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Abstract: Electromagnetically induced transparency (EIT) based on dielectric metamaterials has
attracted attentions in recent years because of its functional manipulation of electromagnetic waves
and high refractive index sensitivity, such as high transmission, sharp phase change, and large
group delay, etc. In this paper, an active controlled EIT effect based on a graphene-dielectric hybrid
metamaterial is proposed in the near infrared region. By changing the Fermi level of the top-covered
graphene, a dynamic EIT effect with a high quality factor (Q-factor) is realized, which exhibits
a tunable, slow, light performance with a maximum group index of 2500. Another intriguing
characteristic of the EIT effect is its high refractive index sensitivity. In the graphene-covered
metamaterial, the refractive index sensitivity is simulated as high as 411 nm/RIU and the figure-of-
merit (FOM) is up to 159, which outperforms the metastructure without graphene. Therefore, the
proposed graphene-covered dielectric metamaterial presents an active EIT effect in the near infrared
region, which highlights its great application potential in deep optical switching, tunable slow light
devices, and sensitive refractive index sensors, etc.

Keywords: electromagnetically induced transparency; graphene-dielectric hybrid metamaterial;
refractive index sensing

1. Introduction

Electromagnetically induced transparency (EIT) is the quantum interference effect
firstly observed in atomic systems, which weakens the light absorption at the atomic
resonance frequency and introduces a narrow transmission window in the broad absorption
spectrum [1]. Although firstly discovered in the quantum optics region, this concept was
later extended to optical resonant systems, such as photonic crystals [2], whispering-gallery-
mode resonators [3], and metamaterials [4]. Stringent experiment conditions like ultracold
temperatures and stable coherent lights are not necessary in the resonant systems, which
makes them perfect platforms to research the EIT-like effect. Functional manipulations
of electromagnetic waves can be easily realized with unique performance like strong
dispersion and a large group delay, which has great potential for applications in slow
light devices [5,6], nonlinear optics [7], optical sensing [8,9], and optical storage [10,11].
However, metallic metamaterials usually find it difficult to achieve high transmission,
Q-factor, and group index in Terahertz and near-infrared regions due to the ohmic loss of
metals as well as the radiative loss of surface modes [12]. In this condition, high-refractive-
index dielectric materials stand out with low non-radiation loss, which provides a better
solution towards high-performance EIT metamaterials. For example, Si resonators are used
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to obtain a strong EIT-like effect with almost complete transmittance and a high Q-factor
of up to 483 [13]. In the dielectric metamaterial, light interacts with high-permittivity Si
to generate Mie resonance rather than dipole or LC resonances in metallic components,
therefore an extraordinary electromagnetic response without metallic loss can be attained,
which guarantees its high Q performance [14].

In recent years, the active tuning and manipulation of electromagnetic waves has
been research highlights in the field of metamaterials. By using active materials like phase-
change materials [15] and photosensitive semiconductors [16], a tunable EIT-like effect
with demanded functions can be easily achieved. Among all the functional materials,
two-dimensional (2D) materials, represented by graphene, stand out with dynamic optical
and electrical properties [17–19]. The Fermi level of graphene can be easily tuned by
electrical gating or chemical doping methods, and its high carrier mobility and tunable
conductivity are especially beneficial in active optical devices. Up until now, graphene has
been used as a tunable component in metal-dielectric metamaterials [20–22]. Recently, in
the all-dielectric metamaterial region, using graphene to actively control the EIT effect has
been studied in the terahertz band [23,24] and the near-infrared band [25,26]. In addition,
due to the narrow transmission peak produced by the EIT effect, the peak position shifts
sensitively with the slight changing of the environmental refractive index. Therefore, the
EIT effect is of great significance in the high-performance sensor application [13], which
needs to be further explored.

In this work, we propose a graphene-dielectric hybrid metamaterial with active
modulation of the EIT effect. The metamaterial presents a sharp EIT transmission peak
with a high Q-factor value in the near-infrared region, and the transmission window can
be dynamically tuned by changing the Fermi level of graphene. An excellent slow light
effect is attained in the graphene-covered metamaterial with a maximum group delay and
group index of 1.6 ps and 2500, respectively. Meanwhile, the high-performance refractive
index sensing characteristic is also observed, of which the sensitivity and FOM can reach
up to 411 nm/RIU and 159, respectively. By comparing the metastructures with and
without graphene, it is found that the top-covered graphene can help improve the sensing
performance due to the graphene plasmonics excited in the near infrared. Therefore, the
proposed hybrid metamaterial exhibits great application potential in optical switches,
slow-light devices, and refractive index sensors, etc.

2. Method

The schematic diagram of the designed all-dielectric metamaterial is shown in Figure 1.
The metamaterial unit cell consists of a solid nanocube (SNC) and a hollow nanocube (HNC)
made from Si, which are placed on the quartz substrate and are covered by monolayer
graphene. All-dielectric nanostructures are widely used because they are easily fabricated
by using a top-down method [13]. Graphene layers grown from chemical vapor deposition
(CVD) can be transferred to dielectric metamaterials using standard transfer techniques [27].
In order to make graphene flat on top of the metamaterial, a Si frame is designed on the
periphery with the same height of the unit cells to support the monolayer graphene, as
shown in Figure 1. The simulation software CST Microwave Studio is applied to simulate
the proposed metamaterial by using a finite element frequency domain solver. Periodic
boundary conditions are adopted in the x and y directions, and the z direction is set as the
open boundary for light incident and emission. A y-polarized plane wave is applied to
illuminate the metamaterial along the -z direction. Besides, the refractive index of Si is set
as nSi = 3.7 [28] and the refractive index of the quartz substrate is set as nSiO2 = 1.45 [29].
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Figure 1. The schematic illustration of the proposed metamaterial, which consists of a solid 
nanocube (SNC), a hollow nanocube (HNC), and a monolayer graphene and quartz substrate. 
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tion in the local limit and is described as following [30]: 𝜎(𝜔) = 2𝑒ଶ𝑘𝑇𝜋ℏଶ 𝑖𝜔 + 𝑖𝜏ିଵ ln 2 cosh ൬ 𝐸ி2𝑘𝑇൰൨ + 𝑒ଶ4ℏ ቈ12 + 1𝜋 arctan ൬ℏ𝜔 − 2𝐸ி2𝑘𝑇 ൰ − 𝑖2𝜋 𝑙𝑛 (ℏ𝜔 + 𝐸ி)ଶ(ℏ𝜔 − 𝐸ி)ଶ + (2𝑘𝑇)ଶ (1)

where e is the electron charge, 𝑘 is the Boltzmann constant, 𝑇 is the temperature, ℏ is 
the reduced Plank’s constant, 𝜔 is the frequency of the incident light, 𝜏 is the relaxation 
time, and 𝐸ி is the Fermi level of the graphene. In this case, T is assumed to be 300 K, 𝐸ி 
is set from 0 eV to 0.6 eV, and 𝜏 = (𝜇𝐸ி 𝑒𝜈ிଶ⁄ ) is calculated from Fermi velocity 𝜈ி =1 × 10 𝑚/𝑠 and the carrier mobility 𝜇 = 10000 𝑐𝑚ଶ/(𝑉 ∙ 𝑠) [30]. Firstly, we discuss the 
conductive properties of the graphene for a better understanding of its electromagnetic 
behaviors. The real and imaginary parts of graphene’s conductivity is calculated with dif-
ferent incident wavelengths and Fermi levels, as shown in Figure 2. As we can see from 
the graphs, when the Fermi level is less than half of the photon energy at the Dirac point 
(𝐸ி < ћω/2), the incident photon is absorbed by graphene due to the inter-band absorption, 
resulting in a large real part of the graphene conductivity. On the contrary, when the 
Fermi level is greater than half of the photon energy (𝐸ி > ћω/2), the contribution of the 
inter-band transition is prevented due to the Pauli exclusion principle. Therefore, once the 
Fermi level exceeds the critical value, the real part of the graphene conductivity will de-
crease sharply and the imaginary part will continue to increase, resulting from the intra-
band transition, as shown in Figure 2b. Due to the intrinsic nature of graphene, it will 
bend between the resonators, but within the research scope of this paper, the bending of 
graphene has almost no effect on its dielectric properties and EIT performance [31]. 

Figure 1. The schematic illustration of the proposed metamaterial, which consists of a solid nanocube
(SNC), a hollow nanocube (HNC), and a monolayer graphene and quartz substrate.

For graphene, both intra-band and inter-band transitions contribute to its complex
surface conductivity, which can be calculated by the theory of random phase approximation
in the local limit and is described as following [30]:
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where e is the electron charge, kB is the Boltzmann constant, T is the temperature, } is
the reduced Plank’s constant, ω is the frequency of the incident light, τ is the relaxation time,
and EF is the Fermi level of the graphene. In this case, T is assumed to be 300 K, EF is set
from 0 eV to 0.6 eV, and τ =

(
µEF/eν2

F
)

is calculated from Fermi velocity νF = 1× 106 m/s
and the carrier mobility µ = 10,000 cm2/(V·s) [30]. Firstly, we discuss the conductive
properties of the graphene for a better understanding of its electromagnetic behaviors. The
real and imaginary parts of graphene’s conductivity is calculated with different incident
wavelengths and Fermi levels, as shown in Figure 2. As we can see from the graphs, when
the Fermi level is less than half of the photon energy at the Dirac point (EF < h̄ω/2), the
incident photon is absorbed by graphene due to the inter-band absorption, resulting in
a large real part of the graphene conductivity. On the contrary, when the Fermi level is
greater than half of the photon energy (EF > h̄ω/2), the contribution of the inter-band
transition is prevented due to the Pauli exclusion principle. Therefore, once the Fermi level
exceeds the critical value, the real part of the graphene conductivity will decrease sharply
and the imaginary part will continue to increase, resulting from the intra-band transition,
as shown in Figure 2b. Due to the intrinsic nature of graphene, it will bend between the
resonators, but within the research scope of this paper, the bending of graphene has almost
no effect on its dielectric properties and EIT performance [31].
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Figure 2. The relationship of graphene’s conductivity with different incident wavelengths and Fermi 
levels. (a) Real part of the conductivity. (b) Imaginary part of the conductivity. 
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Figure 3b is the transmission spectrum of the SNC and HNC under y-polarized light inci-
dence. Here we can find that both SNC and HNC can be excited by the incident light, but 
the excitation of the SNC is weaker than the HNC due to its broader line width. Similarly, 
from the electric field distribution in the inset of Figure 3c, it can be seen that the electric 
field of SNC is weaker than that of HNC. Therefore, SNC can be defined as the dark mode 
and HNC as bright mode. The interference between the bright and dark modes forms a 
typical three-level resonant system, as shown in Figure 3c. Here, |0⟩, |1⟩, and |2⟩ repre-
sents the ground state, metastable state, and excited state in the three-level system, respec-
tively. In our case, the bright mode can be directly excited (path: |0⟩→|2⟩), and the exci-
tation of the bright mode can be coupled to the dark mode, resulting in the indirect exci-
tation of the dark mode (path: |0⟩→|2⟩→|1⟩→|2⟩). The two modes will destructively in-
terfere under certain conditions, causing a narrow EIT-like transmission peak to appear 
at the original transmission dip. With the combination of SNC and HNC in one unit cell, 
the bright and dark modes couple to generate a sharp transmission peak at 1440.4 nm in 
the Fano resonance dip, as shown in Figure 3d, which is ascribed to the typical EIT phe-
nomenon. Further calculation reveals the transmission amplitude of the EIT peak is as 
high as 97.5% and the Q-factor is up to 646. Here, the Q-factor is calculated by Q =𝜆 𝐹𝑊𝐻𝑀⁄ , where 𝜆 is the wavelength of the EIT window and FWHM is the full width 
at half maximum of the EIT transmission peak. 

Figure 2. The relationship of graphene’s conductivity with different incident wavelengths and Fermi levels. (a) Real part of
the conductivity. (b) Imaginary part of the conductivity.

3. Results and Discussion
3.1. EIT Effect of All-Dielectric Metamaterial without Graphene

Figure 3a shows that the geometric parameters of the unit cell are P = 1500 nm,
L = 364 nm, d = 244 nm, g = 150 nm, and the heights of the Si nanocubes and quartz
substrate are both 190 nm. Firstly, we studied the optical properties of the SNC and HNC
separately. Figure 3b is the transmission spectrum of the SNC and HNC under y-polarized
light incidence. Here we can find that both SNC and HNC can be excited by the incident
light, but the excitation of the SNC is weaker than the HNC due to its broader line width.
Similarly, from the electric field distribution in the inset of Figure 3c, it can be seen that the
electric field of SNC is weaker than that of HNC. Therefore, SNC can be defined as the
dark mode and HNC as bright mode. The interference between the bright and dark modes
forms a typical three-level resonant system, as shown in Figure 3c. Here, |0〉, |1〉, and |2〉
represents the ground state, metastable state, and excited state in the three-level system,
respectively. In our case, the bright mode can be directly excited (path: |0〉→|2〉), and the
excitation of the bright mode can be coupled to the dark mode, resulting in the indirect
excitation of the dark mode (path: |0〉→|2〉→|1〉→|2〉). The two modes will destructively
interfere under certain conditions, causing a narrow EIT-like transmission peak to appear
at the original transmission dip. With the combination of SNC and HNC in one unit cell,
the bright and dark modes couple to generate a sharp transmission peak at 1440.4 nm
in the Fano resonance dip, as shown in Figure 3d, which is ascribed to the typical EIT
phenomenon. Further calculation reveals the transmission amplitude of the EIT peak
is as high as 97.5% and the Q-factor is up to 646. Here, the Q-factor is calculated by
Q = λ0/FWHM, where λ0 is the wavelength of the EIT window and FWHM is the full
width at half maximum of the EIT transmission peak.

The electromagnetic field distribution at the transmission peak is further plotted to
clarify the EIT generation mechanism in Figure 4. At the resonant position of 1440.4 nm,
the electric field in the x-y plane (at z = 95 nm) is mainly distributed on the four sides
of the SNC, forming the clockwise rotated electric field. Correspondingly, the clockwise
electric field causes a strong magnetic field along the z-axis inside the SNC. Therefore,
magnetic resonance occurs in the SNC at the EIT window [32–34]. On the other hand,
the electric field in the bright HNC is much weaker than that in the SNC. We speculate
that bright and dark modes couple at the EIT peak, which results in stronger electric and
magnetic field in the SNC. These results also indicate that the dielectric metamaterial
can be designed to confine the light field inside the device, which promotes the Si-based
nano-scale light–matter interaction and optoelectronic integration.
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(d) The simulated transmission spectra of the proposed metamaterial.
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Figure 4. Simulated electric and magnetic field distributions and vector diagrams at the peak position. (a,c) Top and cross
section views of the electric field distribution (x-y plane at z = 95 nm). (b,d) Top and cross section views of the magnetic
field distribution (x-z plane at y = 0).
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Furthermore, the far-field scattered power in the Cartesian coordinate system is also
calculated. Here, we only consider the electric dipole (ED), magnetic dipole (MD), electric
quadrupole (EQ), magnetic quadrupole (MQ), and toroidal dipole (TD). The electromag-
netic multipole can be expressed as [35]:

P =
1

iω

∫
jd3r (2)

M =
1
2c

∫
(r× j)d3r (3)

QEαβ =
1

iω

∫ [(
rα jβ + rβ jα

)
− 2

3
(r× j)

]
d3r (4)

QMαβ =
1
3c

∫ [
(r× j)α jβ + (r× j)β jα

]
d3r (5)

T =
1

10c

∫ [
(r·j)r− r2j

]
d3r (6)

where c is the speed of light, j is the current density,ω is the angular frequency of electro-
magnetic wave, and r is the distance vector from the origin to point (x, y, z) in a Cartesian
coordinate system. The corresponding far-field scattered power can be expressed as:
IP = 2ω4

3c3 |P|2, IM = 2ω4

3c3 |M|2, IQE = ω6

5c5 ∑
∣∣QEαβ

∣∣2, IQM = ω6

20c5 ∑
∣∣QMαβ

∣∣2, IT = 2ω6

3c5 |T|2.
Based on this, we calculate the normalized scattering power near the EIT peak, as shown
in Figure 5. It can be found that the power of MD at the resonance position of EIT is
much greater than that of other multipoles. Therefore, the EIT generated in the proposed
metamaterial is mainly due to the magnetic dipole resonance.
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toroidal dipole (TD).

3.2. Dynamic Modulation of the EIT Effect of Graphene-Dielectric Hybrid Metamaterials

Excellent EIT performance is achieved in the SNC-HNC metamaterial. On this basis, a
monolayer graphene is further applied on top to realize the tunability. By changing the
Fermi level of graphene, its conductivity changes correspondingly, which further influences
its electromagnetic properties and EIT response. As shown in Figure 6a, the EIT peak,
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which is located at 1439 nm, can be adjusted with different Fermi levels of graphene. With
a Fermi level of 0 eV, the spectrum presents a small transmission peak at 1439 nm and the
amplitude is less than 0.3. When the Fermi level is above 0.48 eV, the EIT peak increases
drastically and reaches a maximum amplitude value of 0.94 at 0.6 eV.
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A detailed study is carried out to explore the relationship between the EIT peak
amplitude and the Fermi level of graphene. As can be clearly observed in Figure 6b, the
transmission peak intensity remains almost unchanged when the Fermi level of graphene
changes from 0 eV to 0.4 eV. With a Fermi level greater than 0.4 eV, the peak amplitude
increases drastically until reaches the maximum transmittance of 0.9 at 0.6 eV, and the total
modulation depth is up to ~70%, which is defined as

(
Tpeak,max − Tpeak,min

)
× 100%. The

magnetic field distributions are also investigated as shown in Figure 6c–e. The weakest
magnetic field emerges at 0 eV and is strengthened as the Fermi level increases, which
is consistent with the change of the EIT peak intensity. Compared with the proposed
metamaterial without graphene, the transmission at the EIT position is lower than 0.3
at EF = 0 eV, and the magnetic dipole resonance almost disappears. In this case, the
cross-sectional magnetic field of the magnetic dipole resonance strongly couples with
the inter-band transition of graphene, resulting in the degradation of transmission and
magnetic field. When the Fermi level is above 0.48 eV, the EIT peak increases drastically
and reaches a maximum amplitude value of 0.94 at 0.6 eV. Meanwhile, the magnetic field
strength is increases gradually. When the Fermi level is greater than half of the photon
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energy (EF > h̄ω/2), the contribution of the inter-band transition is prevented due to the
Pauli exclusion principle, and the inter-band absorption of graphene declines. Therefore,
a fast switch between the high and low EIT peak value is easily attained when the Fermi
level changes from 0.4 eV to 0.6 eV, which is especially beneficial to the optical switching
applications and ultrasensitive optical devices, etc. Since the carrier mobility of graphene
will be different with different fabrication procedures, it is very important to explore the
influence of carrier mobility on the EIT performance of the metamaterial. Here, we set the
carrier mobility changing from 1000 cm2/(V·s) to 10,000 cm2/(V·s). As shown in Figure 7,
when the Fermi level of graphene is 0.6 eV, the EIT peak intensity fits logarithmically with
the change of carrier mobility. Correspondingly, the graphene-induced modulation shows
a similar changing trend.
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The intriguing part of the active EIT effect is its tunable slow light characteristics.
EIT-induced strong dispersion emerges and results in the slow group velocity of light. The
slow light effect is carefully investigated and the group delay τg and group index ng are
used to estimate the effect, which can be expressed by the following formula [36]:

τg = −dϕ(ω)

dω
(7)

ng =
c

vg
=

c
h
× τg = − c

h
× dϕ(ω)

dω
(8)

where ϕ is the phase; ω is the frequency; c is the speed of light in free space; vg is the
group velocity of light; h is the thickness of metamaterial structure. The slow light effect
is illustrated by the calculated group delay and group index with different Fermi levels
of graphene, as shown in Figure 8. When EF is smaller than 0.4 eV, the group delay is
about 0.14 ps and the group index is about 220. When the Fermi level is greater than
0.4 eV, both the group delay and group index increase intensively with the increasing Fermi
levels, which is consistent with the transmission performance. A high transmittance is
obtained when the Fermi level is 0.6 eV and the group delay and group index are as high
as 1.6 ps and 2500, respectively. Reasonably, the change of the group delay and group
index is basically the same as that of the EIT transmission intensity shown in Figure 6b.
Therefore, the tunable slow light effect is ascribed to the graphene covered on top. By
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changing the Fermi level of graphene between 0.4 eV and 0.6 eV, the group velocity can be
flexibly manipulated between c/220 and c/2500 at the transmission peak, which has great
application potential in tunable slow light devices.
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3.3. Refractive Index Sensing

The high refractive index sensitivity is another exhilarating aspect of the EIT effect due
to the narrow line width of the transmission peak. When the environmental refractive index
varies, the transmission peak shifts sensitively. As shown in Figure 9a, when the refractive
index of the surrounding increases, the transmission peak of the proposed metamaterial
undergoes a clear redshift and the line width broadens too. The figure of merit (FOM) is an
important parameter to evaluate the sensor performance, which is determined by [37]:

FOM =
S

∆λ
, S =

δλ

δn
(9)

where S is the shift in the resonance per refractive-index-unit change; ∆λ is the line
width of the transmission peak. Figure 9c shows the trend of the peak position changes
with the refractive index in an approximately liner relationship, and its slope represents
the refractive index sensitivity of the metamaterial. By calculation, the refractive index
sensitivity of the graphene-covered metamaterial is S = 411 nm/RIU, which is better than
the reported Si metamaterial [38]. Combined with the average line-width ∆λ = 2.58 nm,
the FOM is calculated as 159, which is higher than previously reported results in the near-
infrared region [13]. Next, in order to explore the influence of graphene on the refractive
index sensing, we compared the sensing performance of the proposed metamaterial with
and without graphene. It can be seen from Figure 9a,b that the EIT peak undergoes an
apparent red-shift with the increase of the environmental refractive index, regardless
of whether there is graphene or not. However, in the condition without graphene, the
line width of the EIT peak is greatly increased during the red shift, and the peak shape
is severely deformed. Moreover, the sensor performance of the metamaterial without
graphene is lower than the graphene-covered one, in which the refractive index sensitivity
is 395 nm/RIU and the FOM is 106. The difference can be explained in this way: The
incident electromagnetic wave excites the surface plasmon polaritons in graphene, which
further enhance the light absorption and the mode coupling in the metamaterial. Therefore,
the graphene-covered metamaterial can effectively improve the refractive index sensitivity
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and suppress the deformation of the EIT peak caused by the change of the environmental
refractive index.
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4. Conclusions

In conclusion, a graphene-dielectric hybrid metamaterial with active manipulation
of the EIT effect in the near-infrared region is proposed. Due to the magnetic resonance
of the SNC, a characteristic EIT transmission peak with a high Q-factor of 646 and high
transmission of 97.5% is observed. By changing the Fermi level of graphene, dynamic
control of the EIT peak is observed and the modulation depth can reach up to 70% with
a sharp switch. Originating from the EIT performance, the intriguing slow light effect is
attained, and the group velocity can be continually tuned from c/200 to c/2500. Moreover,
a high sensitivity of the refractive index is also realized with a FOM value up to 159, which
is higher than the previously reported results in the near-infrared region. Compared to
the metamaterial without graphene, the sensing performance is significantly improved.
Therefore, the proposed metamaterial presents excellent EIT performance with a tunable
transmission peak, a changeable group velocity, and high refractive index sensitivity,
which highlights its applications in optical switching, tunable slow light devices, and
high-sensitivity sensors, etc. Moreover, the accessible all-dielectric structure based on
graphene and Si will greatly promote the nanoscale light–matter interaction and silicon-
based optoelectronic integration.
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