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The success of nanotechnology in the field of physical, chemical and medical sciences
has started revolutionizing the drug delivery science and theranostics (therapy and diagnos-
tics) [1,2]. The specific advantages include superior pharmacodynamics, pharmacokinetics,
reduced toxicity and improved targeting capability. This approach has great potential to
produce novel diagnostics and therapeutics—theranostic—because of nanomaterials show
unexpected and interesting chemical and physical properties different from those of the
original in the micro-sized scale [3]. Therapies combining the use of bioactive materials and
progenitor cells or an active substance become clinical reality, increasing the prospects for
the development of engineering and regenerative medicine [4]. One of these perspectives
is a diagnostics and personalized therapy, i.e., theranostics [5].

In this case of the active substance, the drug-delivery vehicle, as a critical quality
attribute in the drug delivery science, needs special attention for the formulation devel-
opment, which can be successfully achieved via nanotechnology. Drugs incorporated in
nanocarriers, either physically entrapped or chemically tethered, have the potential to
target the physiological zone of the disorder sparing normal cells from collateral conse-
quences. Targeting several molecular mechanisms, for either treatment or prevention of
difficult-to-treat diseases, for the design of various nanotechnology-based drug delivery
systems is one of the prime focuses of the formulation scientist at the present juncture.

Much attention has been devoted to developing new drug-delivery systems with
many advantages compared with the conventional forms of dosage, such as, among others,
enhanced bioavailability, greater efficiency, lower toxicity, controlled release [6–12]. An
ideal drug-delivery system should be characterized by: (1) maximum biocompatibility
and minimal antigenic properties [13]; (2) appropriate particle size, which is important for
the particles to reach a particular location in the body due to the size of the vessels of the
human circulatory system [14]; (3) the ability to transport the desired drug molecules to the
targeted cells or tissues and release them in a controlled manner [15]. So far, different types
of drug-delivery systems have been developed, such as, i.a. biodegradable polymers [16],
xerogels [17], hydrogels [18], mesoporous materials [4,11]. Among different drug-delivery
systems, mesoporous materials (such as SBA-15, MCM-41 and mesoporous silica nanopar-
ticles) have gained increasing interest, particularly as drug storage and release hosts due to
their unique surface and textural properties [14,19,20].

Materials designed for biomedical applications should be characterized by a high
sensitivity and specificity, a lack of functional interference with the sample, photochemical
stability, non-toxicity, long time of storage and, as far as possible, detection of a substance
in the presence of others. Moreover, nanoscale materials have been exploited as active
components in a wide range of technological applications in the biomedical field [21–25].
Particularly, in the field of biomedicine, nanoparticles can be used as drug-delivery vehicles
that can target tissues or cells [13,24] and can be functionalized with special characteris-
tics (such as magnetization, fluorescence and near-infrared absorption) for qualitative or
quantitative detection of tumor cells [23,25–27].
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It is well-known that nanoscale fluorescent materials have attracted much interest due
to the increasing demand for efficient photosensitive materials not only for sophisticated
optoelectronic and photonic devices but also for a broad range of biomedical applica-
tions [28–34]. In biomedical areas, luminescent materials, mainly including fluorescent
organic molecules [35,36] and semiconductor nanoparticles [37,38], have been widely in-
vestigated in biological staining and diagnostics. However, some serious problems of
photobleaching and quenching of fluorescent organic molecules and the toxicity of semi-
conductor quantum dots are critically evident and have seriously limited their applications
in biomedical areas [38,39]. Furthermore, high performance in function-specific biological
applications requires that the composites possess some unique characteristics, such as
uniform morphology, large surface areas, good dispersion, etc. [39]. Recently, a class of
stable, efficient and self-activated luminescent materials whose emission is induced by the
defects or impurities in host lattices, has been prepared by various synthesis routes [40–43].
These novel self-activated inorganic materials may be a promising fluorescent material for
biodetection due to their good optical properties and nontoxicity.

Apatites are inorganic compounds with a general formula M10(XO4)6Y2, where M rep-
resents divalent cations (e.g., Ca2+, Sr2+, etc.), XO4 = PO4

3−, VO4
3−, etc. and Y represents

anions: F−, OH−, Cl−, Br−, etc. The hexagonal structure in apatites belongs to P63/m space
group and allows the cations to localize in the 4(f) and 6(h) positions [44] and is able to
accommodate a variety of univalent cations as substituents. In that case, charge compensa-
tion, proposed by P. Martin and et al. [45], allows explaining the substitution of divalent
calcium ions to trivalent lanthanide ions in apatite with a simple mechanism. It is worth
mentioning that apatites themselves, such as calcium apatites Ca10(PO4)6(Y)2, are biocom-
patible and are natural building blocks for bones and teeth [46]. This feature combined with
highly photostable luminescent properties of rare-earth dopants, makes nanocrystalline
apatites highly attractive as luminescent bio-labels [47]. However, these materials have
not been extensively synthesized or examined in the nanocrystalline form [48] which is a
prerequisite for being internalized by cells for bio-imaging or sensing applications [49].

Several strategies have been developed in the synthesis of nanoparticles so far, involv-
ing such techniques as microemulsion, precipitation, thermal decomposition, chemical
vapor deposition and others. However, the best results and control over particle size,
crystallinity and purity can be ensured using microwave technology [50]. For instance,
our group was able to obtain highly crystalline, phase pure, bio-compatible uniform and
low agglomerated nano-apatites such as Ca10(PO4)6(OH)2 for bio-applications [51,52]. An-
other important feature is that the materials were produced in environmentally friendly
conditions in ethylene glycol solution that is non-toxic for living organisms. Thus, this
strategy seems to be very attractive for the synthesis of luminescent or multifunctional
materials offering the possibility of bio-imaging measurement. The proposed synthesis
technique allows for thorough control over the desired composition (as it was shown in
the article [53]) which cannot be simply achieved using other techniques. Moreover, the
proposed compounds can be considered as non-toxic due to their insolubility in body fluids
and high chemical stability. It is well known that the solubility of oxide nanoparticles is
one of the most important factors of their toxicity related to their chemical composition [54].
For example, the toxic effect of iron oxide nanoparticles originates mainly from the catalytic
production of free radicals through Fenton type reaction [55]. To date, quantum dots
(QD) characterized by high absorbance, high quantum yield, narrow emission bands and
high resistance to photobleaching were considered as the most promising materials for FI
applications in medicine. Currently, the main issue regarding QDs and their biomedical
applications is their extreme toxicity (semiconductors—derivatives of highly toxic heavy
metals such as Cd or Pb) [56]. One of the promising alternatives is offered by the applica-
tion of inorganic compounds such as apatites doped or co-doped with optically active rare
earth metals for bio-imaging [57].

Furthermore, calcium is the fifth most abundant element by mass in the human
body (1.4–1.66%) where it is a common cellular ionic messenger with many functions and
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serves also as a structural element in bones (hydroxyapatites—99%) [58]. Calcium and
its compounds play an important role in controlling numerous biological processes in
living systems. Concentrations of free Ca2+ in biological cells are widely studied with
fluorescent probes. The probes have a high selectivity for free calcium and exhibit marked
changes in their photophysical properties upon binding. In particular, changes in fluores-
cence intensity (intensity probes) or spectral shift (ratio probes) upon binding to Ca2+ are
monitored. The main drawback of intensity probes is that the intensity of fluorescence is
affected by both the probe concentration and the free Ca2+ concentration. Consequently,
a quantitative determination of Ca2+ distributions requires the probes to be distributed
homogeneously in the sample. Conventional quantitative determinations of Ca2+ con-
centration with ratio probes overcomes the dependence on local probe concentration by
exploiting ratiometric procedures using excitation or detection at two wavelengths [59,60].
The advent of fluorescence lifetime imaging techniques [1,61–64] opens new horizons for
the quantitative determination for bio-imaging, in particular using intensity probes [65].
Fluorescence lifetime imaging is determined by factors such as the chemical environment of
a fluorescent molecule and thus provides valuable information about its ion binding states.
Importantly, since the lifetime is independent of fluorescence intensity, such measurements
have wide-ranging applications to samples in which the probes have an inhomogeneous
distribution. An additional advantage of the lifetime imaging technique is that the images
are not compromised by photobleaching and absorption effects.

Nanocrystalline probes doped with lanthanide ions based on apatites meet these
requirements [66]. Their narrow emission lines as well as long life-times render them
suitable for use as luminescent markers in biology and medicine [67]. Therefore, this
strategy seems to be very attractive for the complete elimination of the effects associated
with local concentration of ions in the sample. Moreover, the surface functionalization of
nanomaterials with biologically active organic ligands results in a better stability of the
colloidal dispersion. It will contribute to measurable progress in the possible extension of
bio-imaging techniques. Independently of the scientific goal related to theranostics, the
synthesis and study of spectroscopic properties of lanthanide-ion doped apatites could
also be an important area of research.
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