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Abstract: Temperature dependence of solid–liquid interfacial properties during crystal growth in
nickel was investigated by ensemble Kalman filter (EnKF)-based data assimilation, in which the
phase-field simulation was combined with atomic configurations of molecular dynamics (MD)
simulation. Negative temperature dependence was found in the solid–liquid interfacial energy, the
kinetic coefficient, and their anisotropy parameters from simultaneous estimation of four parameters.
On the other hand, it is difficult to obtain a concrete value for the anisotropy parameter of solid–liquid
interfacial energy since this factor is less influential for the MD simulation of crystal growth at high
undercooling temperatures. The present study is significant in shedding light on the high potential
of Bayesian data assimilation as a novel methodology of parameter estimation of practical materials
an out of equilibrium condition.

Keywords: data assimilation; ensemble Kalman filter; molecular dynamics simulation; phase-field
model; solid–liquid interface; Bayesian inference

1. Introduction

Phase-field simulation [1–4] is a powerful tool to deal with free boundary problems
and is widely applied to various investigations of microstructural evolution, including
solidification [1–6], grain growth [7–9], recrystallization [10], and solid-state phase transfor-
mation [11,12]. However, necessary parameters are incompletely available to reproduce
morphological transition with high precision in most cases because of difficulties with
experimental measurements. In particular, it is not straightforward to measure solid–liquid
interfacial properties in spite of many efforts over many years [13–15]. Therefore, various
molecular dynamics (MD) simulations have contributed to the estimation of solid–liquid
interfacial energy and mobility [16–21]. The capillary fluctuation method (CFM) [18,19]
is the most popular technique for estimation of solid–liquid interfacial energy, including
its anisotropy, and this technique has been applied to various metals and alloys [22–26].
Moreover, classical nucleation theory (CNT)-based techniques are often employed to esti-
mate the solid–liquid interfacial energy [20,27,28]. Interfacial parameters estimated from
MD simulations are widely employed for phase-field simulations in the framework of
multi-scale modeling [29,30].

However, interfacial parameters estimated from MD simulations are largely limited
to those of static interfaces in equilibrium conditions. For example, the capillary fluc-
tuation method is mostly applicable at melting point [18,19,28], where the solid–liquid
interface does not propagate. Moreover, temperature dependence of interfacial proper-
ties is mostly deduced in the CNT-based method under the assumption of temperature
dependence of thermodynamic parameters [27,28]. Therefore, it is not straightforward
to discuss the change in solid–liquid interfacial energy out of the equilibrium condition.
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Specifically, the temperature dependence of the solid–liquid interfacial energy is still under
discussion [31–39]. Several theoretical and computational studies have reported that the
solid–liquid interface increased with increasing temperature (i.e., the positive temperature
dependence) [31–38], whereas other literature has indicated that the temperature depen-
dence of solid–liquid interfacial energy was not monotonic [39,40]. Different temperature
dependencies for the interfacial energy of an unstable equilibrium (i.e., for nuclei) have
been theoretically predicted [41]. Recently, negative temperature dependence of solid–
liquid interfacial energy for Cu-Zr and Al-Sm alloys was reported [42–44]. Moreover, it
has been reported that temperature dependence is affected by the definition of simulation
parameters [45]. Therefore, it is essential to establish a reliable methodology to define the
solid–liquid interfacial properties.

Recently, we proposed a new approach for the estimation of interfacial properties
out of equilibrium (i.e., for moving interface below the melting point) on the basis of the
Bayesian inference theory [46] in the framework of data assimilation. Data assimilation [47]
is a mathematical description for combining numerical simulations with observation data
to estimate states and/or parameters of the system, as well as to enhance simulation
accuracy [46]. Data assimilation had achieved great success, mainly in geophysics, in
the early stage [48]. Recently, data assimilation has appeared in the field of materials
science [49–54], including grain growth [49,50], solidification [51,52], welding [53], and
fatigue crack propagation [54]. These studies shed light on the high potential of the data
assimilation approach for the estimation of unmeasurable states and/or parameters during
materials processing. In our previous study [46], solid–liquid interfacial energy, interfacial
mobility, and anisotropy parameters of body-centered cubic (bcc)-Fe were simultaneously
estimated through a data assimilation approach, in which microstructural data obtained
from the MD simulation were employed as observation data in conjunction with the phase-
field model as a simulation model. Although this approach is promising for parameter
estimation from observation data, further studies are required to confirm its versatility. To
this end, we expand this method to include the solid–liquid interfacial properties of nickel
as the most practical face-centered cubic (fcc) metals in the present study. Specifically, we
newly propose a method of utilizing multiple experiments of parameter estimation while
decreasing the target parameters to find less influential factors in the observation data
without any prior knowledge.

2. Phase-Field Model

In the phase-field model, morphology of microstructure is defined by spatial distri-
bution of the phase-field variable, φ. Here, φ = 1 and φ = −1 represent solids and liquids,
respectively, and the solid–liquid interface is defined by the continuous change between−1
and 1. In this study, a phase-field model for the isothermal solidification of pure metal [55]
is employed following our previous study [46], which is described as follows:

τ(n)
∂φ

∂t
= ∇[W(n)2∇φ] + ∑

i=x,y
∂i

(
|∇φ|2W(n)

∂W(n)
∂(∂iφ)

)
+ φ− φ3 − λ(1− φ2)2uint (1)

W(n) = W0ac(n) (2)

τ(n) =
W2

0
d0

β0ac(n)ak(n) (3)

Here, λ = a1W0/d0 is the coupling constant with a1 = 5
√

2/8, W0 is the interface thickness,
and d0 is the capillary length represented by d0 = σ0 (Tmcp/∆H2). β0 is the kinetic coefficient.
uint is the dimensionless undercooling at the interface defined as

uint =
∆T

∆H/cp
(4)
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where ∆T is the undercooling temperature, ∆H is the latent heat, and cp is the specific heat.
τ (n) and W (n) are relaxation time and interface width, respectively. ac (n) and ak (n) are
functions based on the interface orientation, respectively, and are expressed as follows.

ac(n) = (1− 3εc)

(
1 +

4εc

1− 3εc
(n4

x + n4
y)

)
(5)

ak(n) = (1 + 3εk)

(
1− 4εk

1 + 3εk
(n4

x + n4
y)

)
(6)

εc and εk represent the strength of anisotropy of interfacial energy and the kinetic coefficient.
(nx, ny) is the normal vector at the interface obtained by

n =
(
nx, ny

)
= −∇φ =

(
−∂φ

∂x
,−∂φ

∂y

)
(7)

3. Data Assimilation Based on Ensemble Kalman Filter
3.1. State Vector and System Model

Data assimilation is a method to combine a simulation model with observation data to
estimate states and/or parameters of the system [47]. In the simulation model, solution of
the governing equation is deterministically derived once initial and boundary conditions
are given. However, it is, in general, impossible for the simulation to reproduce phenomena
in nature precisely since there is a discrepancy between simulation results and true dynam-
ics due to the incompleteness of the simulation model, fluctuations in the phenomenon,
unknown boundary conditions, and so on. Therefore, uncertainty of time evolution of
states is considered by introducing state variables with a probability distribution, which is
called a system model. That is the basic concept of the data assimilation.

In the simulation, time evolution of a system is calculated by discretizing the governing
equation in time and space in general. Physical quantities are represented by values at the
representative points (mostly grid points). A column vector consisting of all representative
values εi,j on the grid point (i, j) at time t is called state vector xt:

xt ≡



ε0,0
ε0,1

...
εi,j

...
εm,n


(8)

Each element of the state vector is called a state variable. A system model, which
derives the state vector xt at time t from the state vector xt–1 at time t − 1, is defined as

xt = ft(xt−1, vt) (9)

where f t is the simulation model at time t and vt is the system noise representing the im-
perfectness of simulation model. The observation model, which represents the relationship
between observation data yt and the state vector xt at time t, is defined as

yt = ht(xt) + wt (10)

Observation noise wt includes measurement error and imperfectness of the simula-
tion model.
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3.2. Ensemble Kalman Filter (EnKF)

In data assimilation, state variables follow a probability density function. State vari-
ables are iteratively updated by integrating observation data into existing probability
density functions based on the Bayesian inference approach [47]. This procedure is called
filtering. There are various types of filtering approaches, including Kalman filter [56],
ensemble Kalman filter (EnKF) [57,58], and particle filter [59]. In the present study, EnKF
was employed. In the EnKF, many simulations with different parameters are performed in
parallel, which represents the probability distribution function. Figure 1 shows schematic
image of the calculation procedure of EnKF, which consists of cycles of prediction and
filtering steps. Multiple simulations (called ensembles) are independently performed in the
prediction step to obtain predictive state variables and parameters, which are then corrected
based on the observation data. Mathematical expression of the EnKF is summarized in
Appendix A. Expected values of parameters are obtained from the ensemble average at
each filtering step as sequential data with respect to time. The estimated value of each
parameter is then obtained by a time average of the expectation value in the time period
after the convergence.
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Figure 1. Schematic image of prediction and filtering processes at time t by ensemble Kalman
filter (EnKF).

3.3. Calculation Procedure of Data Assimilation

In this study, kinetic coefficient β0, interface energy σ0, and their anisotropy param-
eters εk and εc during the growth of a single crystal under isothermal conditions were
estimated by the EnKF procedure. The time evolution equation of the phase-field method
(Equation (1)) was used as ft in the system model (Equation (A1)), which describes the
time evolution of state vectors from t − 1 to t. Equation (1) was discretized in a standard
finite different scheme with second order accuracy in the space and it was solved in an
explicit Euler scheme. The calculation system was divided into 100 × 100 grid points. State
variable vector xt and observation vector yt are given as:

xt =



φ1,1
φ1,2
φ1,3
. . .

φ100,100
β0
εk
σ0
εc


(11)
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yt =



φ1,1
φ1,2
φ1,3

...
φ100,100


(12)

A total of 10,004 variables, including phase-field variables φi,j at all lattice points
(i, j) and four parameters to be estimated (β0, σ0, εk, εc), were used as state variables in
state variable vectors. The phase-field variables at each grid point in the observation data
were used as the observation variables in the observation vector. Tables 1 and 2 show
the parameters used for the phase-field simulation and for the EnKF data assimilation,
respectively. We created 100 phase-field simulations using independent state vectors and
optimized the simulations based on the observed data by alternately executing prediction
by the system model and filtering by Equation (A6). Equation (A1) was used as a system
model, where Equation (1) was employed as a nonlinear operator ft, and Equation (A2)
was used as an observation model. The observation noise wt was set as a random number
vector generated from Gaussian distribution according to covariance matrix Rφ which is an
identity matrix in the shape of 10,000 × 10,000. Observation matrix Ht in the observation
model is given as:

Ht =


1 0 · · · 0 0 · · · 0

0 1 · · · 0
... · · ·

...
...

...
. . .

...
... · · ·

...
0 0 · · · 1 0 · · · 0

 (13)

where the dimension of the matrix is 10,000 × 10,004. In this study, atomic configura-
tions from MD simulations of the growth of a single crystal of nickel were employed as
observation data, the preparation of which is described in the next section.

Table 1. Parameters for phase-field simulation.

Parameter Symbol Value

Grid size [m] ∆x 9.0 × 10−10

Interface thickness [m] W0 2.0∆x = 1.8 × 10−9

Latent heat [J/m3] ∆H 2.83966 × 109 [60]
Constant pressure specific

heat [J/(m3K)] cp 4.1578 × 106 [60]

Temperature [K] T 1455, 1480, 1505, 1530
Time step [s] ∆t 1.0 × 10−14

Table 2. Parameters for EnKF data assimilation.

Parameter Symbol Value

Ensemble number − 100
Filtering interval [s] − 1.0 × 10−11

Total time [s] − 3.0 × 10−10

System noise of φ Qφ 1.0 × 10−3

System noise of β0 Qβ0 1.0 × 10−6

System noise of εk Qεk 1.0 × 10−4

System noise of σ0 Qσ0 1.0 × 10−4

System noise of εc Qεc 1.0 × 10−5

Observation noise of φ Rφ 1.0

4. Molecular Dynamics Simulation for Observation Data

Prior to the data assimilation by EnKF, observation data were prepared by MD sim-
ulation. MD simulation was performed using large-scale atomic/molecular massively
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parallel simulator (LAMMPS) [61]. An embedded atom method (EAM) potential fitted
by Purja Pun and Mishin [62,63] was employed to obtain the interatomic potential for
nickel. Representative properties are listed in Supplementary Materials. In the present
study, nickel was employed as a representative face-centered cubic (fcc) metal. It is known
that interfacial anisotropy of fcc metals is generally larger than that of body-centered cubic
(bcc) metals [64]. Velocity–Verlet method was used to integrate the classical equation of
motion with a time step of 1.0 fs. Nose–Hoover thermostat and barostat [65,66] were
employed to control temperature and pressure. Note that there exists a large temperature
distribution in the calculation system during crystal growth due to the release of latent heat
with a conventional thermostat [46,67], even though average temperature of the system is
steadily controlled at the target temperature. Therefore, Langevin thermostat [68] was also
employed to keep the temperature uniform over all areas of the system, which is essential
for a precise comparison with the isothermal phase-field model.

Figure 2a shows the initial configuration of the calculation system for MD simulation,
which was prepared as follows. The liquid structure was prepared by heating an fcc
crystal of nickel consisting of 260 × 260 × 10 unit cells (2,704,000 atoms) at 2000 K with the
canonical (i.e., the number of atoms, volume, and temperature constant) ensemble for 10 ps.
Separately, a solid nucleus was prepared as an octagonal cutout from the fcc crystal with
four {100} and four {110} facets. The solid nucleus was then inserted into the liquid structure
while omitting all liquid atoms located within 2.5 Å from a solid atom to avoid unexpected
proximity between liquid and solid atoms at the interface. Energy minimization was
performed for the combined structure. The prepared structure was then relaxed at 1455,
1480, 1505, and 1530 K for 800 ps with the isobaric–isothermal (i.e., the number of atoms,
pressure, and temperature constant) ensemble and growth behavior of the solid nucleus
was investigated. Periodic boundary condition was employed in all directions. Note that
the melting point of Ni of this EAM potential was approximately 1680 K [60], which was
estimated by the convergence temperature technique [69,70]. That is, the temperature
1455, 1480, 1505, and 1530 K corresponds to the undercooling temperature ∆T = 225, 200,
175, and 150 K. Atomic configurations from MD simulation were analyzed by polyhedral
template matching (PTM) [71] implemented in the Open Visualization Tool (OVITO) [72]
to identify local atomic structures (i.e., solid or liquid).
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Figure 2. Molecular dynamics simulation of the growth of a single crystal of nickel from an un-
dercooled melt for observation data for data assimilation. (a) Initial configuration of simulation
system. (b) Snapshots of atomic configuration during the crystal growth from the undercooled melt
of ∆T = 200 K. Green and white atoms represent solid and liquid atoms, respectively, which were
identified by polyhedral template matching.
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Figure 2b shows snapshots of atomic configuration during growth of the solid nucleus
from the undercooled melt of ∆T = 200 K. The nucleus grew preferentially in <100>
directions and it became a rhombic-like structure, which means that fourfold symmetry
appeared. The obtained atomic configuration was not suitable for the observation data for
data assimilation with phase-field simulation. Therefore, atomic configuration from the MD
simulation was converted into a phase-field profile in line with our previous studies [73,74].
A cross-section (90 × 90 nm2) of the MD simulation cell was divided into two-dimensional
difference grids of 100 × 100. After assigning all atoms in the closest grid, the majority
of local atom configurations (i.e., solid or liquid) for assigned atoms were employed as
the phase-field variables of each grid point (solid: 1, liquid −1). Since this voxel structure
had no interfacial thickness, it was relaxed by solving the phase-field equation without the
curvature effect [73] to obtain the phase-field profile with diffuse interface. This conversion
procedure was carried out for the time series of atomic configuration of MD simulation
with 10 ps interval. Obtained phase-field profiles were employed as the observation data
for data assimilation. The observation data between 300 and 600 ps at 10 ps interval were
used in the data assimilation in following the sections to avoid the initial relaxation period
of solid nucleus in the MD simulation.

5. Results and Discussion

Now, parameter estimation of β0, σ0, εk, and εc from the dataset of MD simulation
at 1480 K was performed. Figure 3a shows time change of the estimated values of four
parameters. Estimated values of three parameters, β0, εk, and σ0 converged to certain
values with decreasing the variance. On the other hand, variance of the estimated value of
εc did not decrease during the estimation although the estimated value itself came close to
a certain value. It was expected that accuracy of estimation of εc was lower than those of
the other parameters.

Figure 3b shows snapshots of observation data from the MD simulation and represen-
tative results of the estimated structure. The crystal shape in the observation data and that
of the representative ensemble member were in good agreement. The same procedure was
performed for other datasets of MD simulations at 1455, 1480, and 1505 K. These results are
summarized in the Supplementary Materials. In general, results for the other temperatures
agreed with that of 1480 K. That is, estimated values of three parameters, β0, εk, and σ0
converged to certain values with decreasing variance, while accuracy of estimation of εc
was again low compared to the other parameters.

Figure 4 shows the temperature dependence of estimated values of four parameters
from observed data of 1455, 1480, 1505, and 1530 K. Estimated values of the last filtering
step are plotted in the figures. Estimated values of β0, εk, and σ0 decreased with increasing
temperature. The negative temperature dependence of σ0 agreed with our previous esti-
mation of the solid–liquid interfacial energy of bcc-Fe by EnKF [46] and some reports in
the literature [42–44]. Bayesian inference derived the most probable values of solid–liquid
interfacial energy at various temperatures from the results of the MD simulation without
any prior knowledge. It is guaranteed that the phase-field model employed in this study
reproduces the Gibbs–Thomson effect properly. Therefore, the parameters derived in this
study were appropriately within the range where the Gibbs–Thomson effect is valid. One
possible reason of discrepancy from some studies of positive temperature dependence
may be due to the effect of interface curvature [37,41]. However, it was difficult to find the
physical origin of negative temperature dependence directly from our result. The degree
of temperature dependence of β0 was smaller than that of σ0, Incidentally, β0 was nearly
independent of the temperature within the examined temperature range in our previous
study for bcc-Fe [46]. Moreover, it was difficult to find a clear trend in the temperature
dependence of εc since the accuracy of estimation of εc was lower, as described above.
The estimated values of σ0 ranged from 0.27 to 0.38 J/m2, which basically overlapped
experimental and theoretical values of σ0 for Ni at melting point (0.255 [13], 0.284 [75],
0.306 [76], and 0.325 J/m2 [14]). Regarding the kinetic coefficient, β0 took values between
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0.0035 and 0.0037 s/m. β0 can be converted into the interfacial mobility µ by the following
relation, µ = cp/β0∆H [55]. Using the values of cp and ∆H in Table 1, β0 = 0.0035 m/s was
converted into µ = 0.418 m/sK. This is within the range of reported values, 0.18–0.45 m/sK,
which were derived from MD simulations with planar solid–liquid interfaces of Ni [77]. It
is convincing that both the solid–liquid interfacial energy and interfacial mobility estimated
in this study were consistent with previous reported values from various methodologies.
On the other hand, temperature dependence of εk took the opposite trend to our previous
estimation of bcc-Fe, which was the positive temperature dependence. This difference
might come from the difference in the strength of anisotropy. That is, a strong anisotropy
appeared in the crystal structure of fcc-Ni in this study, whereas a weak anisotropy ap-
peared in that of bcc-Fe structure [46]. Further study is needed to discuss the anisotropy in
interfacial mobility.
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Figure 3. Estimation of four parameters (kinetic coefficient β0, interfacial energy σ0, and their
anisotropy parameters εk and εc) using observation data of molecular dynamics (MD) simulation at
1480 K. (a) Time changes of the estimated values of four parameters β0, εk, σ0, and εc. (b) Snapshots
of observation data from the MD simulation and representative results of the estimated structure.
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As described above, the accuracy of estimation of εc was low compared to the other
parameters in the four-parameter estimation. Therefore, εc was separately estimated
while fixing the other parameters at estimated values of β0 = 0.00275 [s/m], εk = 0.338,
and σ0 = 0.277 [J/m2]. For this one parameter estimation, state variable vector and the
observation matrix were modified as follows.

xt =



φ1,1
φ1,2
φ1,3
. . .

φ100,100
εc


(14)

Observation vector yt was the same as Equation (12). The observation matrix is given as:

Ht =


1 0 · · · 0 0

0 1 · · · 0
...

...
...

. . .
...

...
0 0 · · · 1 0

 (15)

where the dimension of the matrix is 10,000 × 10,001. Figure 5a shows the time change of
the estimated values of εc starting from different initial distributions at 1505 K. The other
conditions were the same as those of the four-parameter estimation. Two estimations did
not converge to the same value. That is, it was not successful in obtaining the converged
value of the estimation for εc, even from the procedure of one parameter estimation.

Furthermore, the effect of the anisotropy parameter on growth morphology of crystal
structure was examined by a phase-field simulation with fixed parameters. Three param-
eters were fixed to the values estimated above at 1455 K and three values of εc = 0.008,
0.010, and 0.012 were employed. The other parameters were the same as listed in Table 1.
Figure 5b shows the phase-field profile after 30,000 step simulations. The morphologies of
the structures did not change significantly with respect to εc. Therefore, it is considered
that the effect of anisotropy of solid–liquid interfacial energy on the crystal structure is very
small under the condition of large undercooling temperature. In that condition, growth
velocity is very fast and the anisotropy in interfacial mobility is dominant. In other words,
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it is difficult to estimate the parameters of a less influential factor in the framework of the
present study. The anisotropy parameter εc may be estimated when a near equilibrium
structure of the crystal is employed as observation data, which will be investigated in the
next step.
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6. Conclusions

In the present study, temperature dependence of solid–liquid interfacial properties
during the crystal growth was investigated by data assimilation with EnKF. It is the ad-
vantage of the methodology in this study that both the interfacial energy and mobility
out of equilibrium condition could be estimated simultaneously from Bayesian inference.
Negative temperature dependence was found in the solid–liquid interfacial energy, kinetic
coefficient, and anisotropy of kinetic coefficient from simultaneous estimations of four
parameters. However, the anisotropy parameter of the solid–liquid interfacial energy did
not converge during the four-parameter estimation and it did not converge even in the
subsequent single parameter estimation. Since the anisotropy parameter of the solid–liquid
interfacial energy did not affect the morphology of the crystal in the phase-field simulation
with fixed parameters, it is difficult to estimate the parameter for the less influential factors
in the observation phenomena. In other words, we can find less influential factors in the
observation data without any prior knowledge for target phenomena. In summary, it is
significant that this study showed the high potential of data assimilation as a methodol-
ogy of parameter estimation in the out of equilibrium condition. The overlap between
atomistic and continuum simulations, which was achieved owing to recent progress in high-
performance computing, creates new research concepts and fields. We call this cross-scale
modeling, as an evolution from conventional multi-scale modeling [30].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11092308/s1, Table S1. Representative properties of the EAM potential for Ni employed
in this study. Figure S1: Estimation of four parameters (kinetic coefficient β0, interfacial energy σ0,
and their anisotropy parameters, εk and εc) using observation data of molecular dynamics (MD)
simulation at 1455 K. Figure S2: Estimation of four parameters (kinetic coefficient β0, interfacial
energy σ0, and their anisotropy parameters, εk and εc) using observation data of molecular dynamics
(MD) simulation at 1505 K. Figure S3: Estimation of four parameters (kinetic coefficient β0, interfacial
energy σ0, and their anisotropy parameters, εk and εc) using observation data of molecular dynamics
(MD) simulation at 1530 K.

https://www.mdpi.com/article/10.3390/nano11092308/s1
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Appendix A. Mathematical Expression of Ensemble Kalman Filter

In the EnKF, system and observation models are defined as

xt = ft(xt−1) + vt (A1)

yt = Htxt + wt (A2)

wt ∼ N(0, Rt) (A3)

wt is given as Gaussian distribution with zero mean and a covariance matrix of Rt. In the
prediction step, time evolution of states vector is calculated as

x(i)t|t−1 = ft(x
(i)
t−1|t−1) + v(i)

t (A4)

where superscript (i) represents ith state in N ensembles. Subscript a|b represents the
state vector of time a, which is filtered at time b. Probability distribution function after the
prediction step is given as

p
(
xt
∣∣y1:t−1

) ∼= 1
N

N

∑
i=1

δ(xt − x(i)t|t−1) (A5)

where δ is the Dirac delta function, and y1:t−1 represents observational data from time t = 1
to time t − 1. In the filtering step, states vector is updated as [44,52]:

x(i)t|t = x(i)t|t−1 + Kt(yt + w̃(i)
t −Htx

(i)
t−1|t−1) (A6)

Kt is ensemble approximation of Kalman gain, given as

Kt = Vt|t−1HT
t (HtVt|t−1HT

t + Rt)
−1 (A7)

Vt|t−1 and Rt are sample covariance matrixes of state vector and observation error, given as:

Vt|t−1 =
1

N − 1
ΣN

i=1x̃(i)t|t−1(x̃
(i)
t|t−1)

T (A8)

x̃(i)t|t−1 = x(i)t|t−1 −
1
N

ΣN
i=1x(i)t|t−1 (A9)

Rt =
1

N − 1
ΣN

i=1w̃(i)
t (w̃(i)

t )T (A10)

w̃(i)
t = w(i)

t −
1
N

ΣN
i=1w(i)

t (A11)
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Probability distribution function after the filtering step is given as

p(xt|y1:t)
∼=

1
N

N

∑
i=1

δ(xt − x(i)t|t ) (A12)
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