A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications
Abstract
:1. Introduction
2. Germanium Nanowire Growth Mechanisms
2.1. Primary Growth Paradigms for Nanowire Growth
2.2. Why Self-Seeded Growth? Disadvantages of Catalytic Ge Nanowire Growth
Different Catalyst Type and Their Effect on Physical Properties of Nanowires
3. Self-Seeded Germanium Nanowire Synthesis Methods
3.1. Bottom-Up Synthesis of Self-Seeded Germanium Nanowires
3.1.1. Vapour-Phase Growth of Self-Seeded Nanowires
PVD Growth of Self-Seeded Nanowires
CVD Growth of Nanostructures
Self-Seeded Nanowire Growth by CVD
Other Vapour-Phase Growth of Self-Seeded Ge Nanowires
Growth Method | Growth Temperature | Precursor | Morphology | Reference |
---|---|---|---|---|
Oblique angle deposition | 330 °C | Ge | Irregular morphology | [134] |
X-ray-assisted CVD | 300 °C | GeH4 | L: up to 20 μm | [125] |
CVD | 490 °C | (GeMe3)2 | d: 5–20 nm L: up to 20 μm | [141] |
CVD | 365 °C | (SiMe3)3GeH | d: up to 100 nm (core and shell) | [142] |
Thermal evaporation CVD | 1050 °C | Ge powder | d: 20–200 nm L: up to 5 μm | [146] |
Thermal evaporation CVD | 1100 °C | GeO2 | d: 20–120 nm L: 0.5–10 μm | [149] |
Laser ablation CVD | - | Ge-graphite composite | d: 8–35 nm L: up to 1 μm | [151] |
Electric arc discharge | - | Ge | d: 1 μm L: 100 μm–1 mm | [160] |
3.1.2. The Solution-Phase Growth of Self-Seeded Ge Nanowires
3.1.3. Templated Growth of Unseeded Ge Nanowires
4. Growth Mechanism for Self-Seeded Ge Nanowires
4.1. Nanoparticle Seeds
4.2. Proposed Growth Mechanism for Self-Seeded Germanium Nanowires
4.2.1. Growth Mechanisms of Self-Seeded Growth by Vapour-Phase Methods
4.2.2. Growth Mechanisms of Self-Seeded Growth by Solution-Phase Methods
5. Growth of Self-Seeded Ge Nanowire Alloys
6. Potential Applications of Self-Seeded Germanium Nanowires
6.1. Self-Seeded Ge Nanowires in Li-Ion Battery (LIB)
6.2. Self-Seeded Ge Nanowires in Other Applications
6.2.1. Self-Seeded Ge Nanowires in Semiconducting Devices
6.2.2. Self-Seeded Ge Nanowires for Field Emission
7. Conclusions and Outlook
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
Full phrase | Abbreviation |
Anodised aluminium oxide | AAO |
Chemical vapour deposition | CVD |
Diphenylgermane | DPG |
Fourier-Transform Infrared | FTIR |
High boiling point | HBP |
Indium tin oxide | ITO |
Lithium-ion batteries | LIB |
Low boiling point | LBP |
Oblique angle deposition | OAD |
Oxide-assisted growth | OAG |
Physical vapour deposition | PVD |
Solid electrolyte interface | SEI |
Solution–liquid–solid | SLS |
Supercritical fluid | SCF |
Supercritical fluid–solution–solid | SFLS |
Transmission Electron Microscopy | TEM |
Tetraethylgermane | TEG |
Three-phase boundary | TPB |
Vapour–liquid–solid | VLS |
Vapour–solid–solid | VSS |
X-ray Diffraction | XRD |
References
- Busch, G. Early History of the Physics and Chemistry of Semiconductors-from Doubts to Fact in a Hundred Years. Eur. J. Phys. 1989, 10, 254–264. [Google Scholar] [CrossRef]
- Wagner, R.S.; Ellis, W.C. Vapor-Liquid-Solid Mechanism of Single Crystal Growth. Appl. Phys. Lett. 1964, 4, 89–90. [Google Scholar] [CrossRef]
- Givargizov, E.I. Fundamental Aspects of VLS Growth. Vap. Growth Ep. 1975, 20–30. [Google Scholar] [CrossRef]
- Bootsma, G.A.; Gassen, H.J. A Quantitative Study on the Growth of Silicon Whiskers from Silane and Germanium Whiskers from Germane. J. Cryst. Growth 1971, 10, 223–234. [Google Scholar] [CrossRef]
- Moore, G.E. Cramming More Components onto Integrated Circuits. IEEE Solid-State Circuits Soc. Newsl. 2009, 11, 33–35. [Google Scholar] [CrossRef]
- Alivisatos, A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 1996, 271, 933–937. [Google Scholar] [CrossRef] [Green Version]
- Kalyuzhny, G.; Murray, R.W. Ligand Effects on Optical Properties of CdSe Nanocrystals. J. Phys. Chem. B 2005, 109, 7012–7021. [Google Scholar] [CrossRef] [PubMed]
- Sutter, E.A.; Sutter, P.W. Size-Dependent Phase Diagram of Nanoscale Alloy Drops Used in Vapor-Liquid-Solid Growth of Semiconductor Nanowires. ACS Nano 2010, 4, 4943–4947. [Google Scholar] [CrossRef]
- Li, L.S.; Hu, J.; Yang, W.; Alivisatos, A.P. Band Gap Variation of Size- and Shape-Controlled Colloidal CdSe Quantum Rods. Nano Lett. 2001, 1, 349–351. [Google Scholar] [CrossRef] [Green Version]
- Hendrickx, N.W.; Franke, D.P.; Sammak, A.; Kouwenhoven, M.; Sabbagh, D.; Yeoh, L.; Li, R.; Tagliaferri, M.L.V.; Virgilio, M.; Capellini, G.; et al. Gate-Controlled Quantum Dots and Superconductivity in Planar Germanium. Nat. Commun. 2018, 9, 2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chockla, A.M.; Harris, J.T.; Korgel, B.A. Colloidal Synthesis of Germanium Nanorods. Chem. Mater. 2011, 23. [Google Scholar] [CrossRef]
- Park, M.H.; Cho, Y.; Kim, K.; Kim, J.; Liu, M.; Cho, J. Germanium Nanotubes Prepared by Using the Kirkendall Effect as Anodes for High-Rate Lithium Batteries. Angew. Chem. Int. Ed. 2011, 50, 9647–9650. [Google Scholar] [CrossRef] [PubMed]
- Vaughn, D.; Sun, D.; Levin, S.M.; Biacchi, A.J.; Mayer, T.S.; Schaak, R.E. Colloidal Synthesis and Electrical Properties of GeSe Nanobelts. Chem. Mater. 2012, 24, 3643–3649. [Google Scholar] [CrossRef]
- Seifner, M.S.; Sistani, M.; Porrati, F.; Di Prima, G.; Pertl, P.; Huth, M.; Lugstein, A.; Barth, S. Direct Synthesis of Hyperdoped Germanium Nanowires. ACS Nano 2018, 12, 1236–1241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Zhang, Q.; Lay, M.D.; Stickney, J.L. Growth of Ge Nanofilms Using Electrochemical Atomic Layer Deposition, with a Bait and Switch Surface-Limited Reaction. J. Am. Chem. Soc. 2011, 133, 8199–8204. [Google Scholar] [CrossRef]
- Aslan, E. Germanium Hollow Nanodisk Resonator for Magnetic Dipole Decay Rate Enhancement in Near-Infrared. Microw. Opt. Technol. Lett. 2021, 63, 279–285. [Google Scholar] [CrossRef]
- Wang, Q.; Kang, S.Z.; Li, X.; Yang, Y.W.; Qin, L.; Mu, J. A Facile Preparation of Crystalline GeS2 Nanoplates and Their Photocatalytic Activity. J. Alloys Compd. 2015, 631, 21–25. [Google Scholar] [CrossRef]
- Yu, H.; Helbich, T.; Scherf, L.M.; Chen, J.; Cui, K.; Fässler, T.F.; Rieger, B.; Veinot, J.G.C. Radical-Initiated and Thermally Induced Hydrogermylation of Alkenes on the Surfaces of Germanium Nanosheets. Chem. Mater. 2018, 30, 2274–2280. [Google Scholar] [CrossRef] [Green Version]
- Zhong, C.; Wang, J.Z.; Gao, X.W.; Wexler, D.; Liu, H.K. In Situ One-Step Synthesis of a 3D Nanostructured Germanium-Graphene Composite and Its Application in Lithium-Ion Batteries. J. Mater. Chem. A 2013, 1, 10798–10804. [Google Scholar] [CrossRef] [Green Version]
- Cui, G.; Gu, L.; Zhi, L.; Kaskhedikar, N.; Van Aken, P.A.; Müllen, K.; Maier, J. A Germanium-Carbon Nanocomposite Material for Lithium Batteries. Adv. Mater. 2008, 20, 3079–3083. [Google Scholar] [CrossRef]
- Haraguchi, K.; Katsuyama, T.; Hiruma, K.; Ogawa, K. GaAs P-n Junction Formed in Quantum Wire Crystals. Appl. Phys. Lett. 1992, 60, 745–747. [Google Scholar] [CrossRef]
- Weng, B.; Liu, S.; Tang, Z.R.; Xu, Y.J. One-Dimensional Nanostructure Based Materials for Versatile Photocatalytic Applications. RSC Adv. 2014, 4, 12685–12700. [Google Scholar] [CrossRef]
- Whitney, T.M.; Jiang, J.S.; Searson, P.C.; Chien, C.L. Fabrication and Magnetic Properties of Arrays of Metallic Nanowires. Science 1993, 261, 1316–1319. [Google Scholar] [CrossRef]
- Favier, F.; Walter, E.C.; Zach, M.P.; Benter, T.; Penner, R.M. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays. Science 2001, 293, 2227–2231. [Google Scholar] [CrossRef]
- Arpin, K.A.; Mihi, A.; Johnson, H.T.; Baca, A.J.; Rogers, J.A.; Lewis, J.A.; Braun, P.V. Multidimensional Architectures for Functional Optical Devices. Adv. Mater. 2010, 22, 1084–1101. [Google Scholar] [CrossRef]
- Li, L.; Zhai, T.; Bando, Y.; Golberg, D. Recent Progress of One-Dimensional ZnO Nanostructured Solar Cells. Nano Energy 2012, 1, 91–106. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Hameed, M.F.O.; El-Okr, M.M.; Obayya, S.S.A. Characterization of One Dimensional Liquid Crystal Photonic Crystal Structure. Optik 2016, 127, 8774–8781. [Google Scholar] [CrossRef]
- Yang, P.; Yan, R.; Fardy, M. Semiconductor Nanowire: Whats Next? Nano Lett. 2010, 10, 1529–1536. [Google Scholar] [CrossRef]
- Saga, T. Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Mater. 2010, 2, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Shockley, W.; Pearson, G.L.; Haynes, J.R. Hole Injection in Germanium-Quantitative Studies and Filamentary Transistors. Bell Syst. Tech. J. 1949, 28, 344–366. [Google Scholar] [CrossRef]
- Bardeen, J.; Pfann, W.G. Effects of Electrical Forming on the Rectifying Barriers of N- and p-Germanium Transistors. Phys. Rev. 1950, 77, 401–402. [Google Scholar] [CrossRef]
- Huang, J.; Chim, W.K.; Wang, S.; Chiam, S.Y.; Wong, L.M. From Germanium Nanowires to Germanium–Silicon Oxide Nanotubes: Influence of Germanium Tetraiodide Precursor. Nano Lett. 2009, 9, 583–589. [Google Scholar] [CrossRef]
- Xiang, J.; Lu, W.; Hu, Y.; Wu, Y.; Yan, H.; Lieber, C.M. Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors. Nature 2006, 441, 489–493. [Google Scholar] [CrossRef]
- Maity, N.P.; Maity, R.; Thapa, R.K.; Baishya, S. Image Force Effect on Tunneling Current for Ultra Thin High-K Dielectric Material Al2O3 Based Metal Oxide Semiconductor Devices. J. Nanoelectron. Optoelectron. 2015, 10, 645–648. [Google Scholar] [CrossRef]
- Nguyen, P.; Ng, H.T.; Meyyappan, M. Growth of Individual Vertical Germanium Nanowires. Adv. Mater. 2005, 17, 549–553. [Google Scholar] [CrossRef]
- Maeda, Y.; Tsukamoto, N.; Yazawa, Y.; Kanemitsu, Y.; Masumoto, Y. Visible Photoluminescence of Ge Microcrystals Embedded in SiO2 Glassy Matrices. Appl. Phys. Lett. 1991, 59, 3168–3170. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Burghard, M.; Kim, G.T.; Düsberg, G.S.; Chiu, P.W.; Krstic, V.; Roth, S.; Han, W.Q. Growth and Electrical Transport of Germanium Nanowires. J. Appl. Phys. 2001, 90, 5747–5751. [Google Scholar] [CrossRef]
- Greytak, A.B.; Lauhon, L.J.; Gudiksen, M.S.; Lieber, C.M. Growth and Transport Properties of Complementary Germanium Nanowire Field-Effect Transistors. Appl. Phys. Lett. 2004, 84, 4176–4178. [Google Scholar] [CrossRef] [Green Version]
- Bruno, M.; Palummo, M.; Marini, A.; Del Sole, R.; Olevano, V.; Kholod, A.N.; Ossicini, S. Excitons in Germanium Nanowires: Quantum Confinement, Orientation, and Anisotropy Effects within a First-Principles Approach. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 72, 153310. [Google Scholar] [CrossRef]
- Sun, X.; Calebotta, G.; Yu, B.; Selvaduray, G.; Meyyappan, M. Synthesis of Germanium Nanowires on Insulator Catalyzed by Indium or Antimony. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2007, 25, 415–420. [Google Scholar] [CrossRef]
- Lu, W.; Lieber, C.M. Semiconductor Nanowires. J. Phys. D Appl. Phys. 2006, 39. [Google Scholar] [CrossRef] [Green Version]
- Jia, C.; Lin, Z.; Huang, Y.; Duan, X. Nanowire Electronics: From Nanoscale to Macroscale. Chem. Rev. 2019, 119, 9074–9135. [Google Scholar] [CrossRef]
- Bayani, A.H.; Dideban, D.; Voves, J.; Moezi, N. Investigation of Sub-10nm Cylindrical Surrounding Gate Germanium Nanowire Field Effect Transistor with Different Cross-Section Areas. Superlattices Microstruct. 2017, 105, 110–116. [Google Scholar] [CrossRef]
- Tian, B.; Kempa, T.J.; Lieber, C.M. Single Nanowire Photovoltaics. Chem. Soc. Rev. 2009, 38, 16–24. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, X.; Zhang, H.; Huang, Y.; Li, Y.; Zhang, X.; Gan, Z. Improved Power Conversion Efficiency in Radial Junction Thin Film Solar Cells Based on Amorphous Silicon Germanium Alloys. J. Alloys Compd. 2019, 803, 260–264. [Google Scholar] [CrossRef]
- Jung, Y.; Nam, S.W.; Agarwal, R. High-Resolution Transmission Electron Microscopy Study of Electrically-Driven Reversible Phase Change in Ge2Sb2Te5 Nanowires. Nano Lett. 2011, 11, 1364–1368. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Wei, Q.; Park, H.; Lieber, C.M. Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species. Science 2001, 293, 1289–1292. [Google Scholar] [CrossRef]
- Blond, P.; Bevernaegie, R.; Troian-Gautier, L.; Lagrost, C.; Hubert, J.; Reniers, F.; Raussens, V.; Jabin, I. Ready-to-Use Germanium Surfaces for the Development of FTIR-Based Biosensors for Proteins. Langmuir 2020, 36, 12068–12076. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Pei, L.Z.; Lin, N. Ce Doped Germanium Dioxide Nanowires and Solar Light Photocatalytic Performance. e-J. Surf. Sci. Nanotechnol. 2016, 14, 4–8. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, K.J.; Lyons, D.M.; Holmes, J.D.; Erts, D.; Polyakov, B.; Olin, H.; Svensson, K.; Olsson, E. Bistable Nanoelectromechanical Devices. Appl. Phys. Lett. 2004, 84, 4074–4076. [Google Scholar] [CrossRef] [Green Version]
- McNulty, D.; Biswas, S.; Garvey, S.; O’Dwyer, C.; Holmes, J.D. Directly Grown Germanium Nanowires from Stainless Steel: High-Performing Anodes for Li-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 11811–11819. [Google Scholar] [CrossRef]
- Hao, J.; Yang, Y.; Zhao, J.; Liu, X.; Endres, F.; Chi, C.; Wang, B.; Liu, X.; Li, Y. Ionic Liquid Electrodeposition of Strain-Released Germanium Nanowires as Stable Anodes for Lithium Ion Batteries. Nanoscale 2017, 9, 8481–8488. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; O’Regan, C.; Petkov, N.; Morris, M.A.; Holmes, J.D. Manipulating the Growth Kinetics of Vapor-Liquid-Solid Propagated Ge Nanowires. Nano Lett. 2013, 13, 4044–4052. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Singha, A.; Morris, M.A.; Holmes, J.D. Inherent Control of Growth, Morphology, and Defect Formation in Germanium Nanowires. Nano Lett. 2012, 12, 5654–5663. [Google Scholar] [CrossRef]
- Biswas, S.; O’Regan, C.; Morris, M.A.; Holmes, J.D. In-Situ Observations of Nanoscale Effects in Germanium Nanowire Growth with Ternary Eutectic Alloys. Small 2015, 11, 103–111. [Google Scholar] [CrossRef]
- Xiao, X.; Li, X.; Zheng, S.; Shao, J.; Xue, H.; Pang, H. Nanostructured Germanium Anode Materials for Advanced Rechargeable Batteries. Adv. Mater. Interfaces 2017, 4, 1600798. [Google Scholar] [CrossRef]
- Kennedy, T.; Brandon, M.; Ryan, K.M. Advances in the Application of Silicon and Germanium Nanowires for High-Performance Lithium-Ion Batteries. Adv. Mater. 2016, 28, 5696–5704. [Google Scholar] [CrossRef]
- Chan, C.K.; Zhang, X.F.; Cui, Y. High Capacity Li Ion Battery Anodes Using Ge Nanowires. Nano Lett. 2008, 8, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, J.; Ji, X.; Pollard, T.P.; Lü, X.; Sun, C.J.; Hou, S.; Liu, Q.; Liu, C.; Qing, T.; et al. Aqueous Li-Ion Battery Enabled by Halogen Conversion–Intercalation Chemistry in Graphite. Nature 2019, 569, 245–250. [Google Scholar] [CrossRef]
- Zheng, M.; Tang, H.; Hu, Q.; Zheng, S.; Li, L.; Xu, J.; Pang, H. Tungsten-Based Materials for Lithium-Ion Batteries. Adv. Funct. Mater. 2018, 28, 1707500. [Google Scholar] [CrossRef]
- Liu, D.; Liu, Z.; Li, X.; Xie, W.; Wang, Q.; Liu, Q.; Fu, Y.; He, D. Group IVA Element (Si, Ge, Sn)-Based Alloying/Dealloying Anodes as Negative Electrodes for Full-Cell Lithium-Ion Batteries. Small 2017, 13, 1702000. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Liu, Y.; Peng, C.; Hu, M.Y.; Deng, X.; Lin, M.; Hu, J.Z.; Loh, K.P. Probing Lithium Germanide Phase Evolution and Structural Change in a Germanium-in-Carbon Nanotube Energy Storage System. J. Am. Chem. Soc. 2015, 137, 2600–2607. [Google Scholar] [CrossRef]
- Wu, S.; Han, C.; Iocozzia, J.; Lu, M.; Ge, R.; Xu, R.; Lin, Z. Germanium-Based Nanomaterials for Rechargeable Batteries. Angew. Chem. Int. Ed. 2016, 55, 7898–7922. [Google Scholar] [CrossRef] [PubMed]
- Weber, W.M.; Mikolajick, T. Silicon and Germanium Nanowire Electronics: Physics of Conventional and Unconventional Transistors. Rep. Prog. Phys. 2017, 80, 066502. [Google Scholar] [CrossRef] [PubMed]
- O’Regan, C.; Biswas, S.; Petkov, N.; Holmes, J.D. Recent Advances in the Growth of Germanium Nanowires: Synthesis, Growth Dynamics and Morphology Control. J. Mater. Chem. C 2014, 2, 14–33. [Google Scholar] [CrossRef] [Green Version]
- Pei, L.Z.; Cai, Z.Y. A Review on Germanium Nanowires. Recent Pat. Nanotechnol. 2011, 6, 44–59. [Google Scholar] [CrossRef]
- Biswas, S.; Barth, S.; Holmes, J.D. Inducing Imperfections in Germanium Nanowires. Nano Res. 2017, 10, 1510–1523. [Google Scholar] [CrossRef]
- Ganji, S. Nanowire Growths, and Mechanisms of These Growths for Developing Novel Nanomaterials. J. Nanosci. Nanotechnol. 2018, 19, 1849–1874. [Google Scholar] [CrossRef]
- Tatsumi, Y.; Hirata, M.; Shigi, M. Characteristics of Whisker Growth in Amorphous Silicon. Jpn. J. Appl. Phys. 1979, 18, 2199–2206. [Google Scholar] [CrossRef]
- Weber, L. Equilibrium Solid Solubility of Silicon in Silver. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2002, 33, 1145–1150. [Google Scholar] [CrossRef]
- Wacaser, B.A.; Reuter, M.C.; Khayyat, M.M.; Wen, C.Y.; Haight, R.; Guha, S.; Ross, F.M. Growth System, Structure, and Doping of Aluminum-Seeded Epitaxial Silicon Nanowires. Nano Lett. 2009, 9, 3296–3301. [Google Scholar] [CrossRef]
- Thombare, S.V.; Marshall, A.F.; McIntyre, P.C. Kinetics of Germanium Nanowire Growth by the Vapor-Solid-Solid Mechanism with a Ni-Based Catalyst. APL Mater. 2013, 1, 061101. [Google Scholar] [CrossRef]
- Mohammad, S.N. General Hypothesis and Shell Model for the Synthesis of Semiconductor Nanotubes, Including Carbon Nanotubes. J. Appl. Phys. 2010, 108, 064323. [Google Scholar] [CrossRef]
- Kodambaka, S.; Tersoff, J.; Reuter, M.C.; Ross, F.M. Germanium Nanowire Growth below the Eutectic Temperature. Science 2007, 316, 729–732. [Google Scholar] [CrossRef]
- Ge, M.; Liu, J.F.; Wu, H.; Yao, C.; Zeng, Y.; Fu, Z.D.; Zhang, S.L.; Jiang, J.Z. Synthesis of Germanium Nanowires. J. Phys. Chem. C 2007, 111, 11157–11160. [Google Scholar] [CrossRef]
- Hanrath, T.; Korgel, B.A. Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals. Adv. Mater. 2003, 15, 437–440. [Google Scholar] [CrossRef]
- Lu, X.; De La Mata, M.; Arbiol, J.; Korgel, B.A. Colloidal Silicon-Germanium Nanorod Heterostructures. Chem. Mater. 2017, 29, 9786–9792. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Hanrath, T.; Johnston, K.P.; Korgel, B.A. Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate. Nano Lett. 2003, 3, 93–99. [Google Scholar] [CrossRef]
- Savage, P.E.; Gopalan, S.; Mizan, T.I.; Martino, C.J.; Brock, E.E. Reactions at Supercritical Conditions: Applications and Fundamentals. AIChE J. 1995, 41, 1723–1778. [Google Scholar] [CrossRef] [Green Version]
- Hanrath, T.; Korgel, B.A. Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals. J. Am. Chem. Soc. 2002, 124, 1424–1429. [Google Scholar] [CrossRef]
- Davidson, F.M.; Schricker, A.D.; Wiacek, R.J.; Korgel, B.A. Supercritical Fluid-Liquid-Solid Synthesis of Gallium Arsenide Nanowires Seeded by Alkanethiol-Stabilized Gold Nanocrystals. Adv. Mater. 2004, 16, 646–649. [Google Scholar] [CrossRef]
- Davidson, F.M.; Wiacek, R.; Korgel, B.A. Supercritical Fluid-Liquid-Solid Synthesis of Gallium Phosphide Nanowires. Chem. Mater. 2005, 17, 230–233. [Google Scholar] [CrossRef]
- Laocharoensuk, R.; Palaniappan, K.; Smith, N.A.; Dickerson, R.M.; Werder, D.J.; Baldwin, J.K.; Hollingsworth, J.A. Flow-Based Solution-Liquid-Solid Nanowire Synthesis. Nat. Nanotechnol. 2013, 8, 660–666. [Google Scholar] [CrossRef]
- Chèze, C.; Geelhaar, L.; Brandt, O.; Weber, W.M.; Riechert, H.; Münch, S.; Rothemund, R.; Reitzenstein, S.; Forchel, A.; Kehagias, T.; et al. Direct Comparison of Catalyst-Free and Catalyst-Induced GaN Nanowires. Nano Res. 2010, 3, 528–536. [Google Scholar] [CrossRef] [Green Version]
- Chèze, C.; Geelhaar, L.; Jenichen, B.; Riechert, H. Different Growth Rates for Catalyst-Induced and Self-Induced GaN Nanowires. Appl. Phys. Lett. 2010, 97, 153105. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tang, Y.H.; Wang, N.; Yu, D.P.; Lee, C.S.; Bello, I.; Lee, S.T. Silicon Nanowires Prepared by Laser Ablation at High Temperature. Appl. Phys. Lett. 1998, 72, 1835–1837. [Google Scholar] [CrossRef]
- Wang, N.; Tang, Y.; Zhang, Y.; Lee, C.; Lee, S. Nucleation and Growth of Si Nanowires from Silicon Oxide. Phys. Rev. B Condens. Matter Mater. Phys. 1998, 58, R16024–R16026. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Jiang, Z.; Wu, G.; Fang, X.; Li, G.; Zhang, L. Characterization and Growth Mechanism of Germanium Nitride Nanowires Prepared by an Oxide-Assisted Method. J. Cryst. Growth 2005, 283, 286–290. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Chu, T.S.; Cheung, H.F.; Wang, N.; Lee, S.T. Mechanism of Oxide-Assisted Nucleation and Growth of Silicon Nanostructures. Mater. Sci. Eng. C 2001, 16, 31–35. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Tang, Y.H.; Lam, C.; Wang, N.; Lee, C.S.; Bello, I.; Lee, S.T. Bulk-Quantity Si Nanowires Synthesized by SiO Sublimation. J. Cryst. Growth 2000, 212, 115–118. [Google Scholar] [CrossRef]
- Lee, S.T.; Wang, N.; Zhang, Y.F.; Tang, Y.H. Oxide-Assisted Semiconductor Nanowire Growth. MRS Bull. 1999, 24, 36–42. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Y.; Wang, N.; Lee, C.; Bello, I.; Lee, S. Germanium Nanowires Sheathed with an Oxide Layer. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 4518–4521. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.Q.; Lifshitz, Y.; Lee, S.T. Oxide-Assisted Growth of Semiconducting Nanowires. Adv. Mater. 2003, 15, 635–640. [Google Scholar] [CrossRef]
- Jun, Y.W.; Choi, J.S.; Cheon, J. Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes. Angew. Chem. Int. Ed. 2006, 45, 3414–3439. [Google Scholar] [CrossRef]
- Cozzoli, P.D.; Pellegrino, T.; Manna, L. Synthesis, Properties and Perspectives of Hybrid Nanocrystal Structures. Chem. Soc. Rev. 2006, 35, 1195–1208. [Google Scholar] [CrossRef] [PubMed]
- Lieber, C.M.; Wang, Z.L. Functional Nanowires. MRS Bull. 2007, 32, 99–108. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, V.; Wittemann, J.V.; Senz, S.; Gósele, U. Silicon Nanowires: A Review on Aspects of Their Growth and Their Electrical Properties. Adv. Mater. 2009, 21, 2681–2702. [Google Scholar] [CrossRef]
- Noor Mohammad, S. For Nanowire Growth, Vapor-Solid-Solid (Vapor-Solid) Mechanism Is Actually Vapor-Quasisolid-Solid (Vapor-Quasiliquid-Solid) Mechanism. J. Chem. Phys. 2009, 131, 224702. [Google Scholar] [CrossRef]
- Allen, J.E.; Hemesath, E.R.; Perea, D.E.; Lensch-Falk, J.L.; Li, Z.Y.; Yin, F.; Gass, M.H.; Wang, P.; Bleloch, A.L.; Palmer, R.E.; et al. High-Resolution Detection of Au Catalyst Atoms in Si Nanowires. Nat. Nanotechnol. 2008, 3, 168–173. [Google Scholar] [CrossRef]
- Moutanabbir, O.; Isheim, D.; Blumtritt, H.; Senz, S.; Pippel, E.; Seidman, D.N. Colossal Injection of Catalyst Atoms into Silicon Nanowires. Nature 2013, 496, 78–82. [Google Scholar] [CrossRef]
- Chen, W.; Yu, L.; Misra, S.; Fan, Z.; Pareige, P.; Patriarche, G.; Bouchoule, S.; Cabarrocas, P.R.I. Incorporation and Redistribution of Impurities into Silicon Nanowires during Metal-Particle-Assisted Growth. Nat. Commun. 2014, 5, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chockla, A.M.; Bogart, T.D.; Hessel, C.M.; Klavetter, K.C.; Mullins, C.B.; Korgel, B.A. Influences of Gold, Binder and Electrolyte on Silicon Nanowire Performance in Li-Ion Batteries. J. Phys. Chem. C 2012, 116, 18079–18086. [Google Scholar] [CrossRef]
- Xie, P.; Hu, Y.; Fang, Y.; Huang, J.; Lieber, C.M. Diameter-Dependent Dopant Location in Silicon and Germanium Nanowires. Proc. Natl. Acad. Sci. USA 2009, 106, 15254–15258. [Google Scholar] [CrossRef] [Green Version]
- Calarco, R.; Marso, M.; Richter, T.; Aykanat, A.I.; Meijers, R.; Hart, A.V.D.; Stoica, T.; Luth, H. Size-Dependent Photoconductivity in MBE-Grown GaN—Nanowires. Nano Lett. 2005, 5, 981–984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kingston, R.H. Review of Germanium Surface Phenomena. J. Appl. Phys. 1956, 27, 101–114. [Google Scholar] [CrossRef]
- Simanullang, M.; Wisna, G.B.M.; Usami, K.; Cao, W.; Kawano, Y.; Banerjee, K.; Oda, S. Undoped and Catalyst-Free Germanium Nanowires for High-Performance p-Type Enhancement-Mode Field-Effect Transistors. J. Mater. Chem. C 2016, 4, 5102–5108. [Google Scholar] [CrossRef]
- Goldthorpe, I.A.; Marshall, A.F.; McIntyre, P.C. Synthesis and Strain Relaxation of Ge-Core/Si-Shell Nanowire Arrays. Nano Lett. 2008, 8, 4081–4086. [Google Scholar] [CrossRef]
- Gouveia, R.C.; Kamimura, H.; Munhoz, R.; Rodrigues, A.D.; Leite, E.R.; Chiquito, A.J. Germanium Nanowires Grown Using Different Catalyst Metals. Mater. Chem. Phys. 2016, 183, 145–151. [Google Scholar] [CrossRef]
- Wittemann, J.V.; Münchgesang, W.; Senz, S.; Schmidt, V. Silver Catalyzed Ultrathin Silicon Nanowires Grown by Low-Temperature Chemical-Vapor-Deposition. J. Appl. Phys. 2010, 107, 096105. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Schmidt, V.; Senz, S.; Gösele, U. Epitaxial Growth of Silicon Nanowires Using an Aluminium Catalyst. Nat. Nanotechnol. 2006, 1, 186–189. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, V.; Wittemann, J.V.; Gösele, U. Growth, Thermodynamics, and Electrical Properties of Silicon Nanowires. Chem. Rev. 2010, 110, 361–388. [Google Scholar] [CrossRef] [Green Version]
- Dayeh, S.A.; Chen, R.; Ro, Y.G.; Sim, J. Progress in Doping Semiconductor Nanowires during Growth. Mater. Sci. Semicond. Process. 2017, 62, 135–155. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.W.; Yu, J.Y.; Heath, J.R. Silicon Nanowire Devices. Appl. Phys. Lett. 2000, 76, 2068–2070. [Google Scholar] [CrossRef] [Green Version]
- Seifner, M.S.; Sistani, M.; Zivadinovic, I.; Bartmann, M.G.; Lugstein, A.; Barth, S. Drastic Changes in Material Composition and Electrical Properties of Gallium-Seeded Germanium Nanowires. Cryst. Growth Des. 2019, 19, 2531–2536. [Google Scholar] [CrossRef]
- Aghazadeh Meshgi, M.; Biswas, S.; McNulty, D.; O’Dwyer, C.; Alessio Verni, G.; O’Connell, J.; Davitt, F.; Letofsky-Papst, I.; Poelt, P.; Holmes, J.D.; et al. Rapid, Low-Temperature Synthesis of Germanium Nanowires from Oligosilylgermane Precursors. Chem. Mater. 2017, 29, 4351–4360. [Google Scholar] [CrossRef]
- Mullane, E.; Kennedy, T.; Geaney, H.; Dickinson, C.; Ryan, K.M. Synthesis of Tin Catalyzed Silicon and Germanium Nanowires in a Solvent-Vapor System and Optimization of the Seed/Nanowire Interface for Dual Lithium Cycling. Chem. Mater. 2013, 25, 1816–1822. [Google Scholar] [CrossRef]
- Seifner, M.S.; Pertl, P.; Bernardi, J.; Biswas, S.; Holmes, J.D.; Barth, S. Lead-Supported Germanium Nanowire Growth. Mater. Lett. 2016, 173, 248–251. [Google Scholar] [CrossRef]
- Heitsch, A.T.; Fanfair, D.D.; Tuan, H.Y.; Korgel, B.A. Solution-Liquid-Solid (SLS) Growth of Silicon Nanowires. J. Am. Chem. Soc. 2008, 130, 5436–5437. [Google Scholar] [CrossRef] [PubMed]
- Geaney, H.; Bree, G.; Stokes, K.; Collins, G.A.; Aminu, I.S.; Kennedy, T.; Ryan, K.M. Enhancing the Performance of Germanium Nanowire Anodes for Li-Ion Batteries by Direct Growth on Textured Copper. Chem. Commun. 2019, 55, 7780–7783. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Higgins, J.M.; Faber, M.S.; Lee, P.S.; Jin, S. Spontaneous Growth and Phase Transformation of Highly Conductive Nickel Germanide Nanowires. ACS Nano 2011, 5, 5006–5014. [Google Scholar] [CrossRef]
- Richards, B.T.; Gaskey, B.; Levin, B.D.A.; Whitham, K.; Muller, D.; Hanrath, T. Direct Growth of Germanium and Silicon Nanowires on Metal Films. J. Mater. Chem. C 2014, 2, 1869–1878. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft Lithography. Angew. Chem. Int. Ed. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Manfrinato, V.R.; Zhang, L.; Su, D.; Duan, H.; Hobbs, R.G.; Stach, E.A.; Berggren, K.K. Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Lett. 2013, 13, 1555–1558. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, K.; Ma, T.; Wei, Y.; Chen, J.; Li, Z. Zn2GeO4 Nanowires Synthesized by Dual Laser-Hydrothermal Method for Deep-Ultraviolet Photodetectors. Opt. Laser Technol. 2021, 140, 106946. [Google Scholar] [CrossRef]
- Demaria, C.; Arrais, A.; Benzi, P.; Boccaleri, E.; Antoniotti, P.; Rabezzana, R.; Operti, L. A Catalyst-Free Synthesis of Germanium Nanowires Obtained by Combined X-ray Chemical Vapour Deposition of GeH4 and Low-Temperature Thermal Treatment Techniques. Bull. Mater. Sci. 2016, 39, 499–507. [Google Scholar] [CrossRef] [Green Version]
- Barth, S.; Seifner, S.; Bernardi, J. Microwave-Assisted Solution–Liquid–Solid Growth of Ge1−xSnx Nanowires with High Tin Content. Chem. Commun. 2015, 51, 12282–12285. [Google Scholar] [CrossRef]
- Markov, I.; Stoyanov, S. Mechanisms of Epitaxial Growth. Contemp. Phys. 1987, 28, 267–320. [Google Scholar] [CrossRef]
- Tomioka, K.; Motohisa, J.; Hara, S.; Fukui, T. Control of InAs Nanowire Growth Directions on Si. Nano Lett. 2008, 8, 3475–3480. [Google Scholar] [CrossRef]
- Mohan, P.; Motohisa, J.; Fukui, T. Controlled Growth of Highly Uniform, Axial/Radial Direction-Defined, Individually Addressable InP Nanowire Arrays. Nanotechnology 2005, 16, 2903–2907. [Google Scholar] [CrossRef]
- Mandl, B.; Stangl, J.; Mårtensson, T.; Mikkelsen, A.; Eriksson, J.; Karlsson, L.S.; Bauer, G.; Samuelson, L.; Seifert, W. Au-Free Epitaxial Growth of InAs Nanowires. Nano Lett. 2006, 6, 1817–1821. [Google Scholar] [CrossRef]
- Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A.A.; Hillerich, K.; Dey, A.W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Growth Mechanism of Self-Catalyzed Group III-V Nanowires. Nano Lett. 2010, 10, 4443–4449. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, H.; Marshall, A.F.; Chidsey, C.E.D.; McIntyre, P.C. Germanium Nanowire Epitaxy: Shape and Orientation Control. Nano Lett. 2006, 6, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Dayeh, S.A.; Wang, J.; Li, N.; Huang, J.Y.; Gin, A.V.; Picraux, S.T. Growth, Defect Formation, and Morphology Control of Germanium-Silicon Semiconductor Nanowire Heterostructures. Nano Lett. 2011, 11, 4200–4206. [Google Scholar] [CrossRef]
- Li, L.; Fang, X.; Chew, H.G.; Zheng, F.; Liew, T.H.; Xu, X.; Zhang, Y.; Pan, S.; Li, G.; Zhang, L. Crystallinity-Controlled Germanium Nanowire Arrays: Potential Field Emitters. Adv. Funct. Mater. 2008, 18, 1080–1088. [Google Scholar] [CrossRef]
- Yuan, F.W.; Yang, H.J.; Tuan, H.Y. Seeded Silicon Nanowire Growth Catalyzed by Commercially Available Bulk Metals: Broad Selection of Metal Catalysts, Superior Field Emission Performance, and Versatile Nanowire/Metal Architectures. J. Mater. Chem. 2011, 21, 13793–13800. [Google Scholar] [CrossRef]
- Dayeh, S.A.; Picraux, S.T. Direct Observation of Nanoscale Size Effects in Ge Semiconductor Nanowire Growth. Nano Lett. 2010, 10, 4032–4039. [Google Scholar] [CrossRef] [PubMed]
- Tutuc, E.; Chu, J.O.; Ott, J.A.; Guha, S. Doping of Germanium Nanowires Grown in Presence of PH3. Appl. Phys. Lett. 2006, 89, 263101. [Google Scholar] [CrossRef]
- Kim, B.-S.; Koo, T.-W.; Lee, J.-H.; Kim, D.S.; Jung, Y.C.; Hwang, S.W.; Choi, B.L.; Lee, E.K.; Kim, J.M.; Whang, D. Catalyst-Free Growth of Single-Crystal Silicon and Germanium Nanowires. Nano Lett. 2009, 9, 864–869. [Google Scholar] [CrossRef]
- Arrais, A.; Benzi, P.; Bottizzo, E.; Demaria, C. Characterization of Hydrogenated Amorphous Germanium Compounds Obtained by X-ray Chemical Vapor Deposition of Germane: Effect of the Irradiation Dose on Optical Parameters and Structural Order. J. Appl. Phys. 2007, 102, 104905. [Google Scholar] [CrossRef]
- Arrais, A.; Benzi, P.; Bottizzo, E.; Demaria, C. Correlations among Hydrogen Bonding Configuration, Structural Order and Optical Coefficients in Hydrogenated Amorphous Germanium Obtained by X-ray-Activated Chemical Vapour Deposition. J. Phys. D Appl. Phys. 2009, 42, 105406. [Google Scholar] [CrossRef]
- Dřínek, V.; Fajgar, R.; Klementová, M.; Šubrt, J. Deposition of Germanium Nanowires from Hexamethyldigermane: Influence of the Substrate Pretreatment. J. Electrochem. Soc. 2010, 157, K218. [Google Scholar] [CrossRef]
- Dřínek, V.; Šubrt, J.; Klementová, M.; Rieder, M.; Fajgar, R. From Shelled Ge Nanowires to SiC Nanotubes. Nanotechnology 2009, 20. [Google Scholar] [CrossRef]
- Shen, G.; Chen, D. One-Dimensional Nanostructures for Photodetectors. Recent Pat. Nanotechnol. 2010, 4, 20–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.B.; Usami, K.; Muraki, T.; Mizuta, H.; Odal, S. The Impacts of Surface Conditions on the Vapor-Liquid-Solid Growth of Germanium Nanowires on Si (100) Substrate. Appl. Phys. Lett. 2008, 93, 041917. [Google Scholar] [CrossRef] [Green Version]
- Pecora, E.F.; Irrera, A.; Artoni, P.; Boninelli, S.; Bongiorno, C.; Spinella, C.; Priolo, F. Heteroepitaxial Growth and Faceting of Ge Nanowires on Si(111) by Electron-Beam Evaporation. Electrochem. Solid-State Lett. 2010, 13, K53. [Google Scholar] [CrossRef]
- Wu, X.; Tao, Y. Synthesis of Crystalline and Amorphous Germanium Nanorods. Mater. Res. Bull. 2002, 37, 2179–2183. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.; Hwang, D.Y.; Park, H.; Ryu, J.; Kwak, S.K.; Park, S. Generalized Redox-Responsive Assembly of Carbon-Sheathed Metallic and Semiconducting Nanowire Heterostructures. Nano Lett. 2016, 16, 1179–1185. [Google Scholar] [CrossRef] [PubMed]
- Cumbul Altay, M.; Eroglu, S. Catalyst-Free Chemical Vapor Deposition of Ge Wires from Readily Available Precursors. Mater. Lett. 2020, 278, 128385. [Google Scholar] [CrossRef]
- Wu, H.C.; Hou, T.C.; Chueh, Y.L.; Chen, L.J.; Chiu, H.T.; Lee, C.Y. One-Dimensional Germanium Nanostructures-Formation and Their Electron Field Emission Properties. Nanotechnology 2010, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Jin, S.; Yang, G.; Wang, J.; Wang, C. Germanium Nanowires-in-Graphite Tubes via Self-Catalyzed Synergetic Confined Growth and Shell-Splitting Enhanced Li-Storage Performance. ACS Nano 2015, 9, 3479–3490. [Google Scholar] [CrossRef] [PubMed]
- Hatano, K.; Asano, Y.; Kameda, Y.; Koshio, A.; Kokai, F. Formation of Germanium-Carbon Core-Shell Nanowires by Laser Vaporization in High-Pressure Ar Gas without the Addition of Other Metal Catalysts. Mater. Sci. Appl. 2017, 8, 838–847. [Google Scholar] [CrossRef] [Green Version]
- Morales, A.M.; Lieber, C.M. A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires. Science 1998, 279, 208–211. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.H.; Zhang, Y.F.; Wang, N.; Shi, W.S.; Lee, C.S.; Bello, I.; Lee, S.T. Si Nanowires Synthesized from Silicon Monoxide by Laser Ablation. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2001, 19, 317–319. [Google Scholar] [CrossRef]
- Shi, W.; Zheng, Y.; Peng, H.; Wang, N.; Lee, C.S.; Lee, S.T. Laser Ablation Synthesis and Optical Characterization of Silicon Carbide Nanowires. J. Am. Ceram. Soc. 2000, 83, 3228–3230. [Google Scholar] [CrossRef]
- Shi, W.S.; Zheng, Y.F.; Wang, N.; Lee, C.S.; Lee, S.T. Synthesis and Microstructure of Gallium Phosphide Nanowires. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2001, 19, 1115. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.N. Nanomaterials Synthesis Routes. In Synthesis of Nanomaterials; Springer Series in Materials Science; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2020; Volume 307, pp. 13–26. [Google Scholar] [CrossRef]
- Fritzsche, H. Electrical Properties of Germanium Semiconductors at Low Temperatures. Phys. Rev. 1955, 99, 406–419. [Google Scholar] [CrossRef]
- Saifutdinov, A.I.; Fairushin, I.I.; Kashapov, N.F. Analysis of Various Scenarios of the Behavior of Voltage–Current Characteristics of Direct-Current Microdischarges at Atmospheric Pressure. JETP Lett. 2016, 104, 180–185. [Google Scholar] [CrossRef]
- Saifutdinov, A.I.; Timerkaev, B.A.; Ibragimov, A.R. Numerical Simulation of Temperature Fields in a Direct-Current Plasma Torch. Tech. Phys. Lett. 2018, 44, 164–166. [Google Scholar] [CrossRef]
- Timerkaev, B.A.; Kaleeva, A.A.; Timerkaeva, D.B.; Saifutdinov, A.I. Synthesizing Germanium Nanotubes in an Electric Arc Plasma. Russ. J. Phys. Chem. A 2020, 94, 613–617. [Google Scholar] [CrossRef]
- Heitsch, A.T.; Hessel, C.M.; Akhavan, V.A.; Korgel, B.A. Colloidal Silicon Nanorod Synthesis. Nano Lett. 2009, 9, 3042–3047. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.R.; LeGoues, F.K. A Liquid Solution Synthesis of Single Crystal Germanium Quantum Wires. Chem. Phys. Lett. 1993, 208, 263–268. [Google Scholar] [CrossRef]
- Shah, P.S.; Hanrath, T.; Johnston, K.P.; Korgel, B.A. Nanocrystal and Nanowire Synthesis and Dispersibility in Supercritical Fluids. J. Phys. Chem. B 2004, 108, 9574–9587. [Google Scholar] [CrossRef]
- Subramanlamr, B.; McHugh, M.A. Reactions in Supercritical Fluids-a Review. Ind. Eng. Chem. Process Des. Dev. 1986, 25, 1–12. [Google Scholar] [CrossRef]
- Lin, L.W.; Tang, Y.H.; Chen, C.S.; Xu, H.F. Self-Assembled Single Crystal Germanium Nanowires Arrays under Supercritical Hydrothermal Conditions. CrystEngComm 2010, 12, 2975–2981. [Google Scholar] [CrossRef]
- Hobbs, R.G.; Barth, S.; Petkov, N.; Zirngast, M.; Marschner, C.; Morris, M.A.; Holmes, J.D. Seedless Growth of Sub-10 Nm Germanium Nanowires. J. Am. Chem. Soc. 2010, 132, 13742–13749. [Google Scholar] [CrossRef]
- Lotty, O.; Hobbs, R.; O’Regan, C.; Hlina, J.; Marschner, C.; O’Dwyer, C.; Petkov, N.; Holmes, J.D. Self-Seeded Growth of Germanium Nanowires: Coalescence and Ostwald Ripening. Chem. Mater. 2013, 25, 215–222. [Google Scholar] [CrossRef]
- Siskin, M.; Katritzky, A.R. Reactivity of Organic Compounds in Hot Water: Geochemical and Technological Implications. Science 1991, 254, 231–237. [Google Scholar] [CrossRef]
- Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Fan, C.G.; Zhang, Q.F. Smooth Germanium Nanowires Prepared by a Hydrothermal Deposition Process. Mater. Charact. 2009, 60, 1400–1405. [Google Scholar] [CrossRef]
- Pei, L.Z.; Zhao, H.S.; Tan, W.; Yu, H.Y.; Chen, Y.W.; Wang, J.F.; Fan, C.G.; Chen, J.; Zhang, Q.F. Low Temperature Growth of Single Crystalline Germanium Nanowires. Mater. Res. Bull. 2010, 45, 153–158. [Google Scholar] [CrossRef]
- Gerung, H.; Boyle, T.J.; Tribby, L.J.; Bunge, S.D.; Brinker, C.J.; Han, S.M. Solution Synthesis of Germanium Nanowires Using a Ge2+ Alkoxide Precursor. J. Am. Chem. Soc. 2006, 128, 5244–5250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, C.A.; Geaney, H.; Gunning, R.D.; Laffir, F.R.; Ryan, K.M. Perpendicular Growth of Catalyst-Free Germanium Nanowire Arrays. Chem. Commun. 2011, 47, 3843–3845. [Google Scholar] [CrossRef]
- Zaitseva, N.; Dai, Z.R.; Grant, C.D.; Harper, J.; Saw, C. Germanium Nanocrystals Synthesized in High-Boiling-Point Organic Solvents. Chem. Mater. 2007, 19, 5174–5178. [Google Scholar] [CrossRef]
- Chockla, A.M.; Korgel, B.A. Seeded Germanium Nanowire Synthesis in Solution. J. Mater. Chem. 2009, 19, 996–1001. [Google Scholar] [CrossRef]
- Zaitseva, N.; Harper, J.; Gerion, D.; Saw, C. Unseeded Growth of Germanium Nanowires by Vapor-Liquid-Solid Mechanism. Appl. Phys. Lett. 2005, 86, 1–3. [Google Scholar] [CrossRef]
- Milliron, D.; Hughes, S.M.; Cui, Y.; Manna, L.; Li, J.; Wang, L.W.; Alivisatos, A.P. Colloidal Nanocrystal Heterostructures with Linear and Branched Topology. Nature 2004, 430, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Geaney, H.; Dickinson, C.; Weng, W.; Kiely, C.J.; Barrett, C.A.; Gunning, R.D.; Ryan, K.M. Role of Defects and Growth Directions in the Formation of Periodically Twinned and Kinked Unseeded Germanium Nanowires. Cryst. Growth Des. 2011, 11, 3266–3272. [Google Scholar] [CrossRef] [Green Version]
- Penner, R.M. Mesoscopic Metal Particles and Wires by Electrodeposition. J. Phys. Chem. B 2002, 106, 3339–3353. [Google Scholar] [CrossRef]
- Therese, G.H.A.; Kamath, P.V. Electrochemical Synthesis of Metal Oxides and Hydroxides. Chem. Mater. 2000, 12, 1195–1204. [Google Scholar] [CrossRef]
- Gavrilov, S.A.; Dronov, A.A.; Gavrilin, I.M.; Volkov, R.L.; Borgardt, N.I.; Trifonov, A.Y.; Pavlikov, A.V.; Forsh, P.A.; Kashkarov, P.K. Laser Crystallization of Germanium Nanowires Fabricated by Electrochemical Deposition. J. Raman Spectrosc. 2018, 49, 810–816. [Google Scholar] [CrossRef]
- Fahrenkrug, E.; Gu, J.; Jeon, S.; Veneman, P.A.; Goldman, R.S.; Maldonado, S. Room-Temperature Epitaxial Electrodeposition of Single-Crystalline Germanium Nanowires at the Wafer Scale from an Aqueous Solution. Nano Lett. 2014, 14, 847–852. [Google Scholar] [CrossRef]
- Chi, C.; Hao, J.; Yang, Y.; Liu, S.; Liu, X.; Ma, X.; Liu, X.; Zhao, J.; Li, Y. Template-Free Growth of Coral-like Ge Nanorod Bundles via UV-Assisted Ionic Liquid Electrodeposition. J. Mater. Sci. Mater. Electron. 2018, 29, 14105–14110. [Google Scholar] [CrossRef]
- Yang, Z.; Veinot, J.G.C. Size-Controlled Template Synthesis of Metal-Free Germanium Nanowires. J. Mater. Chem. 2011, 21, 16505–16509. [Google Scholar] [CrossRef]
- Jessensky, O.; Müller, F.; Gösele, U. Self-Organized Formation of Hexagonal Pore Arrays in Anodic Alumina. Appl. Phys. Lett. 1998, 72, 1173–1175. [Google Scholar] [CrossRef] [Green Version]
- Lange, F.; Ernst, O.; Teubner, T.; Richter, C.; Schmidbauer, M.; Skibitzki, O.; Schroeder, T.; Schmidt, P.; Boeck, T. In-Plane Growth of Germanium Nanowires on Nanostructured Si(001)/SiO2 Substrates. Nano Future 2020, 4, 1–8. [Google Scholar] [CrossRef]
- Bandyopadhyay, S. Spin Transport in Nanowires Synthesized Using Anodic Nanoporous Alumina Films. Multilayer Thin Film. Versatile Appl. Mater. Eng. 2020. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gösele, U. Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template. Adv. Mater. 2007, 19, 917–920. [Google Scholar] [CrossRef]
- Henderson, E.J.; Seino, M.; Puzzo, D.P.; Ozin, G.A. Colloidally Stable Germanium Nanocrystals for Photonic Applications. ACS Nano 2010, 4, 7683–7691. [Google Scholar] [CrossRef] [PubMed]
- Henderson, E.J.; Hessel, C.M.; Veinot, J.G.C. Synthesis and Photoluminescent Properties of Size-Controlled Germanium Nanocrystals from Phenyl Trichlorogermane-Derived Polymers. J. Am. Chem. Soc. 2008, 130, 3624–3632. [Google Scholar] [CrossRef] [PubMed]
- Brinker, C.J.; Scherer, G.W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Elsevier Inc.: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.; Chi, F.; Li, S.; Xu, B.; Zhao, M. Synthesis of Monocrystalline Composite Oxides La1−XSrxFe1−YCoyO3 with the Perovskite Structure Using Polyethylene Glycol-Gel Method. Mater. Sci. Eng. B 1993, 18, 209–213. [Google Scholar] [CrossRef]
- Wacaser, B.A.; Dick, K.A.; Johansson, J.; Borgström, M.T.; Deppert, K.; Samuelson, L. Preferential Interface Nucleation: An Expansion of the VLS Growth Mechanism for Nanowires. Adv. Mater. 2009, 21, 153–165. [Google Scholar] [CrossRef]
- Ek, M.; Filler, M.A. Atomic-Scale Choreography of Vapor-Liquid-Solid Nanowire Growth. Acc. Chem. Res. 2018, 51, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.H.G.; Miki, K.; Bowler, D.R.; Goringe, C.M.; Goldfarb, I.; Briggs, G.A.D. Gas-Source Growth of Group IV Semiconductors: II. Growth Regimes and the Effect of Hydrogen. Surf. Sci. 1997, 394, 91–104. [Google Scholar] [CrossRef]
- Sivaram, S.V.; Shin, N.; Chou, L.W.; Filler, M.A. Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability. J. Am. Chem. Soc. 2015, 137, 9861–9869. [Google Scholar] [CrossRef]
- Gentile, P.; Solanki, A.; Pauc, N.; Oehler, F.; Salem, B.; Rosaz, G.; Baron, T.; Den Hertog, M.; Calvo, V. Effect of HCl on the Doping and Shape Control of Silicon Nanowires. Nanotechnology 2012, 23. [Google Scholar] [CrossRef]
- Leitsmann, R.; Bechstedt, F. Surface Influence on Stability and Structure of Hexagon-Shaped III-V Semiconductor Nanorods. J. Appl. Phys. 2007, 102, 063528. [Google Scholar] [CrossRef]
- Wang, C.; Murphy, P.F.; Yao, N.; McIlwrath, K.; Chou, S.Y. Growth of Straight Silicon Nanowires on Amorphous Substrates with Uniform Diameter, Length, Orientation, and Location Using Nanopatterned Host-Mediated Catalyst. Nano Lett. 2011, 11, 5247–5251. [Google Scholar] [CrossRef]
- Voigtländer, B.; Zinner, A.; Weber, T.; Bonzel, H.P. Modification of Growth Kinetics in Surfactant-Mediated Epitaxy. Phys. Rev. B 1995, 51, 7583–7591. [Google Scholar] [CrossRef]
- Schmidt, V.; Senz, S.; Gösele, U. Diameter-Dependent Growth Direction of Epitaxial Silicon Nanowires. Nano Lett. 2005, 5, 931–935. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.S.; Bagchi, S.; Garg, S.; Singh, N.; Tsai, T. Controlled Growth and Structures of Molecular-Scale Silicon Nanowires. Nano Lett. 2004, 4, 433–442. [Google Scholar] [CrossRef]
- Wang, Y.; Ryu, S.; McIntyre, P.C.; Cai, W. A Three-Dimensional Phase Field Model for Nanowire Growth by the Vapor-Liquid-Solid Mechanism. Model. Simul. Mater. Sci. Eng. 2014, 22. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Lauhon, L.J.; Gudiksen, M.S.; Wang, J.; Lieber, C.M. Diameter-Controlled Synthesis of Single-Crystal Silicon Nanowires. Appl. Phys. Lett. 2001, 78, 2214–2216. [Google Scholar] [CrossRef]
- Krogstrup, P.; Yamasaki, J.; Sørensen, C.B.; Johnson, E.; Wagner, J.B.; Pennington, R.; Aagesen, M.; Tanaka, N.; Nygård, J. Junctions in Axial III–V Heterostructure Nanowires Obtained via an Interchange of Group III Elements. Nano Lett. 2009, 9, 3689–3693. [Google Scholar] [CrossRef]
- Slezák, J.; Ondřejček, M.; Chvoj, Z.; Cháb, V.; Conrad, H. Surface Diffusion of Au on Si(111): A Microscopic Study. Phys. Rev. B Condens. Matter Mater. Phys. 2000, 61, 16121–16128. [Google Scholar] [CrossRef]
- Koto, M.; Marshall, A.F.; Goldthorpe, I.A.; McIntyre, P.C. Gold-Catalyzed Vapor-Liquid-Solid Germanium-Nanowire Nucleation on Porous Silicon. Small 2010, 6, 1032–1037. [Google Scholar] [CrossRef]
- Hannon, J.B.; Kodambaka, S.; Ross, F.M.; Tromp, R.M. The Influence of the Surface Migration of Gold on the Growth of Silicon Nanowires. Nature 2006, 440, 69–71. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G. Development of Growth Theory for Vapor-Liquid-Solid Nanowires: Contact Angle, Truncated Facets, and Crystal Phase. Cryst. Growth Des. 2017, 17, 2544–2548. [Google Scholar] [CrossRef]
- Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta I Morral, A. Ga-Assisted Catalyst-Free Growth Mechanism of GaAs Nanowires by Molecular Beam Epitaxy. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 77, 155326. [Google Scholar] [CrossRef]
- Sutter, E.; Sutter, P. Phase Diagram of Nanoscale Alloy Particles Used for Vapor-Liquid-Solid Growth of Semiconductor Nanowires. Nano Lett. 2008, 8, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Maurice, J.L.; Chen, W.; Misra, S.; Foldyna, M.; Johnson, E.V.; Roca i Cabarrocas, P. Plasma-Assisted Growth of Silicon Nanowires by Sn Catalyst: Step-by-Step Observation. Nanoscale Res. Lett. 2016, 11, 455. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Lu, J.; Qian, S.; Misra, S.; Yu, L.; Xu, J.; Xu, L.; Wang, J.; Shi, Y.; Chen, K.; et al. Bi-Sn Alloy Catalyst for Simultaneous Morphology and Doping Control of Silicon Nanowires in Radial Junction Solar Cells. Appl. Phys. Lett. 2015, 107, 163105. [Google Scholar] [CrossRef]
- Musin, I.R.; Filler, M.A. Chemical Control of Semiconductor Nanowire Kinking and Superstructure. Nano Lett. 2012, 12, 3363–3368. [Google Scholar] [CrossRef]
- Tian, B.; Xie, P.; Kempa, T.J.; Bell, D.C.; Lieber, C.M. Single-Crystalline Kinked Semiconductor Nanowire Superstructures. Nat. Nanotechnol. 2009, 4, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Hillerich, K.; Dick, K.A.; Wen, C.Y.; Reuter, M.C.; Kodambaka, S.; Ross, F.M. Strategies to Control Morphology in Hybrid Group III-V/Group IV Heterostructure Nanowires. Nano Lett. 2013, 13, 903–908. [Google Scholar] [CrossRef] [PubMed]
- Nebol’sin, V.A.; Shchetinin, A.A. Role of Surface Energy in the Vapor-Liquid-Solid Growth of Silicon. Inorg. Mater. 2003, 39, 899–903. [Google Scholar] [CrossRef]
- Schwarz, K.W.; Tersoff, J. Elementary Processes in Nanowire Growth. Nano Lett. 2011, 11, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Jacobsson, D.; Panciera, F.; Tersoff, J.; Reuter, M.C.; Lehmann, S.; Hofmann, S.; Dick, K.A.; Ross, F.M. Interface Dynamics and Crystal Phase Switching in GaAs Nanowires. Nature 2016, 531, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noor Mohammad, S. Self-Catalytic Solution for Single-Crystal Nanowire and Nanotube Growth. J. Chem. Phys. 2007, 127, 244702. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.Y.; Pan, Z.W.; Xu, L.; Fan, X.H.; Wang, N.; Lee, C.S.; Lee, S.T. Temperature Dependence of Si Nanowire Morphology. Adv. Mater. 2001, 13, 317–320. [Google Scholar] [CrossRef]
- Orlandi, M.O.; Leite, E.R.; Aguiar, R.; Bettini, J.; Longo, E. Growth of SnO Nanobelts and Dendrites by a Self-Catalytic VLS Process. J. Phys. Chem. B 2006, 110, 6621–6625. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, X.; Zhang, K.; Pan, D.; Zhang, S.; Wang, B.; Hou, J.G. Bulk-Quantity Synthesis and Self-Catalytic VLS Growth of SnO 2 Nanowires by Lower-Temperature Evaporation. Chem. Phys. Lett. 2003, 369, 16–20. [Google Scholar] [CrossRef]
- Kobayashi, K.; Kokai, F.; Sakurai, N.; Yasuda, H. Silicon-Catalyzed Growth of Amorphous SiOx Nanowires by Laser Vaporization of Si and Si/SiO2. J. Phys. Chem. C 2013, 117, 25169–25174. [Google Scholar] [CrossRef]
- Gaudet, S.; Detavernier, C.; Kellock, A.J.; Desjardins, P.; Lavoie, C. Thin Film Reaction of Transition Metals with Germanium. J. Vac. Sci. Technol. Vac. Surf. Film. 2006, 24, 474–485. [Google Scholar] [CrossRef]
- Mathur, S.; Shen, H.; Sivakov, V.; Werner, U. Germanium Nanowires and Core-Shell Nanostructures by Chemical Vapor Deposition of [Ge(C5H5)2]. Chem. Mater. 2004, 16, 2449–2456. [Google Scholar] [CrossRef]
- Chernov, A.A. Modern Crystallography III; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 1984; Volume 36. [Google Scholar] [CrossRef]
- Taylor, H.S.; Jones, W.H. The Thermal Decomposition of Metal Alkyls in Hydrogen-Ethylene Mixtures. J. Am. Chem. Soc. 1930, 52, 1111–1121. [Google Scholar] [CrossRef]
- Korgel, B.A.; Fitzmaurice, D. Self-Assembly of Silver Nanocrystals into Two-Dimensional Nanowire Arrays. Adv. Mater. 1998, 10, 661–665. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, P. Melting and Welding Semiconductor Nanowires in Nanotubes. Adv. Mater. 2001, 13, 520–523. [Google Scholar] [CrossRef]
- Lew, K.K.; Pan, L.; Dickey, E.C.; Redwing, J.M. Vapor-Liquid-Solid Growth of Silicon-Germanium Nanowires. Adv. Mater. 2003, 15, 2073–2076. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Sun, H.; You, J.; Miao, Y.; Dong, Z.; Liu, T.; Jiang, Z.; Hu, H. Nanoscale Growth of a Sn-Guided SiGeSn Alloy on Si (111) Substrates by Molecular Beam Epitaxy. Nanoscale Adv. 2021, 3, 997–1004. [Google Scholar] [CrossRef]
- Wirths, S.; Buca, D.; Mantl, S. Si-Ge-Sn Alloys: From Growth to Applications. Prog. Cryst. Growth Charact. Mater. 2016, 62, 1–39. [Google Scholar] [CrossRef]
- Zaima, S.; Nakatsuka, O.; Taoka, N.; Kurosawa, M.; Takeuchi, W.; Sakashita, M. Growth and Applications of GeSn-Related Group-IV Semiconductor Materials. Sci. Technol. Adv. Mater. 2015, 16, 043502. [Google Scholar] [CrossRef]
- Doherty, J.; Biswas, S.; Galluccio, E.; Broderick, C.A.; Garcia-Gil, A.; Duffy, R.; O’Reilly, E.P.; Holmes, J.D. Progress on Germanium-Tin Nanoscale Alloys. Chem. Mater. 2020, 32, 4383–4408. [Google Scholar] [CrossRef]
- Gupta, S.; Chen, R.; Magyari-Kope, B.; Lin, H.; Yang, B.; Nainani, A.; Nishi, Y.; Harris, J.S.; Saraswat, K.C. GeSn Technology: Extending the Ge Electronics Roadmap. In Proceedings of the Technical Digest—International Electron Devices Meeting, IEDM, Washington, DC, USA, 5–7 December 2011. [Google Scholar] [CrossRef]
- Kouvetakis, J.; Menendez, J.; Chizmeshya, A.V.G. TIN-based group IV semiconductors: New Platforms for Opto- and Microelectronics on Silicon. Annu. Rev. Mater. Res. 2006, 36, 497–554. [Google Scholar] [CrossRef]
- Doherty, J.; McNulty, D.; Biswas, S.; Moore, K.; Conroy, M.; Bangert, U.; O’Dwyer, C.; Holmes, J.D. Germanium Tin Alloy Nanowires as Anode Materials for High Performance Li-Ion Batteries. Nanotechnology 2020, 31, 165402. [Google Scholar] [CrossRef]
- Biswas, S.; Doherty, J.; Saladukha, D.; Ramasse, Q.; Majumdar, D.; Upmanyu, M.; Singha, A.; Ochalski, T.; Morris, M.A.; Holmes, J.D. Non-Equilibrium Induction of Tin in Germanium: Towards Direct Bandgap Ge1−xSnx Nanowires. Nat. Commun. 2016, 7, 114005. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Matsumura, R.; Jevasuwan, W.; Fukata, N. Au-Sn Catalyzed Growth of Ge1−xSnx Nanowires: Growth Direction, Crystallinity, and Sn Incorporation. Nano Lett. 2019, 19, 6270–6277. [Google Scholar] [CrossRef]
- Schanche, J.S. Microwave Synthesis Solutions from Personal Chemistry. Mol. Divers. 2003, 7, 293–300. [Google Scholar] [CrossRef]
- Muthuswamy, E.; Iskandar, A.S.; Amador, M.M.; Kauzlarich, S.M. Facile Synthesis of Germanium Nanoparticles with Size Control: Microwave versus Conventional Heating. Chem. Mater. 2013, 25, 1416–1422. [Google Scholar] [CrossRef]
- Madras, P.; Dailey, E.; Drucker, J. Kinetically Induced Kinking of Vapor-Liquid-Solid Grown Epitaxial Si Nanowires. Nano Lett. 2009, 9, 3826–3830. [Google Scholar] [CrossRef]
- Seifner, M.S.; Biegger, F.; Lugstein, A.; Bernardi, J.; Barth, S. Microwave-Assisted Ge1−XSnx Nanowire Synthesis: Precursor Species and Growth Regimes. Chem. Mater. 2015, 27, 6125–6130. [Google Scholar] [CrossRef]
- Ermez, S.; Jones, E.J.; Crawford, S.C.; Gradečak, S. Self-Seeded Growth of Gaas Nanowires by Metal-Organic Chemical Vapor Deposition. Cryst. Growth Des. 2015, 15, 2768–2774. [Google Scholar] [CrossRef]
- Seifner, M.S.; Hernandez, S.; Bernardi, J.; Romano-Rodriguez, A.; Barth, S. Pushing the Composition Limit of Anisotropic Ge1−xSnx Nanostructures and Determination of Their Thermal Stability. Chem. Mater. 2017, 29, 9802–9813. [Google Scholar] [CrossRef]
- Erickson, E.M.; Ghanty, C.; Aurbach, D. New Horizons for Conventional Lithium Ion Battery Technology. J. Phys. Chem. Lett. 2014, 5, 3313–3324. [Google Scholar] [CrossRef] [PubMed]
- Croguennec, L.; Palacin, M.R. Recent Achievements on Inorganic Electrode Materials for Lithium-Ion Batteries. J. Am. Chem. Soc. 2015, 137, 3140–3156. [Google Scholar] [CrossRef]
- Goodenough, J.B.; Park, K.S. The Li-Ion Rechargeable Battery: A Perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.L.; Guo, Y.G.; Wan, L.J. Rational Design of Anode Materials Based on Group IVA Elements (Si, Ge, and Sn) for Lithium-Ion Batteries. Chem. Asian J. 2013, 8, 1948–1958. [Google Scholar] [CrossRef]
- Courtney, I.A.; Dahn, J.R. Electrochemical and In Situ X-Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites. J. Electrochem. Soc. 1997, 144, 2045–2052. [Google Scholar] [CrossRef]
- Winter, M.; Besenhard, J.O. Electrochemical Lithiation of Tin and Tin-Based Intermetallics and Composites. Electrochim. Acta 1999, 45, 31–50. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.Y.; Chang, B.; Wang, K.X. Recent Progress on Germanium-Based Anodes for Lithium Ion Batteries: Efficient Lithiation Strategies and Mechanisms. Energy Storage Mater. 2020, 30, 146–169. [Google Scholar] [CrossRef]
- Graetz, J.; Ahn, C.C.; Yazami, R.; Fultz, B. Nanocrystalline and Thin Film Germanium Electrodes with High Lithium Capacity and High Rate Capabilities. J. Electrochem. Soc. 2004, 151, A698. [Google Scholar] [CrossRef] [Green Version]
- Park, M.H.; Kim, K.; Kim, J.; Cho, J. Flexible Dimensional Control of High-Capacity Li-Ion-Battery Anodes: From 0D Hollow to 3D Porous Germanium Nanoparticle Assemblies. Adv. Mater. 2010, 22, 415–418. [Google Scholar] [CrossRef]
- Lee, H.; Cho, J. Sn78Ge22@carbon Core-Shell Nanowires as Fast and High-Capacity Lithium Storage Media. Nano Lett. 2007, 7, 2638–2641. [Google Scholar] [CrossRef]
- Deshpande, R.; Cheng, Y.T.; Verbrugge, M.W. Modeling Diffusion-Induced Stress in Nanowire Electrode Structures. J. Power Sources 2010, 195, 5081–5088. [Google Scholar] [CrossRef]
- Lee, S.W.; Ryu, I.; Nix, W.D.; Cui, Y. Fracture of Crystalline Germanium during Electrochemical Lithium Insertion. Extrem. Mech. Lett. 2015, 2, 15–19. [Google Scholar] [CrossRef]
- Li, W.; Zheng, J.; Chen, T.; Wang, T.; Wang, X.; Li, X. One Step Preparation of a High Performance Ge–c Nanocomposite Anode for Lithium Ion Batteries by Tandem Plasma Reactions. Chem. Commun. 2014, 50, 2052–2054. [Google Scholar] [CrossRef] [PubMed]
- Dileo, R.A.; Frisco, S.; Ganter, M.J.; Rogers, R.E.; Raffaelle, R.P.; Landi, B.J. Hybrid Germanium Nanoparticle-Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries. J. Phys. Chem. C 2011, 115, 22609–22614. [Google Scholar] [CrossRef]
- Cheng, J.; Du, J. Facile Synthesis of Germanium-Graphene Nanocomposites and Their Application as Anode Materials for Lithium Ion Batteries. CrystEngComm 2012, 14, 397–400. [Google Scholar] [CrossRef]
- Li, X.; Yang, Z.; Fu, Y.; Qiao, L.; Li, D.; Yue, H.; He, D. Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium-Cobalt Oxide Lithium-Ion Battery. ACS Nano 2015, 9, 1858–1867. [Google Scholar] [CrossRef]
- Baggetto, L.; Notten, P.H.L. Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study. J. Electrochem. Soc. 2009, 156, A169. [Google Scholar] [CrossRef] [Green Version]
- Loaiza, L.C.; Louvain, N.; Fraisse, B.; Boulaoued, A.; Iadecola, A.; Johansson, P.; Stievano, L.; Seznec, V.; Monconduit, L. Electrochemical Lithiation of Ge: New Insights by Operando Spectroscopy and Diffraction. J. Phys. Chem. C 2018, 122, 3709–3718. [Google Scholar] [CrossRef]
- Jung, H.; Allan, P.K.; Hu, Y.Y.; Borkiewicz, O.J.; Wang, X.L.; Han, W.Q.; Du, L.S.; Pickard, C.J.; Chupas, P.J.; Chapman, K.W.; et al. Elucidation of the Local and Long-Range Structural Changes That Occur in Germanium Anodes in Lithium-Ion Batteries. Chem. Mater. 2015, 27, 1031–1041. [Google Scholar] [CrossRef]
- Sangster, J.; Pelton, A.D. The Ge-Li (Germanium-Lithium) System. J. Phase Equilibria 1997, 18, 289–294. [Google Scholar] [CrossRef]
- Morris, A.J.; Grey, C.P.; Pickard, C.J. Thermodynamically Stable Lithium Silicides and Germanides from Density Functional Theory Calculations. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 90, 054111. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Song, K.; Zhu, C.; Chen, C.C.; Van Aken, P.A.; Maier, J.; Yu, Y. Ge/C Nanowires as High-Capacity and Long-Life Anode Materials for Li-Ion Batteries. ACS Nano 2014, 8, 7051–7059. [Google Scholar] [CrossRef] [PubMed]
- Connaughton, S.; Hobbs, R.; Lotty, O.; Holmes, J.D.; Krstić, V. Variation of Self-Seeded Germanium Nanowire Electronic Device Functionality Due to Synthesis Condition Determined Surface States. Adv. Mater. Interfaces 2015, 2, 1400469. [Google Scholar] [CrossRef]
- Connaughton, S.; Koleśnik-Gray, M.; Hobbs, R.; Lotty, O.; Holmes, J.D.; Krstić, V. Diameter-Driven Crossover in Resistive Behaviour of Heavily Doped Self-Seeded Germanium Nanowires. Beilstein J. Nanotechnol. 2016, 7, 1284–1288. [Google Scholar] [CrossRef] [Green Version]
- Levitas, A. Electrical Properties of Germanium-Silicon Alloys. Phys. Rev. 1955, 99, 1810–1814. [Google Scholar] [CrossRef]
- Chua, L.O.; Kang, S.M. Memristive Devices and Systems. Proc. IEEE 1976, 64, 209–223. [Google Scholar] [CrossRef]
- Chua, L.O. Memristor—The Missing Circuit Element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Sze, S.M.; Ng, K.K. Physics of Semiconductor Devices; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Meyerhofer, D.; Brown, G.A.; Sommers, H.S. Degenerate Germanium. I. Tunnel, Excess, and Thermal Current in Tunnel Diodes. Phys. Rev. 1962, 126, 1329–1341. [Google Scholar] [CrossRef]
- Sharp, J.; Lee, W.J.; Ploog, K.; Umana-Membreno, G.A.; Faraone, L.; Dell, J.M. A Novel Technique for Degenerate P-Type Doping of Germanium. Solid. State. Electron. 2013, 89, 146–152. [Google Scholar] [CrossRef]
- Pankove, J.I.; Aigrain, P. Optical Absorption of Arsenic-Doped Degenerate Germanium. Phys. Rev. 1962, 126, 956–962. [Google Scholar] [CrossRef]
- Bezuidenhout, M.; Liu, P.; Singh, S.; Kiely, M.; Ryan, K.M.; Kiely, P.A. Promoting Cell Proliferation Using Water Dispersible Germanium Nanowires. PLoS ONE 2014, 9, e108006. [Google Scholar] [CrossRef] [PubMed]
Growth Method | Growth Temperature | Precursor | Morphology | Reference |
---|---|---|---|---|
SCF | 273 °C | GeCl4 and phenyl-GeCl3 | d: 7–30 nm L: up to 10 μm | [162] |
SCF | 300–500 °C | Ge2(TMS)6 | d: 6.3–9.4 nm | [166] |
Hydrothermal | 450–470 °C | Ge powder | d: 10–150 nm | [165] |
SLS | ~400 °C | TOG | d: <50–700 nm | [175] |
SLS | 360 °C | TOG | d: 50–70 nm L: 10–20 μm | [75] |
SLS | ~300 °C | Ge(2,6-OC6H3(C(CH3)3)2) | d: 15–25 nm L: 100 nm–10 μm | [171] |
SLS | 415 °C | DPG | d: 7–15 nm L: >10 μm | [172] |
SLS | 420 °C | DPG | d: 7–20 nm | [177] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Gil, A.; Biswas, S.; Holmes, J.D. A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications. Nanomaterials 2021, 11, 2002. https://doi.org/10.3390/nano11082002
Garcia-Gil A, Biswas S, Holmes JD. A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications. Nanomaterials. 2021; 11(8):2002. https://doi.org/10.3390/nano11082002
Chicago/Turabian StyleGarcia-Gil, Adrià, Subhajit Biswas, and Justin D. Holmes. 2021. "A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications" Nanomaterials 11, no. 8: 2002. https://doi.org/10.3390/nano11082002
APA StyleGarcia-Gil, A., Biswas, S., & Holmes, J. D. (2021). A Review of Self-Seeded Germanium Nanowires: Synthesis, Growth Mechanisms and Potential Applications. Nanomaterials, 11(8), 2002. https://doi.org/10.3390/nano11082002