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Abstract: Next-generation renewable energy sources and perovskite solar cells have revolutionised
photovoltaics research and the photovoltaic industry. However, the presence of toxic lead in per-
ovskite solar cells hampers their commercialisation. Lead-free tin-based perovskite solar cells are
a potential alternative solution to this problem; however, numerous technological issues must be
addressed before the efficiency and stability of tin-based perovskite solar cells can match those of
lead-based perovskite solar cells. This report summarizes the development of lead-free tin-based
perovskite solar cells from their conception to the most recent improvements. Further, the methods
by which the issue of the oxidation of tin perovskites has been resolved, thereby enhancing the device
performance and stability, are discussed in chronological order. In addition, the potential of lead-free
tin-based perovskite solar cells in energy storage systems, that is, when they are integrated with
batteries, is examined. Finally, we propose a research direction for tin-based perovskite solar cells in
the context of battery applications.

Keywords: lead-free perovskite solar cells; tin perovskite; thin-film solar cells; energy storage
systems; photo-charging batteries

1. Introduction

Since a pioneering report by Kojima et al., in 2009 [1] and a subsequent breakthrough
by Kim et al. and Lee et al. [2,3] metal halide perovskite solar cells (PSCs) have substantially
transformed the field of photovoltaics. Such next-generation light harvesters exhibit an
exceptionally high-power conversion efficiency (PCE) owing to the long exciton diffusion
length [4], high absorption coefficient [5], and defect tolerance [6] of perovskite materials.
Presently, the highest PCE certified by the National Renewable Energy Laboratory (NREL)
is 25.6% [7–10]. This value is higher than that of other types of photovoltaics and extremely
close to that of monocrystalline silicon solar cells (Figure 1A). With rapid and substantial
improvements in PSC technology, the intrinsic device instability of PSCs has also been
greatly improved to the level of commercialization [11,12]. However, the presence of
lead (Pb) in perovskite materials lowers the market value of PSCs, as Pb is perceived
to be toxic and detrimental to the environment. The use of Pb in electronic products is
banned by the Restriction of Hazardous Substances (RoHS) directive in Europe [13–15].
According to the World Health Organization (WHO), the human body cannot purge Pb
through metabolism, and children are at a particularly high risk of Pb poisoning [16,17].
Moreover, Pb can easily spread via airborne particles into the air, water, and soil [18,19].
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Thus, the scientific community has been searching for Pb alternatives. Metals such as
tin (Sn), bismuth (Bi), antimony (Sb) have been reported to form metal halide perovskite
crystals, and their application in PSCs has been proven to be effective (Figure 1B) [20,21].
Sn-based PSCs (Sn-PSCs) have thus far shown the best prospects. Although there are fewer
reports on Sn-PSCs compared with those on Pb-PSCs, the PCE and stability of Sn-based
PSCs have been improved rapidly. In addition, the ideal bandgap of Sn-based perovskite
materials plays a crucial role (Figure 1C). Sn-based perovskites such as methylammonium
tin iodide (MASnI3), formamidinium tin iodide (FASnI3), and caesium tin iodide (CsSnI3)
have direct bandgaps of approximately 1.20, 1.41, and 1.3 eV, respectively, which are
narrower than those of Pb-based perovskites [22]. However, Sn2+ in Sn-based perovskite
is prone to form Sn4+. Although the product of this oxidation reaction is SnO2, which is
environment friendly, it dramatically lowers the device stability. This review focuses on Sn-
PSCs that have significantly contributed to the development of Sn-PSC technology thus far
(Figure 1D). Chronological accounts of Sn-PSCs from their initial development to the latest
certified PCE can shed light on future prospects and research directions. Furthermore, this
work reviews papers on solar cell–battery integration technologies to assess the potential
of lead-free Sn-based PSCs as light harvesters in energy storage systems (ESSs).
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Figure 1. (A) Bar graph showing the highest certified PCEs of the different types of photovoltaics. (B) Reported PCEs of 
Pb-based, Bi-based, and Sn-based PSCs from the initial stage of development to date. (C) Shockley–Queisser limit graph 
showing the PSC type that has a relatively high ideal bandgap. (D) PCE chart showing the development of Sn-PSCs. 

Figure 1. (A) Bar graph showing the highest certified PCEs of the different types of photovoltaics. (B) Reported PCEs of
Pb-based, Bi-based, and Sn-based PSCs from the initial stage of development to date. (C) Shockley–Queisser limit graph
showing the PSC type that has a relatively high ideal bandgap. (D) PCE chart showing the development of Sn-PSCs.

2. Development of Pb-Free Sn-Based Perovskite Solar Cells
2.1. Pb-Free Sn-Based Perovskite Solar Cells at Their Infancy

The first Sn-PSCs were reported by Kanatzidis and co-workers in 2014 [23]. The
same year, Snaith and co-workers reported a higher PCE of 6.40% using the same device
configuration [24]. However, they used MASnI3 as the active layer in an n-i-p structure, of
which the device performance was difficult to reproduce due to the poor stability nature
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of this device configuration [25]. The first inverted-type (p-i-n) Sn-PSCs were demon-
strated by Yan and co-workers. They used poly(3,4-ethylenedioxythiophene) polystyrene
sulfonate (PEDOT:PSS) as the hole-transporting layer, and C60 and bathocuproine (BCP)
as the electron-transporting layers [26]. Thus, a PCE of 6.22% was obtained (Table 1A).
The key improvement was the addition of SnF2 during diethyl ether antisolvent drip-
ping, which resulted in highly uniform and pinhole-free compact FASnI3 perovskite films.
Kanatzidis and colleagues deepened the understanding of Sn-PSCs by including Cs in
Sn-based perovskite fabrication [27]. Through the reduction of a vapour atmosphere during
the preparation of Sn-based perovskites, PCEs of 3.89%, 1.83%, and 3.04% for MASnI3,
CsSnI3, and CsSnBr3, respectively, were obtained. Furthermore, the device stability and
performance were considerably improved when the Sn4+/Sn2+ ratio was reduced by 20%
(Table 1B, Figure 2A). Seok and co-workers reported a PCE of 4.8%, which remained stable
for more than 100 d (Table 1C) [28]. The key to obtaining such a high device stability was
the use of a SnF2-pyrazine complex, which could disperse into the perovskite film better
than SnF2 alone. Kanatzidis and co-workers also reported a new type of hollow Sn-based
perovskite [29], in which ethylenediammonium (en) served as the A-site cation in a FASnI3
perovskite structure, forming {en}FASnI3, a new hybrid perovskite structure. They showed
that changing the A-site cation significantly increased the bandgap compared to X-site
anion tuning, owing to the unique ability of en to create Schottky defects in perovskites.
A relatively high PCE of 7.14% was attained with a device stability time of over 1000 h
(Table 1D). The Sn-PSCs in the initial stage of development report PCEs under 8% despite
the gradual improment over time. They rely on single A-site cation system until the work
by Ke et al. [29], which demonstate en-added Sn perovskite. However, the amount of en
was too small to regard the the perovskite composition as a mixed cation. Rather, en served
more as an additive than a cation.

Table 1. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.1.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

A 2016 [26] Glass/ITO/PEDOT:PSS/FASnI3/C60/BCP/Ag 22.07 0.47 0.60 6.22

B 2016 [27] Glass/FTO/c-TiO2/m-
TiO2/MASnI3/PTAA/Au 19.92 0.38 0.51 3.86

C 2016 [28] Glass/FTO/c-TiO2/m-TiO2/FASnI3/spiro-
MeOTAD/Au 23.70 0.32 0.63 4.80

D 2017 [29] Glass/FTO/c-TiO2/m-
TiO2/{en}FASnI3/spiro-MeOTAD/Au 22.54 0.48 0.66 7.14

Note: ITO, indium tin oxide; FTO, fluorine-doped tin oxide.

2.2. Burgeoning of Sn-Based Perovskite Solar Cells via Mixing Cations in Inverted Architecture

Later, an even higher PCE of 8.12% was reported by Huang and colleagues using
a mixed organic cation as the perovskite photoactive material, (FA)x(MA)1−xSnI3 in an
inverted structure (Table 2E, Figure 2B) [30] for the first time. Through optimisation of
the FA and MA ratios, FA0.75MA0.25SnI3 exhibited a relatively high PCE due to a high
open-circuit voltage (VOC) of 0.61 V arising from an improved perovskite film morphology
and energy level alignment. Further, in their devices, 10 mol% of SnF2 was added to the
optimised FA and MA mixed cations, which helped their PCE to reach above 8%. The
obtained VOC was the highest among the values reported for Sn-PSCs.

Table 2. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.2.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

E 2017 [30] Glass/ITO/PEDOT:PSS/FA0.75MA0.25SnI3/
C60/BCP/Ag 21.20 0.61 0.63 8.12



Nanomaterials 2021, 11, 2066 4 of 14

Nanomaterials 2021, 26, x FOR PEER REVIEW 4 of 15 

 

 
Figure 2. (A) Proposed mechanism of hydrazine vapour reaction with Sn-based perovskite materials 
(reduction process: 2SnI62− + N2H4 → 2SnI42− + N2 + 4HI). J–V curves for MASnI3 solar cells, CsSnI3 
solar cells, and CsSnBr3 solar cells with and without hydrazine vapour concentrations. Reprinted 
with permission from ref. [27] Copyright 2017, The American Chemical Society. (B) Schematic of the 
device structure, band alignment diagram, and a cross-sectional scanning electron microscope im-
age of a completed device (scale bar: 500 nm). Reprinted with permission from ref. [30]. Copyright 
2017, the John Wiley and Sons. 

2.2. Burgeoning of Sn-Based Perovskite Solar Cells via Mixing Cations in Inverted Architecture 
Later, an even higher PCE of 8.12% was reported by Huang and colleagues using a 

mixed organic cation as the perovskite photoactive material, (FA)x(MA)1−xSnI3 in an in-
verted structure (Table 2E, Figure 2B) [30] for the first time. Through optimisation of the 
FA and MA ratios, FA0.75MA0.25SnI3 exhibited a relatively high PCE due to a high open-
circuit voltage (VOC) of 0.61 V arising from an improved perovskite film morphology and 
energy level alignment. Further, in their devices, 10 mol% of SnF2 was added to the opti-
mised FA and MA mixed cations, which helped their PCE to reach above 8%. The obtained 
VOC was the highest among the values reported for Sn-PSCs. 

Table 2. Record table containing the reported Sn-PSCs and the corresponding photovoltaic param-
eters mentioned in Section 2.2. 

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%] 

E 2017 [30] Glass/ITO/PEDOT:PSS/FA0.75MA0.25SnI3/ C60/BCP/Ag 21.20 0.61 0.63 8.12 

2.2.1. A-Site Cation Engineering in Sn-Based Perovskite Solar Cells 
Sn-based perovskites have excellent prospects to replace Pb, yet the easy oxidation 

and the low formation energy of Sn vacancies of Sn2+ serve as a great hindrance to high 
PCE. One of the strategies to overcome this is engineering the A-site cation of ASnI3. Mix-
ing the A-site cations not only improve the film quality, such as morphology, but it can 

Figure 2. (A) Proposed mechanism of hydrazine vapour reaction with Sn-based perovskite materials
(reduction process: 2SnI6

2− + N2H4→ 2SnI4
2− + N2 + 4HI). J–V curves for MASnI3 solar cells, CsSnI3

solar cells, and CsSnBr3 solar cells with and without hydrazine vapour concentrations. Reprinted
with permission from ref. [27] Copyright 2017, The American Chemical Society. (B) Schematic of the
device structure, band alignment diagram, and a cross-sectional scanning electron microscope image
of a completed device (scale bar: 500 nm). Reprinted with permission from ref. [30]. Copyright 2017,
the John Wiley and Sons.

2.2.1. A-Site Cation Engineering in Sn-Based Perovskite Solar Cells

Sn-based perovskites have excellent prospects to replace Pb, yet the easy oxidation and
the low formation energy of Sn vacancies of Sn2+ serve as a great hindrance to high PCE.
One of the strategies to overcome this is engineering the A-site cation of ASnI3. Mixing the
A-site cations not only improve the film quality, such as morphology, but it can also change
the optoelectrical properties of the Sn perovskites. This is because the perovskite crystal
structure of ABX3 is determined chiefly by the size of the A-site cation. Therefore, A-site
cation engineering was used initially to fine tune the bandgap and to change the chemical
composition of the Sn perovskite precursors. Initially, researchers mixed MA+, FA+, and
Cs+ A-site cations. The candidates extended to HA, EA, GA, EDA, TN, BEA, PN, BA, HEA,
4AMP, PEA, PPA, and 5-AVA in the later stage of the Sn-PSC evolution.

Loi and co-workers reported a method for lowering the background carrier density
arising from the intrinsic defects in Sn perovskites. Sn vacancies and Sn4+ were reduced
by more than one order of magnitude via the deposition of near-single-crystalline FASnI3,
which possesses the orthorhombic a-axis in the out-of-plane direction [31]. This was
achieved by mixing a small amount of a layered two-dimensional Sn perovskite (0.08 M)
with 0.92 M of three-dimensional FASnI3. The fabricated devices had a PCE of 9.0%,
with negligible hysteresis and light soaking owing to a low trap density and efficient
charge collection. SnF2 was used as a reducing agent, as recommended in previous reports
(Table 3F).
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Table 3. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.2.1.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

F 2018 [31] Glass/ITO/PEDOT:PSS/FASnI3 (PEAI)/C60/
BCP/Ag 24.1 0.53 0.71 9.00

2.3. Sequential Deposition Technique as the Game Changer

The Jen group reported a sequential deposition method using trimethylamine (TMA)
as a Lewis base to form SnI2- and SnF2-TMA complexes in the first deposition step, and
these were intercalated with FAI to obtain FASnI in the following step [32]. TMA facilitated
the formation of homogeneous SnI2 and SnF2 layers. Later, the Diau group realised a
hybrid solvent system used in the second step of sequential deposition to control the
film morphology [33]. The principle entails the formation of an iodoplumbate anion
intermediate phase, which mediates perovskite crystallisation as a Lewis acid–base adduct,
between metal halides (Lewis acid) and polar aprotic solvents (Lewis base). The Lewis
acid–base adduct formed during the SnI2 deposition step controlled the volume expansion
and promoted rapid reaction with MAI and FAI. Thus, denser and more compact FASnI3
films with larger crystalline domains (>1 µm) than those of the previously reported Sn-
based perovskite films were formed. As a result, a high PCE of 7.09% with a good device
stability was obtained (Table 4G).

Table 4. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.3.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

G 2018 [32] Glass/ITO/PEDOT:PSS/FASnI3/C60/BCP/Ag 22.45 0.47 0.68 7.09

2.4. Doping Sn Perovskites Using Additives

Diau and co-workers studied the doping effect of ethylenediammonium diiodide
(EDAI2) and butylammonium iodide (BAI) on organic cations, which passivated the defect
sites and improved the film morphology and perovskite crystallinity [34]. The addition
of BAI changed the orientation of the perovskite crystal growth and enhanced the con-
nectivity of the crystal grains. The existing pinholes were passivated by the addition of
EDAI2. This prevented the oxidation of Sn2+ to Sn4+ and promoted slow relaxation of
the crystal structure, as evidenced by X-ray diffraction, X-ray photoelectron spectroscopy,
and photoluminescence decay measurements. With the addition of EDAI2 (1%), the initial
PCE of 7.4%, obtained for the FASnI3-based PSC, increased to 8.9% after ageing. The
resulting devices retained their PCE for more than 2000 h (Table 5H and Figure 3A). Hayase
and co-workers achieved highly stable and efficient Sn-PSCs by adding Ge to a Sn-based
perovskite precursor. The Ge–Sn mixed perovskite film exhibited a bandgap between
1.4 to 1.5 eV, based on photoacoustic spectroscopy results [35]. The amount of added
Ge was optimised at 5%, and thus, the perovskite structure was FA0.75MA0.25Sn1−xGexI3,
as confirmed by X-ray diffraction and X-ray photoelectron spectroscopy measurements.
The initial PCE of 4.48% increased to 6.90% after 72 h of ageing. The devices underwent
measurements outside a glove box, without encapsulation (Table 5H). Subsequently, two
simple methods for improving Sn-PSCs were proposed in a report by Liu et al. [36], The
first method involved the use of a high-temperature antisolvent for full coverage of the
Sn-based perovskites on PEDOT:PSS. The second method entailed annealing under a low
partial pressure of dimethyl sulfoxide vapour, which increased the perovskite crystallite
domains. A PCE of 7.20% was obtained owing to topographical and electrical improve-
ments (Table 5J and Figure 3B). Diau and co-workers achieved a PCE close to 10% in an
inverted-type Sn-PSC, which used a mixture of nonpolar organic cation, guanidinium
(GA+), and formamidinium (FA+) [37]. FASnI3 was fabricated in the presence of 1% EDAI2
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as an additive, with an optimised ratio of GAI to FAI of 20:80. This composition resulted in
a PCE of 8.5%, which then increased to 9.6% after storage inside a glove box (Table 5K).
The devices were stable under continuous 1 sun illumination for 1 h without encapsulation.
A certified PCE of 8.3% was obtained, which was the highest to the best of our knowledge
(Figure 4). Han and colleagues reduced the crystallisation speed of Sn-based perovskites by
adding poly (vinyl alcohol) (PVA) which induced hydrogen bonding interactions during
the growth of FASnI3 [38]. This reduced the number of defect sites, which was reflected
by the increased VOC. The recorded VOC of 0.63 V is ascribed to the suppressed migration
of iodide ions in the presence of the PVA additive. A PCE of 8.92% was attained, and the
device exhibited stable operation for 400 h (Table 5L).

Table 5. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.4.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

H 2018 [34] Glass/ITO/PEDOT:PSS/FASnI3 (1%EDAI2)/C60/BCP/Ag 21.30 0.58 0.72 8.9
I 2018 [35] Glass/ITO/PEDOT:PSS/FA0.75MA0.25Sn1-xGexI3/C60/BCP/Ag 21.90 0.45 0.70 6.90
J 2018 [36] Glass/ITO/PEDOT:PSS/FA0.75MA0.25SnI3/ C60/BCP/Ag 19.40 0.55 0.61 7.20

K 2019 [37] Glass/ITO/PEDOT:PSS/GAxFA0.98-xSnI3
(1%EDAI2)/C60/BCP/Ag 21.20 0.62 0.73 9.60

L 2019 [38] Glass/ITO/PEDOT:PSS/FASnI3-PVA/C60/BCP/Ag 20.37 0.63 0.69 8.92
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2.5. High Performance All-Inorganic Sn Perovskite Solar Cells

Padture and co-workers [39] demonstrated all-inorganic Sn-PSCs that showed high
unprecedentedly PCE. The addition of Ge to CsSnI3 formed CsSn0.5Ge0.5I3, which is highly
stable in air, owing to the favourable Goldschmidt tolerance (0.94) and octahedral factor
(0.4) of the inorganic Sn-based perovskite films. The high oxidation activity exhibited by
Ge was due to the formation of an ultrathin (<5 nm) native oxide protective film on the
surface of the CsSn0.5Ge0.5I3 perovskite. Owing to the inorganic nature of the film, the
stability was greater than that of MAPbI3. A PCE of 7.11% was obtained from the Sn-PSCs,
and the device was stable for more than 500 h of continuous operation (Table 6M).

Table 6. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.5.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

M 2019 [39] Glass/FTO/PCBM/CsSn0.5Ge0.5I3/spiro-
MeOTAD/Au 18.61 0.63 0.61 7.11
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2.6. Anti-Oxidation as the Key to Improving VOC and Device Stability

Hayase and co-workers reported a PSC with a PCE surpassing 10% [40]. They sus-
pected the low PCE of Sn-based PSCs to their VOC values, which were lower than those
of Pb-based PSCs. The cause for the low VOC values was the presence of defects and
trap sites, which were exacerbated by the oxidation of Sn2+ to Sn4+ in air. To address this
issue, the Sn-based perovskites were treated with an ethylenediamine (EDA) Lewis base
to form FA0.98EDA0.01SnI3. X-ray photoelectron spectroscopy revealed that the recom-
bination reaction originated from the nonstoichiometric Sn:I ratio and not the Sn4+:Sn2+

ratio. A PCE of 10.18% was recorded (Table 7N). In 2020, Han and colleagues reported
an inverted-type PSC with a PCE of 9.47% (Table 7O) [41], wherein an anti-oxidising
capping layer was formed on the surface of FASnI3 to prevent oxygen attacks. Further,
4-fluorobenzohydrazide (FBH), along with chlorobenzene, was added during the anti-
solvent dripping step. Thus, this perovskite composition was written as FASnI3-FBH.
This enabled the fabrication process to be performed even when the oxygen content was
100 ppm. Thus, the device stability was considerably enhanced. In addition, through
solvent engineering and optimisation, large crystal grains were obtained with fewer Sn4+

defects and long carrier recombination lifetime. Thus, high-performance Sn-PSCs with a
long device lifetime of 600 h under illumination by light soaking (AM 1.5G, 100 mW cm2)
were achieved. Paditure and co-workers applied a new hole-transporting layer, Cu-doped
NiOx to fabricated inverted-type PSCs [42]. Further, the Sn-based perovskite layer was also
modified. They introduced 4-(aminomethyl)-piperidinium (4AMP) into FASnI3 to form
FASnI3-4AMP. This incorporation enhanced the electrical properties and material durability.
The bulky divalent organic cation, 4AMP, surrounded the grain boundaries of the three-
dimensional Sn-based perovskite crystals, protecting the grain from oxygen intrusion while
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improving connectivity. The 4AMP in between the domains was visible in the scanning
electron microscopic images. The fabricated devices exhibited the highest PCE of 10.9%
with negligible hysteresis (Table 7P and Figure 5). The device exhibited stable operation
for approximately 500 h. In the same year, Han and co-workers reported inverted-type
Sn-PSCs with amorphous-polycrystalline CsFASnI3 [43]. Owing to the added Cs, Sn-based
perovskites with this particular composition to block oxygen and moisture attacks as well
as to suppress ion diffusion within the fabricated devices. Moreover, the energy levels were
better aligned compared to the charge extraction, and transport became more efficient. The
device exhibited a high PCE of 10.18% with minor hysteresis. Its efficiency was 10.08%, as
verified by Newport Laboratory, USA, with greater-than-95% PCE retention after 1000 h
of operation (Table 7Q). Wakamiya and co-workers reported that Sn(0) could scavenge
Sn(IV) impurities in a precursor solution [44]. This treatment prolonged the lifetime of the
FA0.75MA0.25SnI3-based PSCs and induced strong PL and charge collection. Further, the
selective reaction between the dihydropyrazine derivative and added SnF2 was promoted.
The mechanism of the reactions with Sn has been corroborated by various analyses. Under
this new nanoparticle regime, an impressive PCE of 11.5% together with VOC of 0.76 V
were obtained (Table 7R). The devices exhibited a record-high VOC of 0.76 V among those of
the previously reported Sn-PSCs. Thus, this seminal work has set records in many aspects.
Energy-level alignment plays a vital role in increasing VOC.

Table 7. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.6.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

N 2019 [40] Glass/FTO/PEDOT:PSS/FA0.98EDA0.01SnI3/C60/BCP/Ag/Au 23.09 0.60 0.73 10.18
O 2020 [41] Glass/ITO/PEDOT:PSS/FASnI3-FBH/C60/BCP/Ag 21.10 0.60 0.75 9.47
P 2020 [42] Glass/FTO/Cu-NiOx/FASnI3-4AMP /PCBM/BCP/Ag 21.15 0.69 0.74 10.86
Q 2020 [43] Glass/FTO/PEDOT:PSS/CsFASnI3/PCBM/BCP/Ag 21.60 0.64 0.75 10.40
R 2020 [44] Glass/ITO/PEDOT:PSS/FA0.75MA0.25SnI3/PCBM/C60/BCP/Ag 22.0 0.76 0.69 11.50
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2.7. Energy Level Alignment as the Key to Improving VOC

Energy level alignment plays a vital role in increasing VOC. Diverse fullerene deriva-
tives have been used to improve VOC [45–49]. Among them, Ning and colleagues used
indene-C60 bisadduct (ICBA) fullerene as an electron-transporting layer in inverted-type
Sn-PSCs [50]. ICBA is a commercially available mainstream fullerene derivative; thus,
it is laudable that they acquired such a high result using an easily accessible material.
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Furthermore, the obtained PCE of 12.4% has reached a new milestone surpassing the 12%
limit (Table 8S). In addition to the electron transporting layer, a new Sn-based perovskite
film was adopted. The authors incorporated C6H5CH2CH2NH3I (PEAI) and NH4SCN
(SCN) into the FASnI3-based perovskite film to match with the charge transport layers
(Figure 6). The energetically optimised device produced a VOC of 0.94 V, which is the
highest VOC reported among Sn-PSCs to date. Hayase and colleagues [51] improved their
previous device and reported a remarkable device performance of 13.24% (Table 8T). The
energy level of the Ge-doped FA0.98EDA0.01SnI3 film was controlled by tuning the amount
of ethylammonium (EA), which led to a considerable enhancement in VOC. The obtained
VOC of 0.84 V was not as high as 0.94 V, reported by Ning and colleagues [50], however,
the overall PCE was higher for the former than for the later due to a relatively higher
short-circuit current density (JSC) and fill factor (FF) caused by the higher perovskite film
quality, as proven by various measurements, such as space charge limited current (SCLC)
measurements. In addition to the one-step method applied for most of the studies reported
herein, Diau and co-workers [52] developed a two-step method of solution processing
to fabricate 3D/2D hybrid Sn-based perovskite films. Based on the perovskite structure,
FA0.8GA0.2SnI3, where GA stands for guanidinium, various bulky ammonium cations
(BACs) and hexafluoro-2-propanol were applied to form a 2D Sn-based perovskite layer.
Among the various BACs, anilinium was found to form the thinnest 2D layer on the surface,
which led to the best PCE of 10.6% with a self-healing effect (Table 8U). Recently, Han and
colleagues developed a low-temperature deposition method with an additive of PEAI or
post-treatment by n-propylammonium iodide (PAI) to grow large crystal grains. [53]. Thus,
the quality of Sn-based perovskites was improved by slowing down the crystal growth
or inducing a preferential orientation. For example, Lewis bases (e.g., dimethyl sulfoxide
(DMSO), trimethylamine, and thiocyanate) formed Lewis adducts with SnI octahedra to
slow down the crystallisation. In addition, hydrogen bonding was found to have the
same effect as that of crystal orientation. Furthermore, long-chain organic ammonium
(e.g., phenylethylammonium (PEA), butylammonium (BA), and EDA (or en) was used to
assist the oriented growth of Sn-based perovskites by restricting the tilting of the grains).
They harnessed a high-temperature anti-solvent to obtain a highly dense perovskite film.
Moreover, the precursor solution was cold, and this decreased the number of nuclei and
decelerated the nucleation rate by increasing the Gibbs free energy. This also entailed
an ordered arrangement of perovskite nuclei along the energetically favourable <h00>
crystalline directions. Furthermore, the crystal growth was retarded by torpid solute diffu-
sion and solvent evaporation, promoting Ostwald ripening. In addition, the authors used
n-propylammonium iodide (PAI) for post-treatment to maximise the device performance.
A PCE of 12.11% was obtained, and the device was stable for 500 h (Table 8V).

Table 8. Record table containing the reported Sn-PSCs and the corresponding photovoltaic parameters mentioned in
Section 2.7.

Report Year [Ref.] Device Structure JSC [mA m−2] VOC [V] FF PCE [%]

S 2020 [50] Glass/ITO/PEDOT:PSS/PEA15-SCN FASnI3 /ICBA/BCP/Ag 17.40 0.94 0.75 12.40

T 2020 [51] Glass/FTO/PEDOT:PSS/Ge doped FA0.98EDA0.01SnI3 (EA 0.1)/
C60/BCP/Ag/Au 20.32 0.84 0.78 13.24

U 2021 [52] Glass/ITO/PEDOT:PSS/FA0.8GA0.2SnI3/BAC2SnI4/C60/BCP/Ag 21.1 0.65 0.76 10.60
V 2021 [53] Glass/ITO/PEDOT:PSS/FASnI3 (PAI)/C60/BCP/Ag 22.48 0.77 0.70 12.11
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2.8. Lead-Free Sn PSCs as Photo-Charging Power Source

Electric vehicles that use lithium-ion batteries (LIBs) have attracted significant interest.
LIBs have high energy density and does not have the memory effect. Suffering from small
self-discharge is another advantage of LIBs. The performance of LIBs is determined by
stable charging and discharging of the current density over copious cycles. Parameters like
the battery state of charge (BSOC), defined by the fraction of the total energy or battery
capacity discharged over the total available is used a one of the parameters. One way to
augment the performance of batteries in electric cars is via the application of self-charging
suppliers. This can be achieved in numerous ways, one of which is the installation of a solar
roof. Thin-film perovskite photovoltaics are attractive as they can directly photo-charge
LIBs. However, no study has been conducted on the integration of Sn-PSCs and batteries,
and only a few reports on the photo-charging of Pb-based PSCs are available. In this
section, we examine these publications and elucidate the potential of Sn-PSCs using a
similar approach. In 2015, Xu et al. [54], connected four single MAPbI3-based PSCs in series
with an LIB assembled with a LiFePO4 cathode and a Li4Ti5O12 anode. The integration
yielded a photoelectric conversion and storage efficiency of 7.80% with adequate cycling
stability (Figure 7). A PCE of 12.65% was achieved when all four cells were connected.
Each cell exhibited an average PCE of 15.67%. At 0.5 C, the PSC–LIB exhibited a capacity
retention rate similar to that of galvanostatically charged and discharged LIBs with a
conventional power supply, when measured from 0.1 C to 1 C. In 2017, a simple and
efficient photo-charging design, which used a DC–DC voltage boost converter between a
PSC and a Li4Ti5O12-LiCoO2 Li-ion cell, was proposed by Gurung et al. [55]. The converter
boosted the low input voltage of the PSC to charge the lithium-ion cells more effectively
and offer overvoltage protection. This approach resulted in an efficiency of 9.36% and
an average storage efficiency of 77.2% at 0.5 C discharge. The high charging efficiency of
the PSC–LIB was attributed to the high PCE of the PSCs and low potential polarisation
between the charge and discharge voltage plateaus of the Li4Ti5O12–LiCoO2 Li-ion cell. Li
et al. [56] demonstrated a system wherein PSCs, LIBs, and strain sensors were combined
in a flexible assembly. A wearable PSC-LIB-driven photo-rechargeable lithium-ion strain
sensor showed a PCE of 8.41% and an output voltage of 3 V at a discharge current density
of 0.1 A g−1. The device could achieve a significantly high PCE of approximately 6% at
a high current density of 1 A g−1, which is one of the highest reported performances for
photo-charging power sources.
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3. Conclusions

We have reviewed the development of Pb-free Sn-PSCs. By studying the progress
of the Sn-PSC technology, we noticed that the enhancement of VOC played an important
role in obtaining a high PCE. This was generally achieved by tuning the energy levels of
Sn-based perovskites and charge-transporting layers. The Fermi level and bandgap of
Sn-based perovskites were controlled by using different chemical compositions. Different
electron-transporting layers, such as fullerene derivatives, were explored to find a material
that matched the energy levels of the Sn-based perovskite materials. The absorption range
could be widened by tuning the bandgap of the Sn-based perovskite layer; however, this
could result in reductions in VOC and FF. In addition, the increase in JSC did not match the
decrease in VOC and FF. Furthermore, passivation and protection of Sn2+ from oxidation
are important for increasing the FF and device stability. Various chemical compounds
were used as additives. Further, higher PCEs for Sn-PSCs can potentially be achieved
by investigating unexplored hole-transporting materials. High-performance Sn-PSCs are
limited to inverted architectures and PEDOT:PSS hole-transporting layers. However, the
highest PCEs have been reported for the normal architecture of Pb-based PSCs; thus,
investigating methods for improving the performance of the normal architecture of Sn-
PSCs is crucial. In this context, it is important to inhibit the damage caused by spiro-
MeOTAD and its components. To this end, carbon nanotube electrodes which are laminated
before the application of spiro-MeOTAD can be used [11,57–60]. Another method is to
apply poly(triarylamine) (PTAA), which has yielded relatively high PCEs. The challenge
in utilising PTAA lies in its wettability. A Sn-based perovskite precursor that contains
DMSO cannot sufficiently cover the surface of PTAA as the latter is non-protic polar and
highly dielectric. Modifying the PTAA surface could be a good solution for enhancing its
applicability in Sn-PSCs. Overall, we reviewed Pb-free Sn-based perovskite solar cells in a
chronological order as there has not been a paper describing the progress of the technology
from the historical point of view. From the nascence of Sn-PSC, the strategy transitioned
from single cation perovskites to the mixed cation approach, which involved doping by
additives and formation of two-dimensional perovskite layer. Later, the deposition method
became critical. The shift in the focus of science in Sn-PSCs is clearly categorised in each
title of the subsection. The reported PCE of Sn-PSCs is now sufficiently high for their use
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in photo-charging systems. The low VOC and JSC values can be overcome by connecting
many devices in series or in parallel. Furthermore, a printed circuit board interface, with
an electrical algorithm, can be employed between the Sn-PSCs and LIBs to better match the
voltage and current. From the perspective of commercialisation, stability is much more
important than the device PCE. Most of the Sn-PSCs discussed in this review are organic-
inorganic mixed perovskites. However, for an actual application, for example, solar roofs,
all-inorganic Sn-PSCs might be more applicable owing to their high device stability at the
expense of low PCE. [61] Although many facets of Sn-PSCs need to be improved, we believe
that Sn-PSCs have the potential to replace Pb-PSCs, considering their rate of development.
We can expect researchers in the field Pb-free PSCs to come up with novel strategies [62]
and adoption of new materials towards optimal energy alignments in Sn-PSCs [63] in near
future. In the quest for environmentally sustainable society, eco-friendly Sn-PSCs-based
energy system this paper discusses will pave the pathway towards greener society, far cry
from the energy crisis.
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