Low-Power OR Logic Ferroelectric In-Situ Transistor Based on a CuInP2S6/MoS2 Van Der Waals Heterojunction
Abstract
:1. Introduction
2. Experimental Details
2.1. Fabrication of the CIPS/MoS2 vdW Ferroelectric Transistor
2.2. Characterization Method
3. Results and Discussion
3.1. Material Characteristics and Electrical Performance of the CIPS/MoS2 vdW Ferroelectric Transistor
3.2. The Performance Optimization of the CIPS/MoS2 vdW Ferroelectric Transistor
3.3. The Demonstration of the OR Logic Function
3.4. The Discussion of the Electronic Transport Mechanism
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chhowalla, M.; Jena, D.; Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 2016, 1, 16052. [Google Scholar] [CrossRef]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Fal′ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nat. Cell Biol. 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Radisavljevic, B.; Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Yang, M.; Liu, Y.; Alexe, M. Emerging Opportunities for 2D Semiconductor/Ferroelectric Transistor-Structure Devices. Adv. Mater. 2021, 33, 2005620. [Google Scholar] [CrossRef]
- Fei, Z.; Zhao, W.; Palomaki, T.A.; Sun, B.; Miller, M.; Zhao, Z.; Yan, J.; Xu, X.; Cobden, D.H. Ferroelectric switching of a two-dimensional metal. Nat. Cell Biol. 2018, 560, 336–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, M.; Saha, A.K.; Gao, S.; Qiu, G.; Qin, J.; Duan, Y.; Jian, J.; Niu, C.; Wang, H.; Wu, W.; et al. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Waldrop, M.M. The chips are down for Moore’s law. Nature 2016, 530, 144. [Google Scholar] [CrossRef] [Green Version]
- Rusu, A.; Salvatore, G.A.; Jiménez, D.; Ionescu, A.M. Metal-Ferroelectric-Meta-Oxide-semiconductor field effect transistor with sub-60mV/decade subthreshold swing and internal voltage amplification. In Proceedings of the 2010 International Electron Devices Meeting, San Francisco, CA, USA, 6–8 December 2010; pp. 16.3.1–16.3.4. [Google Scholar]
- Lee, M.H.; Lin, J.-C.; Wei, Y.-T.; Chen, C.-W.; Tu, W.-H.; Zhuang, H.-K.; Tang, M. Ferroelectric negative capacitance hetero-tunnel field-effect-transistors with internal voltage amplification. In Proceedings of the 2013 IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; pp. 4.5.1–4.5.4. [Google Scholar] [CrossRef]
- Zhou, J.; Han, G.; Li, Q.; Peng, Y.; Lu, X.; Zhang, C.; Zhang, J.; Sun, Q.Q.; Zhang, D.W.; Hao, Y. Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 12.2.1–12.2.4. [Google Scholar]
- Jin, C.; Jang, K.; Saraya, T.; Hiramoto, T.; Kobayashi, M. Experimental Study on the Role of Polarization Switching in Subthreshold Characteristics of HfO2-based Ferroelectric and Anti-ferroelectric FET. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 31.5.1–31.5.4. [Google Scholar]
- Tu, L.; Cao, R.; Wang, X.; Chen, Y.; Wu, S.; Wang, F.; Wang, Z.; Shen, H.; Lin, T.; Zhou, P.; et al. Ultrasensitive negative capacitance phototransistors. Nat. Commun. 2020, 11, 101. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.-D.; Xia, X.; Yang, M.-M.; Wilson, N.R.; Gruverman, A.; Alexe, M. Artificial Optoelectronic Synapses Based on Ferroelectric Field-Effect Enabled 2D Transition Metal Dichalcogenide Memristive Transistors. ACS Nano 2019, 14, 746–754. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Wang, P.; Huang, H.; Wu, G.; Tian, B.; Hong, Z.; Wang, Y.; Sun, S.; Sheng, H.; et al. Optoelectronic Properties of Few-Layer MoS2 FET Gated by Ferroelectric Relaxor Polymer. ACS Appl. Mater. Interfaces 2016, 8, 32083–32088. [Google Scholar] [CrossRef]
- Cheema, S.S.; Kwon, D.; Shanker, N.; dos Reis, R.; Hsu, S.-L.; Xiao, J.; Zhang, H.; Wagner, R.; Datar, A.; McCarter, M.R.; et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nat. Cell Biol. 2020, 580, 478–482. [Google Scholar] [CrossRef]
- Yadav, A.K.; Nguyen, K.X.; Hong, Z.; García-Fernández, P.; Aguado-Puente, P.; Nelson, C.T.; Das, S.; Prasad, B.; Kwon, D.; Cheema, S.; et al. Spatially resolved steady-state negative capacitance. Nat. Cell Biol. 2019, 565, 468–471. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Tian, B.; Liu, L.; Lv, W.; Wu, S.; Wang, X.; Chen, Y.; Li, J.; Wang, Z.; Wu, S.; et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 2020, 3, 43–50. [Google Scholar] [CrossRef]
- Si, M.; Su, C.-J.; Jiang, C.; Conrad, N.J.; Zhou, H.; Maize, K.D.; Qiu, G.; Wu, C.-T.; Shakouri, A.; Alam, M.A.; et al. Steep-slope hysteresis-free negative capacitance MoS2 transistors. Nat. Nanotechnol. 2018, 13, 24–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belianinov, A.; He, Q.; Džiaugys, A.; Maksymovych, P.; Eliseev, E.; Borisevich, A.; Morozovska, A.N.; Banys, J.; Vysochanskii, Y.; Kalinin, S. CuInP2S6 Room Temperature Layered Ferroelectric. Nano Lett. 2015, 15, 3808–3814. [Google Scholar] [CrossRef]
- Stadlober, B.; Zirkl, M.; Irimia-Vladu, M. Route towards sustainable smart sensors: Ferroelectric polyvinylidene fluoride-based materials and their integration in flexible electronics. Chem. Soc. Rev. 2019, 48, 1787–1825. [Google Scholar] [CrossRef] [PubMed]
- Mikolajick, T.; Schroeder, U.; Slesazeck, S. The Past, the Present, and the Future of Ferroelectric Memories. IEEE Trans. Electron Devices 2020, 67, 1434–1443. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, J.-S. Ferroelectric Analog Synaptic Transistors. Nano Lett. 2019, 19, 2044–2050. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, H.; Burr, G.W.; Hwang, C.S.; Wang, K.L.; Xia, Q.; Yang, J.J. Resistive switching materials for information processing. Nat. Rev. Mater. 2020, 5, 173–195. [Google Scholar] [CrossRef]
- Gibertini, M.; Koperski, M.; Morpurgo, A.F.; Novoselov, K.S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, S.-L.; Zou, X.; Ho, J.; Liao, L.; Xiao, X.; Jiang, C.; Hu, W.; Wang, J.; Li, J. Integration of High-kOxide on MoS2by Using Ozone Pretreatment for High-Performance MoS2Top-Gated Transistor with Thickness-Dependent Carrier Scattering Investigation. Small 2015, 11, 5932–5938. [Google Scholar] [CrossRef]
- Liu, Y.; Weiss, N.O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X. Van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042. [Google Scholar] [CrossRef]
- Si, M.; Liao, P.-Y.; Qiu, G.; Duan, Y.; Ye, P.D. Ferroelectric Field-Effect Transistors Based on MoS2 and CuInP2S6 Two-Dimensional van der Waals Heterostructure. ACS Nano 2018, 12, 6700–6705. [Google Scholar] [CrossRef]
- Liu, F.; You, L.; Seyler, K.L.; Li, X.; Yu, P.; Lin, J.; Wang, X.; Zhou, J.; Wang, H.; He, H.; et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 2016, 7, 12357. [Google Scholar] [CrossRef]
- Frisenda, R.; Navarro-Moratalla, E.; Gant, P.; De Lara, D.P.; Jarillo-Herrero, P.; Gorbachev, R.V.; Castellanos-Gomez, A. Recent progress in the assembly of nanodevices and van der Waals heterostructures by deterministic placement of 2D materials. Chem. Soc. Rev. 2018, 47, 53–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vysochanskii, Y.M.; Stephanovich, V.A.; Molnar, A.A.; Cajipe, V.B.; Bourdon, X. Raman spectroscopy study of the ferrielectric-paraelectric transition in layeredCuInP2S6. Phys. Rev. B 1998, 58, 9119–9124. [Google Scholar] [CrossRef]
- Wan, D.; Wang, Q.; Huang, H.; Jiang, B.; Chen, C.; Yang, Z.; Li, G.; Liu, C.; Liu, X.; Liao, L. Hysteresis-free MoS2 metal semiconductor field-effect transistors with van der Waals Schottky junction. Nanotechnology 2021, 32, 135201. [Google Scholar] [CrossRef]
- Lin, M.-W.; Kravchenko, I.; Fowlkes, J.; Li, X.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.; Xiao, K. Thickness-dependent charge transport in few-layer MoS2field-effect transistors. Nanotechnology 2016, 27, 165203. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Wang, Z.; Pei, T.; Zhang, Z.; Wang, S.; Xu, H.; Peng, F.; Li, Y.; Peng, L.-M. Self-Aligned U-Gate Carbon Nanotube Field-Effect Transistor with Extremely Small Parasitic Capacitance and Drain-Induced Barrier Lowering. ACS Nano 2011, 5, 2512–2519. [Google Scholar] [CrossRef]
- Pak, J.; Cho, K.; Kim, J.-K.; Jang, Y.; Shin, J.; Kim, J.; Seo, J.; Chung, S.; Lee, T. Trapped charge modulation at the MoS2/SiO2 interface by a lateral electric field in MoS2 field-effect transistors. Nano Futures 2019, 3, 011002. [Google Scholar] [CrossRef]
- Tian, H.; Wang, X.; Zhao, H.; Mi, W.; Yang, Y.; Chiu, P.-W.; Ren, T.-L. A Graphene-Based Filament Transistor with Sub-10 mVdec−1 Subthreshold Swing. Adv. Electron. Mater. 2018, 4, 1700608. [Google Scholar] [CrossRef]
- Appelbaum, I.; Huang, B.; Monsma, D.J. Electronic measurement and control of spin transport in Silicon. Phys. Rev. Lett. 2011, 106, 217202. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, T.; Ando, Y.; Kameno, M.; Tahara, T.; Koike, H.; Oikawa, T.; Suzuki, T.; Shiraishi, M. Spin Transport in Nondegenerate Si with a Spin MOSFET Structure at Room Temperature. Phys. Rev. Appl. 2014, 2, 034005. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.W.; Khan, A.I.; Salahuddin, S.; Hu, C. Device design considerations for ultra-thin body non-hysteretic negative capacitance FETs. In Proceedings of the 2013 Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S), Berkeley, CA, USA, 28–29 October 2013; pp. 1–2. [Google Scholar] [CrossRef]
- Salahuddin, S.; Datta, S. Use of Negative Capacitance to Provide Voltage Amplification for Low Power Nanoscale Devices. Nano Lett. 2008, 8, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, M.; Fengler, F.P.G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nat. Cell Biol. 2019, 565, 464–467. [Google Scholar] [CrossRef]
- Khan, A.I.; Chatterjee, K.; Wang, B.; Drapcho, S.; You, L.; Serrao, C.; Bakaul, S.R.; Ramesh, R.; Salahuddin, S. Negative capacitance in a ferroelectric capacitor. Nat. Mater. 2015, 14, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.I.; Yeung, C.W.; Hu, C.; Salahuddin, S. Ferroelectric negative capacitance MOSFET: Capacitance tuning & antiferroelectric operation. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 11.3.1–11.3.4. [Google Scholar]
- Lin, C.I.; Khan, A.I.; Salahuddin, S.; Hu, C. Effects of the Variation of Ferroelectric Properties on Negative Capacitance FET Characteristics. IEEE Trans. Electron Devices 2016, 63, 2197–2199. [Google Scholar] [CrossRef]
- Kim, S.; Myeong, G.; Shin, W.; Lim, H.; Kim, B.; Jin, T.; Chang, S.; Watanabe, K.; Taniguchi, T.; Cho, S. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 2020, 15, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, H.; Ding, Y.; Li, J.; Wang, S.; Zhang, D.W.; Zhou, P. A non-volatile AND gate based on Al2O3/HfO2/Al2O3 charge-trap stack for in-situ storage applications. Sci. Bull. 2019, 64, 1518–1524. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Chen, H.; Hou, X.; Zhang, H.; Han, J.; Jiang, Y.G.; Zeng, X.; Zhang, D.W.; Zhou, P. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 2019, 14, 662–667. [Google Scholar] [CrossRef] [PubMed]
- Li, X.X.; Chen, X.Y.; Chen, J.X.; Zeng, G.; Li, Y.C.; Huang, W.; Ji, Z.G.; Zhang, D.W.; Lu, H.L. Dual-gate MoS2 phototransistor with atomic-layer-deposited HfO2 as top-gate dielectric for ultrahigh photoresponsivity. Nanotechnology 2021. [Google Scholar] [CrossRef]
- Kun, Y.; Yanning, C.; Shulong, W.; Tao, H.; Hongxia, L. Investigation of charge trapping mechanism in MoS2 field effect transistor by incorporating Al into host La2O3 as gate dielectric. Nanotechnology 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Wang, S.; Han, T.; Liu, H. Low-Power OR Logic Ferroelectric In-Situ Transistor Based on a CuInP2S6/MoS2 Van Der Waals Heterojunction. Nanomaterials 2021, 11, 1971. https://doi.org/10.3390/nano11081971
Yang K, Wang S, Han T, Liu H. Low-Power OR Logic Ferroelectric In-Situ Transistor Based on a CuInP2S6/MoS2 Van Der Waals Heterojunction. Nanomaterials. 2021; 11(8):1971. https://doi.org/10.3390/nano11081971
Chicago/Turabian StyleYang, Kun, Shulong Wang, Tao Han, and Hongxia Liu. 2021. "Low-Power OR Logic Ferroelectric In-Situ Transistor Based on a CuInP2S6/MoS2 Van Der Waals Heterojunction" Nanomaterials 11, no. 8: 1971. https://doi.org/10.3390/nano11081971
APA StyleYang, K., Wang, S., Han, T., & Liu, H. (2021). Low-Power OR Logic Ferroelectric In-Situ Transistor Based on a CuInP2S6/MoS2 Van Der Waals Heterojunction. Nanomaterials, 11(8), 1971. https://doi.org/10.3390/nano11081971