Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme
Abstract
:1. Introduction
2. Governing Equations
3. Numerical Method
4. Results and Discussion
4.1. Problem Description and Boundary Conditions
4.2. Validation
4.3. Obtained Results and Analysis
5. Conclusions
- −
- The energy transference intensity and consequently the Nusselt number were diminished with increments of Ha and Ri.
- −
- Isotherm patterns were reshaped with the presence of the hybrid nanoparticles for a lower Richardson number.
- −
- Inclusion of Al2O3 nanoparticles improved the energy transference performance for all studied Ri and Ha, but adding Cu nanoparticles to the nanofluid at lower Ri was highly effective, and at higher Ri there was no significant effect.
- −
- The magnetic field intensified the influence of nano-sized particles on the liquid dynamics.
- −
- According to the results, applying the hybrid nanoparticles did not always enhance the heat transfer rate, which means that the other parameters, such as the Richardson number, can affect the presence of hybrid nanoparticles.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torrance, K.; Davis, R.; Eike, K.; Gill, P.; Gutman, D.; Hsui, A.; Lyons, S.; Zien, H. Cavity flows driven by buoyancy and shear. J. Fluid Mech. 1972, 51, 221–231. [Google Scholar] [CrossRef]
- Abu-Nada, E.; Chamkha, A.J. Mixed convection flow in a lid-driven inclined square enclosure filled with a nanofluid. Eur. J. Mech. B/Fluids 2010, 29, 472–482. [Google Scholar] [CrossRef]
- Moallemi, M.K.; Jang, K.S. Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity. Int. J. Heat Mass Transf. 1992, 35, 1881–1892. [Google Scholar] [CrossRef]
- Iwatsu, R.; Hyun, J.M.; Kuwahara, K. Mixed convection in a driven cavity with a stable vertical temperature gradient. Int. J. Heat Mass Transf. 1993, 36, 1601–1608. [Google Scholar] [CrossRef]
- Rudraiah, N.; Barron, R.M.; Venkatachalappa, M.; Subbaraya, C.K. Effect of a magnetic field on free convection in a rectangular enclosure. Int. J. Eng. Sci. 1995, 33, 1075–1084. [Google Scholar] [CrossRef]
- Chamkha, A.J. Hydromagnetic combined convection flow in a vertical lid driven cavity with internal heat generation or absorption. Numer. Heat Transf. A 2002, 5, 529–546. [Google Scholar] [CrossRef]
- Al-Salem, K.; Oztop, H.F.; Pop, I.; Varol, Y. Effects of moving lid direction on MHD mixed convection in a linearly heated cavity. Int. J. Heat Mass Transf. 2012, 55, 1103–1112. [Google Scholar] [CrossRef]
- Farahbakhsh, I.; Ghassemi, H. Numerical investigation of the Lorentz force effect on the vortex transfiguration in a two-dimensional lid-driven cavity. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2010, 224, 1217–1230. [Google Scholar] [CrossRef]
- Balla, C.S.; Kishan, N.; Gorla, R.S.; Gireesha, B.J. MHD boundary layer flow and heat transfer in an inclined porous square cavity filled with nanofluids. Ain Shams Eng. J. 2017, 8, 237–254. [Google Scholar] [CrossRef]
- Mohebbi, R.; Rashidi, M.M. Numerical simulation of natural convection heat transfer of a nanofluid in an L-shaped enclosure with a heating obstacle. J. Taiwan Inst. Chem. Eng. 2017, 72, 70–84. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 2019, 130, 529–546. [Google Scholar] [CrossRef]
- Rashidi, M.M.; Nasiri, M.; Khezerloo, M.; Laraqi, N. Numerical investigation of magnetic field effect on mixed convection heat transfer of nanofluid in a channel with sinusoidal walls. J. Magn. Magn. Mater. 2016, 401, 159–168. [Google Scholar] [CrossRef]
- Tayebi, T.; Chamkha, A.J. Effects of various configurations of an inserted corrugated conductive cylinder on MHD natural convection in a hybrid nanofluid-filled square domain. J. Therm. Anal. Calorim. 2021, 143, 1399–1411. [Google Scholar] [CrossRef]
- Moghadassi, A.; Ghomi, E.; Parvizian, F. A numerical study of water based Al2O3 and Al2O3–Cu hybrid nanofluid effect on forced convective heat transfer. Int. J. Therm. Sci. 2015, 92, 50–57. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids Surf. A Phys. Eng. Asp. 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Effect of Al2O3–Cu/water hybrid nanofluid in heat transfer. Exp. Fluid Sci. 2012, 38, 54–60. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Doostani, A.; Izadpanahi, E.; Chamkha, A. Conjugate natural convection flow of Ag–MgO/water hybrid nanofluid in a square cavity. J. Anal. Calorim. 2020, 139, 2321–2336. [Google Scholar] [CrossRef]
- Abdel-Nour, Z.; Aissa, A.; Mebarek-Oudina, F.; Rashad, A.M.; Ali, H.M.; Sahnoun, M.; Ganaoui, M.E. Magnetohydrodynamic natural convection of hybrid nanofluid in a porous enclosure: Numerical analysis of the entropy generation. J. Anal. Calorim. 2020, 141, 1981–1992. [Google Scholar] [CrossRef]
- Zhao, B.; Tian, Z. High-resolution high-order upwind compact scheme-based numerical computation of natural convection flows in a square cavity. Int. J. Heat Mass Transf. 2016, 98, 313–328. [Google Scholar] [CrossRef]
- Wang, T.; Liu, T. A consistent fourth-order compact finite difference scheme for solving vorticity-stream function form of incompressible Navier-Stokes equations. Numer. Math. Theory Methods Appl. 2019, 12, 312–330. [Google Scholar]
- Garmann, D. Compact finite-differencing and filtering procedure applied to the incompressible Navier-Stokes equations. AIAA J. 2013, 51, 2241–2251. [Google Scholar] [CrossRef]
- Yu, P.X.; Xiao, Z.; Wu, S.; Tian, Z.F.; Cheng, X. High accuracy numerical investigation of double-diffusive convection in a rectangular cavity under a uniform horizontal magnetic field and heat source. Int. J. Heat Mass Transf. 2017, 110, 613–628. [Google Scholar] [CrossRef]
- Talebi, F.; Mahmoudi, A.H.; Shahi, M. Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid. Int. Commun. Heat Mass Transf. 2010, 37, 79–90. [Google Scholar] [CrossRef]
- El-Zahar, E.R.; Rashad, A.M.; Saad, W.; Seddek, L.F. Magneto-hybrid nanofluids flow via mixed convection past a radiative circular cylinder. Sci. Rep. 2020, 10, 10494. [Google Scholar] [CrossRef] [PubMed]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571–581. [Google Scholar] [CrossRef]
- Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [Google Scholar] [CrossRef]
- Tian, Z.F.; Dai, S.Q. High order compact exponential finite difference methods for convection diffusion type problems. J. Comput. Phys. 2007, 220, 952–974. [Google Scholar] [CrossRef]
- Spotz, W.F. Accuracy and performance of numerical wall boundary conditions for steady, 2D, incompressible streamfunction vorticity. Int. J. Numer. Methods Fluids 1998, 28, 737–757. [Google Scholar] [CrossRef]
- Krane, R.J.; Jessee, J. Some detailed field measurements for a natural convection flow in a vertical square enclosure. Proc. First Asmejsme Therm. Eng. Jt. Conf. 1983, 1, 323–329. [Google Scholar]
ρ (kg·m–3) | β (K–1) | k (W·m–1·K–1) | c (J·kg–1·K–1) | σ (S·m–1) | |
---|---|---|---|---|---|
H2O | 997.1 | 21 × 10–5 | 0.613 | 4179 | 0.05 |
Al2O3 | 3970 | 0.85 × 10–5 | 25 | 765 | 1 × 10–10 |
Cu | 8933 | 1.67 × 10–5 | 400 | 383 | 5.96 × 107 |
Number of Nodes | Average Nusselt Number | Percentage of Error |
---|---|---|
55 × 55 | 2.4007 | - |
65 × 65 | 2.3601 | 1.6911 |
75 × 75 | 2.3523 | 0.317 |
85 × 85 | 2.3486 | 0.175 |
95 × 95 | 2.3456 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, M.M.; Sadri, M.; Sheremet, M.A. Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme. Nanomaterials 2021, 11, 2250. https://doi.org/10.3390/nano11092250
Rashidi MM, Sadri M, Sheremet MA. Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme. Nanomaterials. 2021; 11(9):2250. https://doi.org/10.3390/nano11092250
Chicago/Turabian StyleRashidi, M. M., M. Sadri, and M. A. Sheremet. 2021. "Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme" Nanomaterials 11, no. 9: 2250. https://doi.org/10.3390/nano11092250
APA StyleRashidi, M. M., Sadri, M., & Sheremet, M. A. (2021). Numerical Simulation of Hybrid Nanofluid Mixed Convection in a Lid-Driven Square Cavity with Magnetic Field Using High-Order Compact Scheme. Nanomaterials, 11(9), 2250. https://doi.org/10.3390/nano11092250