Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study
Abstract
:1. Introduction
1.1. Research Background and Motivation
1.2. Adopted Literature Review on Annulus Heat Transfer Enhancement
1.3. Research Motivation
1.4. Research Objectives
2. Thermophysical Properties of Nanofluids
2.1. Nano-Spherical Particles
2.2. Nanoparticles with Different Shapes
3. Computational Method
3.1. Physical Model
- (i)
- The 3D annuli pipes operate under the condition of steady-state.
- (ii)
- The heat transfer fluids are Newtonian and incompressible.
- (iii)
- Working fluids flow under the conditions of single-phase and fully-developed.
- (iv)
- The heat transfer losses are ignored.
- (v)
- The thermal-physical properties of working fluids are evaluated at a constant temperature.
3.2. Governing Equations and Mathematical Model
3.3. Boundary Conditions
3.4. Grid Independence Test and Code Validation
4. Results and Discussion
4.1. Morphologies of Spherical Nanoparticles
4.2. Thermophysical Properties of Different Nanostructures
4.3. Heat Transfer and Hydrodynamic Properties
4.4. Effect of Heat Flux Ratio
4.5. Effect of Inner Shaft Rotation (ω)
4.6. Effect of Concentric Aspect Ratio
5. Conclusions
- (i)
- Six different grids were tested, but 350 × 30 × 30 elements were selected for the present calculations.
- (ii)
- FE-SEM analysis showed that, Al2O3, CuO, SiO2, and ZnO were well dispersed and found to be predominantly spherical.
- (iii)
- At 4 vol.%, the best enhancements in thermal conductivity were 17.14% (spheres-Al2O3), 16.74% (spheres-CuO), 15.80% (bricks-SiO2) and 15.08% (spheres-ZnO). Meanwhile, ZnO presented a sharp increment in the viscosity for all nanoparticle shapes.
- (iv)
- SiO2 nanofluids showed a higher heat transfer enhancement, followed by ZnO, CuO, and Al2O3. In comparison, platelet nanoparticles show the highest reading, followed by cylinders, bricks, blades, and spheres. Different metallic oxides and different nanoparticle shapes did not show significant variations of friction factor.
- (v)
- The effect of HFR did not show significant impacts on the values of Nu of different nanofluids.
- (vi)
- With an inner shaft rotation speed of 500 RPM, the average heat transfer enhanced by (37.28% to 42.62%), (38.90% to 45.58%), (45.27% to 50.44) and (40.13% to 45.04%) for Al2O3, CuO, SiO2 and ZnO, respectively, at the conditions of 4 vol.%, 20 nm, 293 K, and platelets nanoparticles. Meanwhile, only Al2O3 nanofluids showed any significant differences in friction factor values.
- (vii)
- AR = 2 and nanoplatelets-SiO2 nanofluids showed the higher value of heat transfer enhancements of 43.68% at 4 vol.%, 20 nm, 293 K.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ag | Silver | k | Thermal Conductivity, [W/m. K] |
Al2O3 | Aluminum Oxide | K | Boltzmann constant |
AR | Aspect ratio, [Do/Di] | L | Total length of annuli, [mm] |
Cp | Specific Heat capacity, [KJ/kg. K] | M | Molecular Weight |
Cu | Copper | N | Avogadro number |
CuO | Copper Oxide | NSE | Navier Stokes Equations |
Dh | Hydraulic Diameter, [mm] | Nuavg | Average Nusselt Number |
Di | Inner Pipe Diameter, [mm] | Pr | Prandtl Number |
Do | Outer Pipe Diameter, [mm] | qw | Pipe Heat Flux, [W/m2] |
EG | Ethylene Glycol | Re | Reynolds number |
FVM | Finite Volume Method | SiO2 | Silicon dioxide |
Gr | Grashof number | Tin | Inner Cylinder Temperature, [K] |
h | Heat transfer coefficient, [W/m2. K] | Uo | Velocity inlet, [m/s] |
HFR | Heat Flux Ratio, [qi/qo] | ZnO | Zinc Oxide |
Greek alphabet symbols & letters | |||
α | Thermal diffusivity, [m2/s] | β | Thermal expansion coefficient, [1/K] |
ε | Turbulent dissipation rate, [m2/s2] | μ | Working fluid viscosity, [N. m/s] |
ν | Kinematic viscosity, [m2/s] | ρ | Density, [kg/m3] |
φ | Volume fraction [vol.%] | ||
Indexes | |||
bf | Basic fluid | nf | Nanofluid |
eff | Effective | s | Solid |
f | Fluid |
References
- Abu-Nada, E.; Oztop, H.F. Effects of inclination angle on natural convection in enclosures filled with Cu–water nanofluid. Int. J. Heat Fluid Flow 2009, 30, 669–678. [Google Scholar] [CrossRef]
- Izadi, M.; Behzadmehr, A.; Jalali-Vahida, D. Numerical study of developing laminar forced convection of a nanofluid in an annulus. Int. J. Therm. Sci. 2009, 48, 2119–2129. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Nasiri, M.; Khezerloo, M.; Laraqi, N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J. Magn. Magn. Mater. 2016, 401, 159–168. [Google Scholar] [CrossRef]
- Amani, M.; Amani, P.; Kasaeian, A.; Mahian, O.; Wongwises, S. Thermal conductivity measurement of spinel-type ferrite MnFe2O4 nanofluids in the presence of a uniform magnetic field. J. Mol. Liq. 2017, 230, 121–128. [Google Scholar] [CrossRef]
- Kamar, H.M.; Kamsah, N.; Tap, M.M.; Salimin, K.A.M. Assessment of thermal comfort in a naturally ventilated residential terrace house. AIP Conf. Proc. 2012, 1440, 247–254. [Google Scholar]
- Sadri, R.; Hosseini, M.; Kazi, S.N.; Bagheri, S.; Abdelrazek, A.H.; Ahmadi, G.; Zubir, N.; Ahmad, R.; Abidin, N.I.Z. A facile, bio-based, novel approach for synthesis of covalently functionalized graphene nanoplatelet nano-coolants toward improved thermo-physical and heat transfer properties. J. Colloid Interface Sci. 2018, 509, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Sadri, R.; Mallah, A.R.; Hosseini, M.; Ahmadi, G.; Kazi, S.N.; Dabbagh, A.; Yeong, C.H.; Ahmad, R.; Yaakup, N.A. CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data. J. Mol. Liq. 2018, 269, 152–159. [Google Scholar] [CrossRef]
- Sadri, R.; Hosseini, M.; Kazi, S.N.; Bagheri, S.; Zubir, N.; Solangi, K.H.; Zaharinie, T.; Badarudin, A. A bio-based, facile approach for the preparation of covalently functionalized carbon nanotubes aqueous suspensions and their potential as heat transfer fluids. J. Colloid Interface Sci. 2017, 504, 115–123. [Google Scholar] [CrossRef]
- Nojoomizadeh, M.; Karimipour, A. The effects of porosity and permeability on fluid flow and heat transfer of multi walled carbon nano-tubes suspended in oil (MWCNT/Oil nano-fluid) in a microchannel filled with a porous medium. Phys. E Low-Dimens. Syst. Nanostruct. 2016, 84, 423–433. [Google Scholar] [CrossRef]
- Guo, H.; Tao, H.; Salih, S.Q.; Yaseen, Z.M. Optimized parameter estimation of a PEMFC model based on improved Grass Fibrous Root Optimization Algorithm. Energy Rep. 2020, 6, 1510–1519. [Google Scholar] [CrossRef]
- Behnampour, A.; Akbari, O.A.; Safaei, M.R.; Ghavami, M.; Marzban, A.; Shabani, G.A.S.; Mashayekhi, R. Analysis of heat transfer and nanofluid fluid flow in microchannels with trapezoidal, rectangular and triangular shaped ribs. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 91, 15–31. [Google Scholar] [CrossRef]
- Hosseini, M.; Sadri, R.; Kazi, S.N.; Bagheri, S.; Zubir, N.; Bee Teng, C.; Zaharinie, T. Experimental study on heat transfer and thermo-physical properties of covalently functionalized carbon nanotubes nanofluids in an annular heat exchanger: A green and novel synthesis. Energy Fuels 2017, 31, 5635–5644. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int. Mech. Eng. Congr. Expo. 1995, 66, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Liang, M.; Fu, C.; Xiao, B.; Luo, L.; Wang, Z. A fractal study for the effective electrolyte diffusion through charged porous media. Int. J. Heat Mass Transf. 2019, 137, 365–371. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrog. Energy 2018, 43, 17880–17888. [Google Scholar] [CrossRef]
- Cesano, F.; Uddin, M.J.; Damin, A.; Scarano, D. Multifunctional Conductive Paths Obtained by Laser Processing of Non-Conductive Carbon Nanotube/Polypropylene Composites. Nanomaterials 2021, 11, 604. [Google Scholar] [CrossRef]
- AlMohammed, H.I.; Khudair Khalaf, A.; E Albalawi, A.; Alanazi, A.D.; Baharvand, P.; Moghaddam, A.; Mahmoudvand, H. Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review. Nanomaterials 2021, 11, 689. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Masoud, Z.; Hijazi, A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 2008, 35, 657–665. [Google Scholar] [CrossRef]
- Soleimani, S.; Sheikholeslami, M.; Ganji, D.D.; Gorji-Bandpay, M. Natural convection heat transfer in a nanofluid filled semi-annulus enclosure. Int. Commun. Heat Mass Transf. 2012, 39, 565–574. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Hormozi, F. Scale formation and subcooled flow boiling heat transfer of CuO–water nanofluid inside the vertical annulus. Exp. Therm. Fluid Sci. 2014, 52, 205–214. [Google Scholar] [CrossRef]
- Mehrizi, A.A.; Farhadi, M.; Shayamehr, S. Natural convection flow of Cu–Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method. Int. Commun. Heat Mass Transf. 2013, 44, 147–156. [Google Scholar] [CrossRef]
- Corcione, M.; Habib, E.; Quintino, A. A two-phase numerical study of buoyancy-driven convection of alumina–water nanofluids in differentially-heated horizontal annuli. Int. J. Heat Mass Transf. 2013, 65, 327–338. [Google Scholar] [CrossRef]
- Moghari, R.M.; Akbarinia, A.; Shariat, M.; Talebi, F.; Laur, R. Two phase mixed convection Al2O3–water nanofluid flow in an annulus. Int. J. Multiph. Flow 2011, 37, 585–595. [Google Scholar] [CrossRef]
- Yang, C.; Li, W.; Nakayama, A. Convective heat transfer of nanofluids in a concentric annulus. Int. J. Therm. Sci. 2013, 71, 249–257. [Google Scholar] [CrossRef]
- Namburu, P.K.; Das, D.K.; Tanguturi, K.M.; Vajjha, R.S. Numerical study of turbulent flow and heat transfer characteristics of nanofluids considering variable properties. Int. J. Therm. Sci. 2009, 48, 290–302. [Google Scholar] [CrossRef]
- Arani, A.A.A.; Amani, J. Experimental study on the effect of TiO2–water nanofluid on heat transfer and pressure drop. Exp. Therm. Fluid Sci. 2012, 42, 107–115. [Google Scholar] [CrossRef]
- Abdelrazek, A.H.; Alawi, O.A.; Kazi, S.N.; Yusoff, N. Thermal performance evaluation for alumina coated MWCNTs composite nanofluid in annular passage of various eccentricities. Powder Technol. 2021, 391, 114–132. [Google Scholar] [CrossRef]
- Liu, S.; Afan, H.A.; Aldlemy, M.S.; Al-Ansari, N.; Yaseen, Z.M. Energy analysis using carbon and metallic oxides-based nanomaterials inside a solar collector. Energy Rep. 2020, 6, 1373–1381. [Google Scholar] [CrossRef]
- Mondejar, M.E.; Regidor, M.; Krafczyk, J.; Ihmels, C.; Schmid, B.; Kontogeorgis, G.M.; Haglind, F. An open-access database of the thermophysical properties of nanofluids. J. Mol. Liq. 2021, 333, 115140. [Google Scholar] [CrossRef]
- Lee, J.W.; Nilson, R.H.; Templeton, J.A.; Griffiths, S.K.; Kung, A.; Wong, B.M. Comparison of molecular dynamics with classical density functional and poisson–boltzmann theories of the electric double layer in nanochannels. J. Chem. Theory Comput. 2012, 8, 2012–2022. [Google Scholar] [CrossRef] [PubMed]
- Sauer, E.; Gross, J. Classical density functional theory for liquid–fluid interfaces and confined systems: A functional for the perturbed-chain polar statistical associating fluid theory equation of state. Ind. Eng. Chem. Res. 2017, 56, 4119–4135. [Google Scholar] [CrossRef]
- Pak, B.C.; Cho, Y.I. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 1998, 11, 151–170. [Google Scholar] [CrossRef]
- Alawi, O.A.; Sidik, N.A.C.; Xian, H.W.; Kean, T.H.; Kazi, S.N. Thermal conductivity and viscosity models of metallic oxides nanofluids. Int. J. Heat Mass Transf. 2018, 116, 1314–1325. [Google Scholar] [CrossRef]
- Corcione, M. Heat transfer features of buoyancy-driven nanofluids inside rectangular enclosures differentially heated at the sidewalls. Int. J. Therm. Sci. 2010, 49, 1536–1546. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K.; Kulkarni, D.P. Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. Int. J. Heat Mass Transf. 2010, 53, 4607–4618. [Google Scholar] [CrossRef]
- Vajjha, R.S.; Das, D.K. Experimental determination of thermal conductivity of three nanofluids and development of new correlations. Int. J. Heat Mass Transf. 2009, 52, 4675–4682. [Google Scholar] [CrossRef]
- Timofeeva, E.V.; Moravek, M.R.; Singh, D. Improving the heat transfer efficiency of synthetic oil with silica nanoparticles. J. Colloid Interface Sci. 2011, 364, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Abdelrazek, A.H.; Kazi, S.N.; Alawi, O.A.; Yusoff, N.; Oon, C.S.; Ali, H.M. Heat transfer and pressure drop investigation through pipe with different shapes using different types of nanofluids. J. Therm. Anal. Calorim. 2020, 139, 1637–1653. [Google Scholar] [CrossRef]
- Hosseini, M.; Abdelrazek, A.H.; Sadri, R.; Mallah, A.R.; Kazi, S.N.; Chew, B.T.; Rozali, S.; Yusoff, N. Numerical study of turbulent heat transfer of nanofluids containing eco-friendly treated carbon nanotubes through a concentric annular heat exchanger. Int. J. Heat Mass Transf. 2018, 127, 403–412. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2011; ISBN 9780470501979. [Google Scholar]
- Awang, N.A.; Kamar, H.M.; Kamsah, N. Energy saving potential of an air-conditioner–ice thermal storage (AC-ITS) system. J. Adv. Res. Fluid Mech. Therm. Sci. 2017, 31, 1–10. [Google Scholar]
- Abdelrazek, A.H.; Alawi, O.A.; Kazi, S.N.; Yusoff, N.; Chowdhury, Z.; Sarhan, A.A.D. A new approach to evaluate the impact of thermophysical properties of nanofluids on heat transfer and pressure drop. Int. Commun. Heat Mass Transf. 2018, 95, 161–170. [Google Scholar] [CrossRef]
- Sayed-Ahmed, M.E.; Sharaf-El-Din, H. Entrance region flow of a power-law fluid in concentric annuli with rotating inner wall. Int. Commun. Heat Mass Transf. 2006, 33, 654–665. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F.; Szilágyi, I.M.; Afrand, M.; Żyła, G.; Ahn, H.S.; Wongwises, S.; Nguyen, H.M.; Arabkoohsar, A.; Mahian, O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 2019, 58, 104701. [Google Scholar] [CrossRef]
- Rudyak, V.Y.; Minakov, A.V.; Pryazhnikov, M.I. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluids. J. Mol. Liq. 2021, 329, 115517. [Google Scholar] [CrossRef]
- Sezer, N.; Atieh, M.A.; Koç, M. A comprehensive review on synthesis, stability, thermophysical properties, and characterization of nanofluids. Powder Technol. 2019, 344, 404–431. [Google Scholar] [CrossRef]
- Awais, M.; Bhuiyan, A.A.; Salehin, S.; Ehsan, M.M.; Khan, B.; Rahman, M.H. Synthesis, heat transport mechanisms and thermophysical properties of nanofluids: A critical overview. Int. J. Thermofluids 2021, 10, 100086. [Google Scholar] [CrossRef]
- Xiong, Q.; Hajjar, A.; Alshuraiaan, B.; Izadi, M.; Altnji, S.; Shehzad, S.A. State-of-the-art review of nanofluids in solar collectors: A review based on the type of the dispersed nanoparticles. J. Clean. Prod. 2021, 310, 127528. [Google Scholar] [CrossRef]
- Awais, M.; Ullah, N.; Ahmad, J.; Sikandar, F.; Ehsan, M.M.; Salehin, S.; Bhuiyan, A.A. Heat transfer and pressure drop performance of Nanofluid: A state-of-the-art review. Int. J. Thermofluids 2021, 9, 100065. [Google Scholar] [CrossRef]
- Suganthi, K.S.; Rajan, K.S. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew. Sustain. Energy Rev. 2017, 76, 226–255. [Google Scholar] [CrossRef]
- Özdemir, K.; Öğüt, E. Hydro-thermal behaviour determination and optimization of fully developed turbulent flow in horizontal concentric annulus with ethylene glycol and water mixture based Al2O3 nanofluids. Int. Commun. Heat Mass Transf. 2019, 109, 104346. [Google Scholar] [CrossRef]
- Yassin, M.A.; Shedid, M.H.; Abd El-Hameed, H.M.; Basheer, A. Heat transfer augmentation for annular flow due to rotation of inner finned pipe. Int. J. Therm. Sci. 2018, 134, 653–660. [Google Scholar] [CrossRef]
- Abou-Ziyan, H.Z.; Helali, A.H.B.; Selim, M.Y.E. Enhancement of forced convection in wide cylindrical annular channel using rotating inner pipe with interrupted helical fins. Int. J. Heat Mass Transf. 2016, 95, 996–1007. [Google Scholar] [CrossRef]
Nanoparticle/DW | ρ (kg/m3) | Cp (J/kg. K) | μ (N.s/m2) | k (W/m. K) |
---|---|---|---|---|
Al2O3 | 3970 | 765 | - | 40 |
CuO | 6500 | 535.6 | - | 20 |
SiO2 | 2200 | 703 | - | 1.2 |
ZnO | 5600 | 495.2 | - | 13 |
DW | 997.78 | 4076.4 | 0.0009772 | 0.60475 |
Nanoparticle Shapes | AR | CK | A1 | A2 | ||
---|---|---|---|---|---|---|
Nanoplatelets | 1:1/8 | 5.72 | −3.11 | 2.61 | 37.1 | 612.6 |
Nanoblades | 1:6:1/12 | 8.26 | −5.52 | 2.74 | 14.6 | 123.3 |
Nanocylinders | 1:8 | 4.82 | −0.87 | 3.95 | 13.5 | 904.4 |
Nanobricks | 1:1:1 | 3.72 | −0.35 | 3.37 | 1.9 | 471.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alawi, O.A.; Abdelrazek, A.H.; Aldlemy, M.S.; Ahmed, W.; Hussein, O.A.; Ghafel, S.T.; Khedher, K.M.; Scholz, M.; Yaseen, Z.M. Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study. Nanomaterials 2021, 11, 1979. https://doi.org/10.3390/nano11081979
Alawi OA, Abdelrazek AH, Aldlemy MS, Ahmed W, Hussein OA, Ghafel ST, Khedher KM, Scholz M, Yaseen ZM. Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study. Nanomaterials. 2021; 11(8):1979. https://doi.org/10.3390/nano11081979
Chicago/Turabian StyleAlawi, Omer A., Ali H. Abdelrazek, Mohammed Suleman Aldlemy, Waqar Ahmed, Omar A. Hussein, Sukaina Tuama Ghafel, Khaled Mohamed Khedher, Miklas Scholz, and Zaher Mundher Yaseen. 2021. "Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study" Nanomaterials 11, no. 8: 1979. https://doi.org/10.3390/nano11081979
APA StyleAlawi, O. A., Abdelrazek, A. H., Aldlemy, M. S., Ahmed, W., Hussein, O. A., Ghafel, S. T., Khedher, K. M., Scholz, M., & Yaseen, Z. M. (2021). Heat Transfer and Hydrodynamic Properties Using Different Metal-Oxide Nanostructures in Horizontal Concentric Annular Tube: An Optimization Study. Nanomaterials, 11(8), 1979. https://doi.org/10.3390/nano11081979