Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microstructural Analyses
3.2. Cure Analysis
3.2.1. Qualitative Cure Analysis
3.2.2. Quantitative Cure Analysis
3.3. Surface Free Energy Analysis
3.4. Viscoelastic Behavior Analysis
3.5. Degradation Kinetics Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Aliakbari, M.; Jazani, O.M.; Sohrabian, M.; Jouyandeh, M.; Saeb, M.R. Multi-nationality epoxy adhesives on trial for future nanocomposite developments. Prog. Org. Coat. 2019, 133, 376–386. [Google Scholar] [CrossRef]
- Liu, H.; Cui, X.; Wang, H.; Zhang, H.; Li, A.J.M.R.E. Synergistic effect of nano-SiO2 and graphene oxide: Hybrid filled thermosetting polyimide nanocomposites with ultralow wear. Mater. Res. Express 2019, 6, 105368. [Google Scholar] [CrossRef]
- Bello, R.H.; Coelho, L.A.F. Curing kinetics of chemically recyclable thermoset and their nanocomposites. Thermochim. Acta 2019, 679, 178317. [Google Scholar] [CrossRef]
- Bayat, S.; Moini Jazani, O.; Molla-Abbasi, P.; Jouyandeh, M.; Saeb, M.R. Thin films of epoxy adhesives containing recycled polymers and graphene oxide nanoflakes for metal/polymer composite interface. Prog. Org. Coat. 2019, 136, 105201. [Google Scholar] [CrossRef]
- Bakhshandeh, E.; Jannesari, A.; Ranjbar, Z.; Sobhani, S.; Saeb, M.R. Anti-corrosion hybrid coatings based on epoxy–silica nano-composites: Toward relationship between the morphology and EIS data. Prog. Org. Coat. 2014, 77, 1169–1183. [Google Scholar] [CrossRef]
- Zheng, S.; Bellido-Aguilar, D.A.; Huang, Y.; Zeng, X.; Zhang, Q.; Chen, Z. Mechanically robust hydrophobic bio-based epoxy coatings for anti-corrosion application. Surf. Coat. Technol. 2019, 363, 43–50. [Google Scholar] [CrossRef]
- Vahabi, H.; Jouyandeh, M.; Cochez, M.; Khalili, R.; Vagner, C.; Ferriol, M.; Movahedifar, E.; Ramezanzadeh, B.; Rostami, M.; Ranjbar, Z.; et al. Short-lasting fire in partially and completely cured epoxy coatings containing expandable graphite and halloysite nanotube additives. Prog. Org. Coat. 2018, 123, 160–167. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ali, J.A.; Akbari, V.; Aghazadeh, M.; Paran, S.M.R.; Naderi, G.; Saeb, M.R.; Ranjbar, Z.; Ganjali, M.R. Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized MnxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105247. [Google Scholar] [CrossRef]
- Paran, S.M.R.; Vahabi, H.; Jouyandeh, M.; Ducos, F.; Formela, K.; Saeb, M.R. Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47483. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Yarahmadi, E.; Didehban, K.; Ghiyasi, S.; Paran, S.M.R.; Puglia, D.; Ali, J.A.; Jannesari, A.; Saeb, M.R.; Ranjbar, Z.; et al. Cure kinetics of epoxy/graphene oxide (GO) nanocomposites: Effect of starch functionalization of GO nanosheets. Prog. Org. Coat. 2019, 105217. [Google Scholar] [CrossRef]
- Ghiyasi, S.; Sari, M.G.; Shabanian, M.; Hajibeygi, M.; Zarrintaj, P.; Rallini, M.; Torre, L.; Puglia, D.; Vahabi, H.; Jouyandeh, M. Hyperbranched poly (ethyleneimine) physically attached to silica nanoparticles to facilitate curing of epoxy nanocomposite coatings. Prog. Org. Coat. 2018, 120, 100–109. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Moini Jazani, O.; Navarchian, A.H.; Saeb, M.R. Epoxy coatings physically cured with hydroxyl-contained silica nanospheres and halloysite nanotubes. Prog. Org. Coat. 2018, 11, 199–207. [Google Scholar]
- Jouyandeh, M.; Zarrintaj, P.; Ganjali, M.R.; Ali, J.A.; Karimzadeh, I.; Aghazadeh, M.; Ghaffari, M.; Saeb, M.R. Curing epoxy with electrochemically synthesized GdxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105245. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Tikhani, F.; Hampp, N.; Akbarzadeh Yazdi, D.; Zarrintaj, P.; Reza Ganjali, M.; Reza Saeb, M. Highly curable self-healing vitrimer-like cellulose-modified halloysite nanotube/epoxy nanocomposite coatings. Chem. Eng. J. 2020, 396, 125196. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ganjali, M.R.; Ali, J.A.; Aghazadeh, M.; Stadler, F.J.; Saeb, M.R. Curing epoxy with electrochemically synthesized NixFe3-xO4 magnetic nanoparticles. Prog. Org. Coat 2019, 136, 105198. [Google Scholar] [CrossRef]
- Karami, Z.; Jouyandeh, M.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Maadani, M.; Rallini, M.; Luzi, F.; Torre, L.; Puglia, D.; et al. Cure Index for labeling curing potential of epoxy/LDH nanocomposites: A case study on nitrate anion intercalated Ni-Al-LDH. Prog. Org. Coat. 2019, 136, 105228. [Google Scholar] [CrossRef]
- Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y.; Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261. [Google Scholar] [CrossRef]
- Saeb, M.R.; Bakhshandeh, E.; Khonakdar, H.A.; Mäder, E.; Scheffler, C.; Heinrich, G. Cure kinetics of epoxy nanocomposites affected by MWCNTs functionalization: A review. Sci. World J. 2013, 2013, 703708. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Shabanian, M.; Ghiyasi, S.; Vahabi, H.; Badawi, M.; Formela, K.; Puglia, D.; Saeb, M.R. Curing behavior of epoxy/Fe3O4 nanocomposites: A comparison between the effects of bare Fe3O4, Fe3O4/SiO2/chitosan and Fe3O4/SiO2/chitosan/imide/phenylalanine-modified nanofillers. Prog. Org. Coat. 2018, 123, 10–19. [Google Scholar] [CrossRef]
- Pinto, D.; Bernardo, L.; Amaro, A.; Lopes, S. Mechanical properties of epoxy nanocomposites using alumina as reinforcement-a review. Proc. J. Nano Res. 2015, 30, 9–38. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Tikhani, F.; Shabanian, M.; Movahedi, F.; Moghari, S.; Akbari, V.; Gabrion, X.; Laheurte, P.; Vahabi, H.; Saeb, M.R. Synthesis, characterization, and high potential of 3D metal–organic framework (MOF) nanoparticles for curing with epoxy. J. Alloys Comp. 2020, 829, 154547. [Google Scholar] [CrossRef]
- Azeez, A.A.; Rhee, K.Y.; Park, S.J.; Hui, D. Epoxy clay nanocomposites–processing, properties and applications: A review. Comp. Part B Eng. 2013, 45, 308–320. [Google Scholar] [CrossRef]
- Truc, T.A.; Thuy, T.T.; Oanh, V.K.; Hang, T.T.X.; Nguyen, A.S.; Caussé, N.; Pébère, N. 8-hydroxyquinoline-modified clay incorporated in an epoxy coating for the corrosion protection of carbon steel. Surf. Interf. 2019, 14, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Karami, Z.; Jouyandeh, M.; Hamad, S.M.; Ganjali, M.R.; Aghazadeh, M.; Torre, L.; Puglia, D.; Saeb, M.R. Curing epoxy with Mg-Al LDH nanoplatelets intercalated with carbonate ion. Prog. Org. Coat. 2019, 136, 105278. [Google Scholar] [CrossRef]
- Karami, Z.; Aghazadeh, M.; Jouyandeh, M.; Zarrintaj, P.; Vahabi, H.; Ganjali, M.R.; Torre, L.; Puglia, D.; Saeb, M.R. Epoxy/Zn-Al-CO3 LDH nanocomposites: Curability assessment. Prog. Org. Coat. 2020, 138, 105355. [Google Scholar] [CrossRef]
- Bajaj, P.; Jha, N.; Kumar, R.A. Effect of mica on the curing behavior of an amine-cured epoxy system: Differential scanning calorimetric studies. J. Appl. Polym. Sci. 1990, 40, 203–212. [Google Scholar] [CrossRef]
- He, Y.; Fan, Y.; Chen, C.; Zhong, F.; Qing, D. Synthesis of mica-multiwalled carbon nanotube (MWCNT) hybrid material and properties of mica-MWCNT/epoxy composites coating research. High Perform. Polym. 2015, 27, 191–199. [Google Scholar] [CrossRef]
- Castro, L.; Oslinger, J.; Taylor, N.; Wahlander, M. Dielectric and physico-chemical properties of epoxy-mica insulation during thermoelectric aging. IEEE Transac. Dielectr. Electr. Insul. 2015, 22, 3107–3117. [Google Scholar] [CrossRef]
- Adin, H. Effects of particle reinforcement on the bending and compressive behaviors of composite pipes. Mater. Test. 2019, 61, 1072–1076. [Google Scholar] [CrossRef]
- Shan, Z.; Chen, Q.; Fu, Q.; Feng, C.; Huang, C.; Zheng, W. TSDC measurements to analyze the electrical ageing state of large generator stator bar insulation. Polym. Test. 2019, 77, 105901. [Google Scholar] [CrossRef]
- Nair, R.P.; Vishwanath, S.B. Analysis of partial discharge sources in stator insulation system using variable excitation frequency. IET Sci. Meas. Technol. 2019, 13, 922–930. [Google Scholar] [CrossRef]
- Hornak, J.; Mentlík, V.; Trnka, P.; Šutta, P. Synthesis and diagnostics of nanostructured micaless microcomposite as a prospective insulation material for rotating machines. Appl. Sci. 2019, 9, 2926. [Google Scholar] [CrossRef] [Green Version]
- Pothukuchi, H.K.R.; Fuchs, P.; Pinter, G.; Stelzer, S. Fracture mechanical characterization of mica-filled epoxy glass composites under monotonic and cyclic loading. J. Compos. Mater. 2019, 53, 741–751. [Google Scholar] [CrossRef]
- Herman, H.; Thomas, J.L.; Stevens, G. Predicting the complex cure and gelation behaviour of epoxy resins used in generator stator insulation systems. In Proceedings of the 2005 International Symposium on Electrical Insulating Materials, Kitakyushu, Japan, 5–9 June 2005; pp. 160–163. [Google Scholar]
- Relosi, N.; Neuwald, O.A.; Zattera, A.J.; Piazza, D.; Kunst, S.R.; Birriel, E.J. Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings. Polímeros 2018, 28, 355–367. [Google Scholar] [CrossRef]
- He, H.; Duchet, J.; Galy, J.; Gérard, J.-F. Influence of cationic surfactant removal on the thermal stability of organoclays. J. Colloid Interf. Sci. 2006, 295, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michot, L.; Villiéras, F. Assessment of surface energetic heterogeneity of synthetic Na-saponites. The role of layer charge. Clay Miner. 2002, 37, 39–57. [Google Scholar] [CrossRef]
- Livi, S.; Duchet-Rumeau, J.; Pham, T.N.; Gérard, J.-F. Synthesis and physical properties of new surfactants based on ionic liquids: Improvement of thermal stability and mechanical behaviour of high density polyethylene nanocomposites. J. Colloid Interf. Sci. 2011, 354, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Livi, S.; Duchet-Rumeau, J.; Gérard, J.-F. Tailoring of interfacial properties by ionic liquids in a fluorinated matrix based nanocomposites. Eur. Polym. J. 2011, 47, 1361–1369. [Google Scholar] [CrossRef]
- Livi, S.; Dufour, C.; Gaumont, A.C.; Levillain, J.; Pham, T.N. Influence of the structure of the onium iodide salts on the properties of modified montmorillonite. J. Appl. Polym. Sci. 2013, 127, 4015–4026. [Google Scholar] [CrossRef]
- Livi, S.; Duchet-Rumeau, J.; Pham, T.-N.; Gérard, J.-F. A comparative study on different ionic liquids used as surfactants: Effect on thermal and mechanical properties of high-density polyethylene nanocomposites. J. Colloid Interf. Sci. 2010, 349, 424–433. [Google Scholar] [CrossRef] [PubMed]
- González, M.G.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on epoxy resins-identification, monitoring the curing process, phase separation and water uptake. Infrared Spectrosc. Mater. Sci. Eng. Technol. 2012, 2, 261–284. [Google Scholar]
- Silverstein, R.M.; Bassler, G.C. Spectrometric identification of organic compounds. J. Chem. Educ. 1962, 39, 546. [Google Scholar] [CrossRef]
- Seidi, F.; Jouyandeh, M.; Akbari, V.; Paran, S.M.R.; Livi, S.; Ducos, F.; Vahabi, H.; Ganjali, M.R.; Saeb, M.R. Super-crosslinked ionic liquid-intercalated montmorillonite/epoxy nanocomposites: Cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polym. Eng. Sci. 2020, 60, 1940–1957. [Google Scholar] [CrossRef]
- Seidi, F.; Jouyandeh, M.; Paran, S.M.R.; Esmaeili, A.; Karami, Z.; Livi, S.; Habibzadeh, S.; Vahabi, H.; Ganjali, M.R.; Saeb, M.R. Imidazole-functionalized nitrogen-rich Mg-Al-CO3 layered double hydroxide for developing highly crosslinkable epoxy with high thermal and mechanical properties. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125826. [Google Scholar] [CrossRef]
- Tikhani, F.; Moghari, S.; Jouyandeh, M.; Laoutid, F.; Vahabi, H.; Saeb, M.R.; Dubois, P. Curing kinetics and thermal stability of epoxy composites containing newly obtained nano-scale aluminum hypophosphite (AlPO2). Polymers 2020, 12, 644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouyandeh, M.; Ganjali, M.R.; Ali, J.A.; Aghazadeh, M.; Stadler, F.J.; Saeb, M.R. Curing epoxy with electrochemically synthesized MnxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105199. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ganjali, M.R.; Aghazadeh, M.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Bulk-Surface Modification of Nanoparticles for Developing Highly-Crosslinked Polymer Nanocomposites. Polymers 2020, 12, 1820. [Google Scholar] [CrossRef]
- Karami, Z.; Jazani, O.M.; Navarchian, A.H.; Saeb, M.R. State of cure in silicone/clay nanocomposite coatings: The puzzle and the solution. Prog. Org. Coat. 2018, 125, 222–233. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Karami, Z.; Ali, J.A.; Karimzadeh, I.; Aghazadeh, M.; Laoutid, F.; Vahabi, H.; Saeb, M.R.; Ganjali, M.R.; Dubois, P. Curing epoxy with polyethylene glycol (PEG) surface-functionalized NixFe3-xO4magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105250. [Google Scholar] [CrossRef]
- Shin, M.J.; Shin, Y.J.; Shin, J.S. Latent imidazole curing agents by microencapsulation with copolymers. Part. Sci. Technol. 2018, 36, 112–116. [Google Scholar] [CrossRef]
- Soares, B.G.; Livi, S.; Duchet-Rumeau, J.; Gerard, J.-F. Preparation of epoxy/MCDEA networks modified with ionic liquids. Polymer 2012, 53, 60–66. [Google Scholar] [CrossRef]
- Karami, Z.; Jouyandeh, M.; Ghiyasi, S.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Maadani, M.; Rallini, M.; Luzi, F.; Torre, L.; et al. Exploring curing potential of epoxy nanocomposites containing nitrate anion intercalated Mg–Al–LDH with Cure Index. Prog. Org. Coat. 2020, 139, 105255. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Ganjali, M.R.; Ali, J.A.; Aghazadeh, M.; Stadler, F.J.; Saeb, M.R. Curing epoxy with electrochemically synthesized CoxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 137, 105252. [Google Scholar] [CrossRef]
- Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Metal-organic framework (MOF)/epoxy coatings: A review. Materials 2020, 13, 2881. [Google Scholar] [CrossRef] [PubMed]
- Jouyandeh, M.; Ganjali, M.R.; Ali, J.A.; Aghazadeh, M.; Paran, S.M.R.; Naderi, G.; Saeb, M.R.; Thomas, S. Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized ZnxFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 2019, 136, 105227. [Google Scholar] [CrossRef]
- Tikhani, F.; Jouyandeh, M.; Jafari, S.H.; Chabokrow, S.; Ghahari, M.; Gharanjig, K.; Klein, F.; Hampp, N.; Ganjali, M.R.; Formela, K. Cure Index demonstrates curing of epoxy composites containing silica nanoparticles of variable morphology and porosity. Prog. Org. Coat. 2019, 135, 176–184. [Google Scholar] [CrossRef]
- Akbari, V.; Najafi, F.; Vahabi, H.; Jouyandeh, M.; Badawi, M.; Morisset, S.; Ganjali, M.R.; Saeb, M.R. Surface chemistry of halloysite nanotubes controls the curability of low filled epoxy nanocomposites. Prog. Org. Coat. 2019, 135, 555–564. [Google Scholar] [CrossRef]
- Abdi, A.A.; Jouyandeh, M.; Vahabi, H.; Shabanian, M.; Lafon-Pham, D.; Gabrion, X.; Laheurte, P.; Nahavandi, A.M.; Saeb, M.R. Correlating the Photophysical Properties with the Cure Index of Epoxy Nanocomposite Coatings. J. Inorg. Organomet. Polym. Mater. 2021, 31, 923–933. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Karami, Z.; Hamad, S.M.; Ganjali, M.R.; Akbari, V.; Vahabi, H.; Kim, S.-J.; Zarrintaj, P.; Saeb, M.R. Nonisothermal cure kinetics of epoxy/ZnxFe3-xO4 nanocomposites. Prog. Org. Coat. 2019, 136, 105290. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Vahabi, H.; Saeb, M.R.; Serre, C. Amine-functionalized metal–organic frameworks/epoxy nanocomposites: Structure-properties relationships. J. Appl. Polym. Sci. 2021, 138, 51005. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Paran, S.M.R.; Khadem, S.S.M.; Ganjali, M.R.; Akbari, V.; Vahabi, H.; Saeb, M.R. Nonisothermal cure kinetics of epoxy/MnxFe3-xO4 nanocomposites. Prog. Org. Coat. 2020, 140, 105505. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Shabanian, M.; Khaleghi, M.; Paran, S.M.R.; Ghiyasi, S.; Vahabi, H.; Formela, K.; Puglia, D.; Saeb, M.R. Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: Chemistry, mechanism, and fracture behavior. Prog. Org. Coat. 2018, 125, 384–392. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Domínguez, J.; Grivel, J.-C.; Madsen, B. Study on the non-isothermal curing kinetics of a polyfurfuryl alcohol bioresin by DSC using different amounts of catalyst. Thermochim. Acta 2012, 529, 29–35. [Google Scholar] [CrossRef]
- Criado, J.; Malek, J.; Ortega, A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim. Acta 1989, 147, 377–385. [Google Scholar] [CrossRef]
- Akbari, V.; Jouyandeh, M.; Paran, S.M.R.; Ganjali, M.R.; Abdollahi, H.; Vahabi, H.; Ahmadi, Z.; Formela, K.; Esmaeili, A.; Mohaddespour, A. Effect of Surface Treatment of Halloysite Nanotubes (HNTs) on the kinetics of epoxy resin cure with amines. Polymers 2020, 12, 930. [Google Scholar] [CrossRef] [Green Version]
- Karami, Z.; Jouyandeh, M.; Ali, J.A.; Ganjali, M.R.; Aghazadeh, M.; Maadani, M.; Rallini, M.; Luzi, F.; Torre, L.; Puglia, D.; et al. Development of Mg-Zn-Al-CO3 ternary LDH and its curability in epoxy/amine system. Prog. Org. Coat. 2019, 136, 105264. [Google Scholar] [CrossRef]
- Comer, A.; Heilman, A.; Kalika, D. Dynamic relaxation characteristics of polymer nanocomposites based on poly (ether imide) and poly (methyl methacrylate). Polymer 2010, 51, 5245–5254. [Google Scholar] [CrossRef]
- Zamani, N.R.; Jumahat, A.; Bahsan, R. Dynamic Mechanical Analysis of Nanosilica Filled Epoxy Nanocomposites. Proc. Appl. Mech. Mater. 2015, 699, 239–244. [Google Scholar] [CrossRef]
- Bockhorn, H.; Hornung, A.; Hornung, U. Mechanisms and kinetics of thermal decomposition of plastics from isothermal and dynamic measurements. J. Anal. Appl. Pyrolysis 1999, 50, 77–101. [Google Scholar] [CrossRef]
- Sbirrazzuoli, N. Is the Friedman method applicable to transformations with temperature dependent reaction heat? Macromol. Chem. Phys. 2007, 208, 1592–1597. [Google Scholar] [CrossRef]
System | Heating Rate (°C min−1) | TOnset (°C) | Tp (°C) | TEndset (°C) | ΔT (°C) | ΔH∞ (J/g) | ΔT* | ΔH* | CI | Cure State |
---|---|---|---|---|---|---|---|---|---|---|
Ep | 5 | 33.00 | 91.84 | 220.00 | 187.00 | 329.97 | n.a | n.a | n.a | * n.a |
10 | 37.66 | 105.86 | 220.66 | 183.00 | 350.67 | n.a | n.a | n.a | n.a | |
15 | 42.30 | 114.33 | 220.30 | 178.00 | 348.44 | n.a | n.a | n.a | n.a | |
Ep/Mica | 5 | 35.71 | 91.98 | 220.71 | 185.00 | 289.82 | 0.99 | 0.88 | 0.87 | Poor |
10 | 36.14 | 106.18 | 220.14 | 184.00 | 400.58 | 1.01 | 1.14 | 1.15 | Good | |
15 | 33.80 | 114.25 | 220.80 | 187.00 | 389.02 | 1.05 | 1.12 | 1.17 | Good | |
Epoxy/Mica-IM | 5 | 31.61 | 87.85 | 219.61 | 188.00 | 288.53 | 1.01 | 0.87 | 0.88 | Poor |
10 | 29.65 | 99.70 | 219.65 | 190.00 | 405.35 | 1.04 | 1.16 | 1.20 | Good | |
15 | 34.42 | 115.31 | 219.42 | 185.00 | 358.65 | 1.04 | 1.03 | 1.07 | Good |
Designation | Heating Rate (°C/min) | Friedman | KAS | ||||
---|---|---|---|---|---|---|---|
m | n | lnA (s−1) | m | n | lnA (s−1) | ||
Epoxy | 5 | 0.12 | 2.04 | 17.74 | 0.00 | 2.24 | 21.65 |
10 | 0.15 | 2.03 | 17.74 | 0.01 | 2.23 | 21.50 | |
15 | 0.15 | 1.94 | 17.69 | 0.01 | 2.12 | 21.37 | |
Epoxy/Mica | 5 | 0.18 | 1.55 | 15.22 | 0.20 | 1.78 | 20.68 |
10 | 0.23 | 1.93 | 15.68 | 0.1 | 2.20 | 20.97 | |
15 | 0.23 | 1.86 | 15.71 | 0.01 | 2.11 | 20.87 | |
Epoxy/Mica-IM | 5 | 0.34 | 1.51 | 14.51 | 0.13 | 1.68 | 18.50 |
10 | 0.24 | 1.95 | 15.09 | 0.08 | 2.15 | 18.98 | |
15 | 0.31 | 1.68 | 14.93 | 0.14 | 1.83 | 18.66 |
Samples | Dispersive Component | Polar Component | Total Energy |
---|---|---|---|
EP | 34.2 | 2.8 | 37.0 |
EP/Mica | 27.6 | 10.3 | 37.9 |
EP/Mica-IM | 35.7 | 1.3 | 37.0 |
Sample | Tg (°C) | Storage Modulus (MPa) | ||
---|---|---|---|---|
DMA | DSC | Glassy Region | Rubbery REGION | |
EP | 94.11 | 94.98 | 1572 | 9.5 |
EP/Mica | 93.64 | 89.02 | 1657 | 11.9 |
EP/Mica-IM | 91.90 | 90.99 | 2522 | 19.8 |
Sample | T5 (°C) | TP (°C) | Residue (%) at 900 °C |
---|---|---|---|
EP | 147.59 | 369.91 | 12.24 |
EP/Mica-0.5 | 207.10 | 376.36 | 11.20 |
EP/Mica-2 | 221.49 | 376.01 | 9.70 |
EP/Mica-5 | 184.14 | 369.19 | 8.20 |
EP/Mica-IM-0.5 | 282.97 | 370.80 | 5.99 |
EP/Mica-IM-2 | 320.02 | 370.83 | 7.23 |
EP/Mica-IM-5 | 179.86 | 364.90 | 7.30 |
Friedman | FWO | KAS | m-CR | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Designation | Ln A (min−1) | m | n | Ln A (min−1) | m | n | Ln A (min−1) | m | n | Ln A (min−1) | m | n |
E0 | 16.1 | 1.8 | 1.5 | 20.7 | 0.7 | 1.2 | 21.4 | 0.8 | 1.5 | 20.6 | 0.4 | 0.7 |
EP/Mica-0.5 | 27.3 | 0.2 | 2.3 | 23.9 | 0.3 | 2.3 | 24.5 | 0.1 | 2.3 | 23.7 | 0.2 | 1.2 |
EP/Mica-2 | 27.0 | 0.6 | 2.1 | 25.7 | 0.6 | 2.6 | 26.2 | 0.5 | 2.3 | 25.6 | 0.3 | 0.6 |
EP/Mica-5 | 27.5 | 0.7 | 3.2 | 26.8 | 0.9 | 2.7 | 27.4 | 0.7 | 3.3 | 26.7 | 0.7 | 2.3 |
EP/Mica-IM-0.5 | 21.3 | 1.1 | 2.6 | 26.6 | 1.1 | 2.6 | 27.2 | 0.8 | 3.0 | 26.5 | 0.8 | 2.0 |
EP/Mica-IM-2 | 26.0 | 1.5 | 1.5 | 26.5 | 1.6 | 1.6 | 26.9 | 1.6 | 1.3 | 26.9 | 1.3 | 0.5 |
EP/Mica-IM-5 | 17.8 | 1.8 | 2.5 | 16.1 | 1.6 | 2.4 | 16.8 | 1.9 | 2.4 | 15.7 | 1.6 | 2.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jouyandeh, M.; Akbari, V.; Paran, S.M.R.; Livi, S.; Lins, L.; Vahabi, H.; Saeb, M.R. Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials 2021, 11, 1990. https://doi.org/10.3390/nano11081990
Jouyandeh M, Akbari V, Paran SMR, Livi S, Lins L, Vahabi H, Saeb MR. Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials. 2021; 11(8):1990. https://doi.org/10.3390/nano11081990
Chicago/Turabian StyleJouyandeh, Maryam, Vahideh Akbari, Seyed Mohammad Reza Paran, Sébastien Livi, Luanda Lins, Henri Vahabi, and Mohammad Reza Saeb. 2021. "Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation" Nanomaterials 11, no. 8: 1990. https://doi.org/10.3390/nano11081990
APA StyleJouyandeh, M., Akbari, V., Paran, S. M. R., Livi, S., Lins, L., Vahabi, H., & Saeb, M. R. (2021). Epoxy/Ionic Liquid-Modified Mica Nanocomposites: Network Formation–Network Degradation Correlation. Nanomaterials, 11(8), 1990. https://doi.org/10.3390/nano11081990