component.
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Reproduced from Ref. [85] with permission from the ACS, 2007.

2.5. Supramolecular Dendrimers

Because supramolecular dendrimers with high quality and purity have potential
for drug delivery, biosensor, and catalysis applications, many strategies have been ex-
plored for synthesizing these types of materials [88,89]. Here we selected an example of
self-assembly of silsequioxane-based dendrimers, because the solvent′s effect on the π-π
stacking, hydrogen bonding, and van der Waals interactions were investigated [90]. In
methyl methacrylate, π-π stacking of the dendrimer, as shown in Figure 6a, resulted in
formation of linear supramolecules. These linear supramolecules formed bundles and
thus can be observed with electron microscopes (Figure 6b,c,f,g). These bundles twisted
together into secondary spherical structures with diameters >10 µm (see SEM images in
Figure 6e), and finally, these secondary structures formed a solid network through gelation
(Figure 6d). The resulting materials showed improved elasticity and viscosity.
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under different magnifications. The red cycles highlight the areas where a higher magnification
image was taken. Reproduced from Ref. [90] with permission from the ACS, 2017.
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Interestingly, poly(propyleneimine) dendrimers have been used to synthesize encap-
sulated nanoparticles of metal and oxides [91]. By using the functional groups decorated
within the dendrimers, such as amines, carboxylic acids, or hydroxyl groups, metal cations
can be selectively trapped within the polymer matrix. After reduction of these cations,
monodisperse nanoparticles can be obtained.

3. Dendritic Structure Formation Mechanism
3.1. Molecular Recognition for Dendritic Mesopore Formation

Micelles and reverse micelles have been widely used for making a variety of nanos-
tructures. The driving forces for micelle formation can be from lyocratic, electrostatic or
steric interactions [92]. To synthesize dendritic mesopores within silica, Yu and coworkers
took advantage of a mixture of surfactants interacting with reactants: (cetyltrimethylam-
monium (CTA+) tosylate), imidazolium ionic liquid (IL), triethanolamine (TEAH3), triblock
copolymer (F127), tetraethyl orthosilicate (TEOS), and water [93]. The aggregation of
surfactant/ionic liquid micelles were believed to be responsible for the radially aligned
mesopores (Figure 7). As a green solvent, the imidazolium IL behaved as a cosurfactant
which reduced the critical micelle concentration of CTA+. It was found that the silica size
was affected by the alkyl chain length of IL, but the pore size within silica was not affected.
Here the triblock copolymer was used to reduce the silica particle size. The silica with
dendritic mesopores have potential in drug delivery, catalysis, and peptide separation [94].
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3.2. Sol-Gel Anisotropic-Assembly

As mentioned earlier, dendritic nanostructures of Ti6O9(OAc)6 were produced by sol-
gel reactions of titanium isopropoxide with acetic acid in supercritical CO2 (Figure 2a,b).
These structures arise due to the linear polycondensation of a reaction intermediate:
Ti6O6(OAc)6(OiPr)6 according to in-situ infrared and single crystal X-ray diffraction stud-
ies (Figure 8) [95,96]. The hexanuclear titanium cluster has six acetate bidentate around
six titanium atoms, where the acetate groups do not undergo hydrolysis reaction. At
the axial positions there are six isopropoxide that can be hydrolyzed. Condensation of
these hydrolyzed complexes can lead to formation of linear oligomers and subsequent 1D
nanostructures. These types of 1D structures were obtained in both supercritical CO2 and
heptanes under similar conditions [97]; however, dendritic structures were formed only
in the supercritical condition. In heptanes, agglomeration of 1D structures resulted in a
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3D porous network that filled the reactor. We hypothesized that, at the initial stage of the
sol-gel process, the linear oligomers derived from Ti6O6(OAc)6(OH)6 need to have a high
mobility to self-assembly into a branch structure. This is in line with the finding that both a
higher diffusion and greater thermal motion of oligomers were important for controlling
the self-assembly process [98–100]. A supercritical fluid is well-known to exhibit a low vis-
cosity which facilitates both mass and heat transfer [101]; therefore, the dendritic structures
should be more easily formed in supercritical CO2 than in a traditional organic solvent.
The leaf-like dendritic TiO2 shown in Figure 2c,d was prepared in isopropanol. It was
believed that the 2D structure was created through the self-assembly of a planar complex
(Ti6O4(OiPr)8(OAc)8) [47]; however, it was not understood how the dendritic shape was
produced. It seems that the core area of dendritic structure (Figure 2d) has totally different
morphology compared to the leaves. Indeed, we have found some unidentified crystals
under transmission electron microscope. It is hoped that these crystals would shed light on
the mechanism of dendritic assembly.
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Figure 8. Hydrolysis and polycondensation of Ti6O6(OAc)6(OiPr)6 can form linear or branched
oligomers at the initial stage of sol-gel reactions. These oligomers may grow into agglomerated 1D
and dendritic nanostructures in scCO2. Note: Ti = blue; O = red; C = dark gray; H atoms omitted
for clarity.

3.3. Hydrothermal Reactions

As described previously, hydrothermal and solvothermal reactions have been a pop-
ular approach for making dendritic metal oxides. Some ex-situ techniques, e.g., X-ray
diffraction and electron microscopy, are helpful for nanostructure formation mechanism.
In many cases, however, it is difficult to fully understand how the self-assembly process
occurs. This is due to the challenge of limited in-situ techniques for a corrosive environment
with elevated temperature and pressure.

Well-defined coniferous tree-like structures of iron oxide have been derived from
hydrothermal reaction of potassium ferricyanide (Figure 9). In order to explain the mech-
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anism of dendritic formation, Cao and colleagues carefully examined the orientation of
the single crystals of hematite along the main stem and side branches [102]. It was found
that the fast-growing main stem was along [1Ī00] direction, while the side branches were
along [10Ī0] and [0Ī10] directions. According to the authors, the crystallization kinetics are
related to the surface net charge in each direction of a single crystal. A net neutral facet
would facilitate a faster growth; on the other hand, a net charged facet would be affect
more by solvent effect, which would decrease the growth in that direction. Interestingly,
the magnetic property of the dendritic α-Fe2O3 was related where it is positioned in the
dendritic structure. The morin transition temperature of the main stem was found higher
(243 K) than that of branches (216 K). In a separate experiment, Wen and coworkers synthe-
sized silver dendrites. They found that the main stem and branches grew along <100> and
<111> directions, respectively. In addition, it seemed that the precursor molecule diffusions
also played a role in the dendrite formation [103].
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Figure 9. TEM of a fractal exhibiting hyperbranches of α-Fe2O3 fractals. (b) TEM image of a sixfold-symmetric dendritic
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well-defined single-crystalline nature of the entire dendritic structure (scale bar: 1 nm). (h) Electron diffraction pattern
recorded from the entire dendritic structure in (a) which also shows the single-crystalline nature of the entire dendritic
structure. Reproduced from Ref. [102] with permission from Wiley-VCH, 2005.
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During synthesis of dendritic rutile TiO2, Sun and coworkers studied the surfactant′s
effect on the hydrothermal products. When cetyltrimethylammonium bromide (CTAB)
was added to the titanium precursor with chloric acid, a dendritic structure composed of
rods was produced. However, when ethylene glycol (EG) was added to the above mixture,
the dendritic structure was made of nanoribbons versus rods. Furthermore, when both EG
and urea were added to the mixture, the dendritic structures of nanofibers were produced
(Figure 10) [104]. The authors proposed that ethylene glycol reduced the hydrolysis of
the titanium precursor, and addition of urea impeded hydrolysis further, thus facilitating
2D and 1D nanostructure formation, respectively. The dendritic rutile TiO2 was tested as
anodes for lithium-ion batteries, which showed an enhanced charge capacity and extended
life span. The authors attributed the better performance to the morphological advantages
of dendritic TiO2: (1) it facilitates the charge/discharge process of Li+, and (2) a fast electron
transfer along the 1D/2D TiO2.
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humans can distinguish thousands of odors. About 50% of people can recognize hydro-
gen sulfide (H2S), a lethal gas, at a level as low as 4.7 ppb, which is more sensitive than 
many current H2S monitors [105,106]. As shown in Figure 11, the olfactory receptor 
neurons contain dendrite structures, which collect odorant molecules in the back of the 
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Figure 10. SEM images of 3D dendritic TiO2 nanostructures: (a–c) 3D TiO2 microspheres with
nanorod building units obtained from aqueous titanium isopropoxide (TTIP) solutions having the
composition of (a) 100H2O:7HCl:0.03CTAB:0.05TTIP, (b) 100H2O:7HCl:0.03CTAB:0.03TTIP, and (c)
100H2O:7HCl:0.03CTAB:0.01TTIP. (d–f) 3D TiO2 microspheres with nanoribbon building units ob-
tained from mixed solutions of aqueous TTIP solution (100H2O:7HCl:0.03CTAB:0.05TTIP) and EG:
(d) TTIPaq:EG = 1:1, (e) TTIPaq:EG = 1:2, and (f) TTIPaq:EG = 1:3. (g–i) 3D TiO2 microspheres
with nanowire building units obtained from mixed solutions consisting of aqueous TTIP solu-
tion (100H2O:7HCl:0.03CTAB:0.05TTIP) and EG, as well as 5 mmol of urea: (g) TTIPaq:EG = 1:1,
(h) TTIPaq:EG = 1:2, and (i) TTIPaq:EG = 1:3. Reproduced from Ref. [104] with permission from the
ACS, 2011.
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4. Applications
4.1. Conductometer Sensors

By using millions of olfactory receptor neurons and hundreds of functional genes,
humans can distinguish thousands of odors. About 50% of people can recognize hydrogen
sulfide (H2S), a lethal gas, at a level as low as 4.7 ppb, which is more sensitive than many
current H2S monitors [105,106]. As shown in Figure 11, the olfactory receptor neurons
contain dendrite structures, which collect odorant molecules in the back of the nasal
cavity [107]. If the odorant molecules are recognized by the receptors, the latter will be
activated and send an electric signal to the brain via nerve processes. Possibly inspired
by the tree-like shape of olfactory receptors, many dendritic shaped biosensors have been
investigated [108–110].
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Detective sensors are essential for warning and protecting people from exposure of
poisonous gases. A thin film of metal oxide semiconductors can be used as the sensing
material [111], because their conductivity changes after adsorption of certain gases. For ex-
ample, n-type metal oxides (CuO, SnO2, ZnO, and WO3) are often used for conductometer
sensors, because their higher carrier mobility than p-type metal oxides [112,113]. However,
modified p-type metal oxides may also have a high sensitivity at a room temperature [114].

As an interesting example, p-type cuprous oxide (Cu2O) was shown as an excel-
lent sensing material for H2S, because it generates CuxS on the surface after reacting
with H2S, and CuxS is known to have a high carrier mobility [115]. In addition, the
detection sensitivity was significantly improved by taking advantage of accessible high
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surface area of nanorods and dendritic Cu2O, which were prepared by a sputtering process
(Figures 12 and 13) [116]. This result is in line with the previous findings which indi-
cate that semiconductor morphology is an important factor to determine the detector’s
sensibility [117]. The total surface electric resistance RT can be estimated as below:

1
RT

=
1

RS
+

1
RB

+
1

RBR
(1)

where RS, RB, and RBR are the resistive contributions of the surface, bulk, and dendritic
structures, respectively. According to this equation, if RBR decreases significantly upon
exposure to H2S, RT would decrease accordingly.
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It is worthy to mention that fluorescent dendrimers anchored on TiO2 can be used as
an optical sensor for detecting hazardous phenolic compounds [118].

4.2. Energy Conversion and Storages

Dendrimers, dendrites, and dendritic metal-oxides or sulfides are promising new ma-
terials for renewable energy, such as perovskite solar cells [119], water splitting [120],
fuel cell [121], supercapacitors [122–125], as well as lithium-, sodium-, and zinc-ion
batteries [126–129].

To reduce CO2 emissions, the governments of many countries have recently been
encouraged to invest and develop hydrogen as a fuel. Electrochemical water splitting
can be a solution for producing hydrogen because water is abundant; however, the most
effective electrode materials involve noble metals. To reduce the amount of noble metal
required for making the electrodes, one can decorate platinum quantum dots on dendritic
semiconductor nanostructures, or use highly efficient dendritic nanostructures of noble
metal or oxide [130].

Electrochemical water splitting involves two half reactions: hydrogen evolution and
oxygen evolution. To make an electrode for oxygen evolution reaction, Oh and coworkers
deposited iridium dendrites on both carbon black and the hydrothermal synthesized
antimony-doped tin oxide (Figure 14) [20]. The supported dendrites showed significantly
higher electrocatalytic activity than the commercial iridium black. According to the authors,
the increased catalytic performance of the dendrites was due to a larger surface area and
more edge and corner atoms on the dendrite surface.
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doped tin oxide. Low magnification TEM images of (c) Ir-nanodendrite/carbon and
(d) Ir-nanodendrite/antimony-doped tin oxide. Reproduced from Ref. [20] with permission from
the Royal Society of Chemistry, 2015.
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4.3. Catalysis

Catalysts in dendritic form have been studied by many researchers [131–133]. After
the excitement of exploring a new catalyst, it is essential to know if the dendritic form
outperforms its counterparts in other morphologies, such as 0D, 1D, and 2D nanostructures.
Based on specific surface area, all nanostructures are expected to have altered activity.

By comparing the effect of morphology on methanol electro-oxidation activity, Yin
and coworkers found that palladium dendrites showed better performance than the cor-
responding nanoparticle format [134]. The authors argued that the void within the three-
dimensional catalyst was the source of the activity difference between the two types of
catalysts. Even though the pore size distributions were not available, the SEM images
indeed showed that dendrites exhibited a larger void space (Figure 15). Larger pore size
facilitates mass transfer, which is important for both reactant transport to the surface and
product transport back to the bulk fluid. Hence, it is reasonable for the dendritic catalyst
to outperform others. In another study, Au nanoparticles/TiO2 and Au dendrites/TiO2
were compared for their photocatalytic activity. There were no obvious specific catalytic
differences between the two catalysts [135]. Nevertheless, it is noticed that the Au dendrites
have a larger crystal size and thereby a smaller surface area than the particle counterpart.
Therefore, Au dendrite should be more active than Au nanoparticles if the activity is on
the basis of per active site or surface area of gold, i.e., if the turnover frequencies are
considered equal.
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4.4. Drug Delivery

Dendritic metal oxides, especially modified SiO2 with dendritic mesopores, have been
extensively studied for their medical applications such as drug delivery [136] due to their
biocompatibility, low toxicity, and tunable mesostructures.

Gai and coworkers incorporated iron oxide nanoparticles to control the morphology of
SiO2 that has dendritic pores, and used the resulting drug vehicles to deliver doxorubicin
hydrochloride (DOX) into the nuclei of HeLa cells. The carboxylic groups of the drug
molecules were able to form hydrogen bond with the surface OH-Si groups on SiO2. Then,
the drug was dissolved into phosphate buffer solution and diffused through the mesopore
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channels of SiO2. The in vitro studies showed a sustained drug release within 20 h, and
the intracellular microscopic images revealed that the released DOX was active for killing
tumor cells [137].

5. Conclusions

As an organized assembly of 1D or 2D nanostructures, dendritic metal oxide-related
materials exhibit a high surface area/weight ratio and open large void space, which are im-
portant for their applications in sensing, catalysis, medicine, biomaterials, as well as energy
conversion and storage devices. In designing electrode materials for lithium batteries and
water splitting, for examples, attention should be paid to the morphological aspect of the
semiconductive metal oxides besides the chemical compositions and crystalline phases. As
described earlier, macrospores are essential for mass transfer within electrodes for water
splitting process, but the mechanical strength of the materials may be reduced by introduce
too many large pores. In addition, the orientation (e.g., the position of the pore openings)
and the dimensions of the pore channels should make it easier for gas bubbles to escape
in a liquid phase. Thus, the electrode materials must be carefully engineered. As another
example, lithium-sulfur batteries have a high expectation for electrical cars because their
high electrical storage capacity; however, the electrical capacity decreased too quickly after
certain rounds of battery cycling. To solve this problem, one must increase the mobility of
polysulfide ions. This can be achieved by increasing electrode pore size and promoting the
polysulfide solubility. Another approach is to modify the electrode surface to increase the
wettability of the sulfur cathode surface with sulfur and polysulfides [138]. Future work
should be carried out in these fields by using carefully designed dendritic metal oxides.

While dendritic metal oxides have been synthesized via sol-gel or solvothermal tech-
niques, molecular recognition is often responsible for the self-assembly process. Even
though many dendritic nanostructures have already been made, their synthetic mech-
anism is still mainly elusive. Before we can truly design a controlled 3D structure, it
is necessary to carry out more fundamental studies, including computational simula-
tions, to provide a better understanding of both the underlying chemical reactions and
self-assembly mechanisms.
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