Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Optical Characterization
3. Results and Discussion
3.1. Fabrication Process. Sample Characteristics
3.2. Optical Response of Filled Polygonal Assemblies
3.3. Scaling Effects on SHG Enhancement
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ray, P.C. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem. Rev. 2010, 110, 5332–5365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Titchener, J.G.; Kruk, S.S.; Xu, L.; Chung, H.-P.; Parry, M.; Kravchenko, I.I.; Che, Y.-H.; Solntsev, S.S.; Kivshar, Y.S.; et al. Quantum metasurface for multiphoton interference and state reconstruction. Science 2018, 361, 1104–1108. [Google Scholar] [CrossRef] [Green Version]
- Butet, J.; Russier-Antoine, I.; Jonin, C.; Lascoux, N.; Benichou, E.; Brevet, P.F. Sensing with multipolar second harmonic generation from spherical metallic nanoparticles. Nano Lett. 2012, 12, 1697–1701. [Google Scholar] [CrossRef] [PubMed]
- Bonacina, L.; Brevet, P.F.; Finazzi, M.; Celebrano, M. Harmonic generation at the nanoscale. J. Appl. Phys. 2020, 127, 230901. [Google Scholar] [CrossRef]
- Kauranen, M.; Zayats, A. Nonlinear plasmonics. Nat. Photonics 2012, 6, 737–748. [Google Scholar] [CrossRef]
- Butet, J.; Brevet, P.F.; Martin, O.J.F. Optical second harmonic generation in plasmonic nanostructures: From fundamental principles to advanced application. ACS Nano 2015, 9, 10545–10562. [Google Scholar] [CrossRef]
- Celebrano, M.; Wu, X.F.; Baselli, M.; Großmann, S.; Biagioni, P.; Locatelli, A.; De Angelis, C.; Cerullo, G.; Osellame, R.; Hecht, B.; et al. Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nat. Nanotechnol. 2015, 10, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Weber, N.; Protte, M.; Walter, F.; Georgi, P.; Zentgraf, T.; Meier, C. Double resonant plasmonic nanoantennas for efficient second harmonic generation in zinc oxide. Phys. Rev. B 2017, 95, 205307. [Google Scholar] [CrossRef]
- Thyagarajan, K.; Rivier, S.; Lovera, A.; Martin, O.J.F. Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt. Express 2012, 12, 12860–12865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.Y.; Butet, J.; Yan, C.; Bernasconi, G.D.; Martin, O.J.F. Enhancement mechanisms of the second harmonic generation from double resonant aluminum nanostructures. ACS Photonics 2017, 4, 1522–1530. [Google Scholar] [CrossRef]
- Pu, Y.; Grange, R.; Hsieh, C.L.; Psaltis, D. Nonlinear Optical Properties of Core-Shell Nanocavities for Enhanced Second-Harmonic Generation. Phys. Rev. Lett. 2010, 104, 207402. [Google Scholar] [CrossRef] [PubMed]
- Richter, J.; Steinbrück, A.; Zilk, M.; Sergeyev, A.; Pertsch, T.; Tünnermann, A.; Grange, R. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects. Nanoscale 2014, 6, 5200–5207. [Google Scholar] [CrossRef]
- Chauvet, N.; Maeliss, E.; Jeannin, M.; Laurent, G.; Huant, S.; Gacoin, T.; Dantelle, G.; Nogues, G.; Bachelier, G. Hybrid KTP–Plasmonic Nanostructures for Enhanced Nonlinear Optics at the Nanoscale. ACS Photonics 2020, 7, 665–672. [Google Scholar] [CrossRef]
- Metzger, B.; Hentschel, M.; Schumacher, T.; Lippitz, M.; Ye, X.; Murray, C.B.; Knabe, B.; Buse, K.; Giessen, H. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 2014, 14, 2867–2872. [Google Scholar] [CrossRef] [PubMed]
- Linnenbank, H.; Grynko, Y.; Forstner, J.; Linden, S. Second harmonic generation spectroscopy on hybrid plasmonic/dielectric nanoantennas. Light Sci. Appl. 2016, 5, e16013. [Google Scholar] [CrossRef] [Green Version]
- Timpu, F.; Hendricks, N.R.; Petrov, M.; Ni, S.; Renaut, C.; Wolf, H.; Isa, L.; Kivshar, Y.; Grange, R. Enhanced Second-Harmonic Generation from Sequential Capillarity-Assisted Particle Assembly of Hybrid Nanodimers. Nano Lett. 2017, 17, 5381–5388. [Google Scholar] [CrossRef]
- Lehr, D.; Reinhold, J.; Thiele, I.; Hartung, H.; Dietrich, K.; Menzel, C.; Pertsch, T.; Kley, E.-B.; Tünnermann, A. Enhancing Second Harmonic Generation in Gold Nanoring Resonators Filled with Lithium Niobate. Nano Lett. 2015, 15, 1025–1030. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.J.; Li, Y.; Kang, M.; He, X.; Halas, N.J.; Nordlander, P.; Zhang, S.; Xu, H. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions. Nano Lett. 2019, 19, 3838–3845. [Google Scholar] [CrossRef]
- Li, Z.; Corbett, B.; Gocalinska, A.; Pelucchi, E.; Chen, W.; Ryan, K.M.; Khan, P.; Silien, C.; Xu, H.; Liu, N. Direct Visualization of Phase-Matched Efficient Second Harmonic and Broadband Sum Frequency Generation in Hybrid Plasmonic Nanostructures. Light Sci. Appl. 2020, 9, 180. [Google Scholar] [CrossRef]
- Yraola, E.; Molina, P.; Plaza, J.L.; Ramírez, M.O.; Bausá, L.E. Spontaneous emission and nonlinear response enhancement by silver nanoparticles in a Nd3+doped periodically poled LiNbO3 laser crystal. Adv. Mater. 2013, 25, 910–915. [Google Scholar] [CrossRef]
- Gomez-Tornero, A.; Tserkezis, C.; Mateos, L.; Bausá, L.E.; Ramírez, M.O. 2D Arrays of Hexagonal Plasmonic Necklaces for Enhanced Second Harmonic Generation. Adv. Mater. 2017, 29, 160527. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M.O.; Molina, P.; Gómez-Tornero, A.; Hernández-Pinilla, D.; Sánchez-García, L.; Carretero, S.; Bausá, L.E. Hybrid Plasmonic–Ferroelectric Architectures for Lasing and SHG Processes at the Nanoscale. Adv. Mater. 2019, 31, 1901428. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-García, L.; Ramírez, M.O.; Molina, P.; Gallego-Gómez, F.; Mateos, L.; Yraola, E.; de las Heras, C.; Bausá, L.E. Blue SHG Enhancement by Silver Nanocubes Photochemically Prepared on RbTiOPO4 Ferroelectric Crystal. Adv. Mater. 2014, 26, 6447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-García, L.; Tserkezis, C.; Ramírez, M.O.; Molina, P.; Carvajal, J.J.; Aguiló, M.; Díaz, F.; Aizpurua, L.; Bausá, L.E. Plasmonic enhancement of second harmonic generation from nonlinear RbTiOPO4 crystals by silver nanoaggregates. Opt. Express 2016, 24, 8491–8500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Bo, F.; Cheng, Y.; Xu, J. Advances in On-Chip Photonic Devices Based on Lithium Niobate on Insulator. Photonics Res. 2020, 8, 1910–1936. [Google Scholar] [CrossRef]
- Boes, A.; Corcoran, B.; Chang, L.; Bowers, J.; Mitchell, A. Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits. Laser Photonics Rev. 2018, 12, 1700256. [Google Scholar] [CrossRef]
- Sun, D.; Zhang, Y.; Wang, D.; Song, W.; Liu, X.; Pang, J.; Geng, D.; Sang, Y.; Liu, H. Microstructure and Domain Engineering of Lithium Niobate Crystal Films for Integrated Photonic Applications. Light Sci. Appl. 2020, 9, 197. [Google Scholar] [CrossRef]
- Gürdal, E.; Horneber, A.; Meixner, A.J.; Kern, D.P.; Zhang, D.; Fleischer, M. Enhancement of the second harmonic signal of nonlinear crystals by a single metal nanoantenna. Nanoscale 2020, 12, 23105–23115. [Google Scholar] [CrossRef]
- Ren, M.; Liu, S.; Wang, B.; Chen, B.; Jiafan, L.; Yuan, Z. Gian enhancement of second harmonic by engineering double plasmonic resonances at nanoscale. Opt. Express 2014, 22, 28653–28661. [Google Scholar] [CrossRef]
- Carnio, B.N.; Elezzabi, A.Y. Second harmonic generation in metal-LiNbO3-metal and LiNbO3 hybrid-plasmonic waveguides. Opt. Express 2018, 26, 26283–26291. [Google Scholar] [CrossRef]
- Mateos, L.; Bausá, L.E.; Ramírez, M.O. Two Dimensional Ferroelectric Domain Patterns in Yb3+ Optically Active LiNbO3 Fabricated By Direct Electron Beam Writing. Appl. Phys. Lett. 2013, 102, 042910. [Google Scholar] [CrossRef] [Green Version]
- Mateos, L.; Bausá, L.E.; Ramírez, M.O. Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing. Opt. Mater. Express 2014, 4, 1077–1087. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A.; Alvarez, T.; Lei, X.J.; Hu, Z.H.; Shao, R.; Ferris, J.H. Ferroelectric Lithography of Multicomponent Nanostructures. Adv. Mater. 2004, 16, 795–799. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Bonnell, D.A.; Alvarez, T.; Lei, X.; Hu, Z.; Ferris, J.H.; Zhang, Q.; Dunn, S. Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures. Nano Lett. 2002, 2, 589–593. [Google Scholar] [CrossRef]
- Sun, Y.; Nemanich, R.J. Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence. J. Appl. Phys. 2011, 109, 104302. [Google Scholar] [CrossRef]
- Gómez-Tornero, A.; Palacios, P.; Molina, P.; Carretero-Palacios, S.; Bausá, L.E.; Ramírez, M.O. Enhancing Nonlinear Interactions by the Superposition of Plasmonic Lattices on χ(2)-Nonlinear Photonic Crystals. ACS Photonics 2021, 8, 2529–2537. [Google Scholar] [CrossRef]
- Gómez-Tornero, A.; Tserkezis, C.; Robledo-Moreno, J.; Bausá, L.E.; Ramírez, M.O. Field Enhancement and Spectral Features of Hexagonal Necklaces of Silver Nanoparticles for Enhanced Nonlinear Optical Processes. Opt. Express 2018, 26, 22394–22404. [Google Scholar] [CrossRef]
- Taylor, R.W.; Esteban, R.; Mahajan, S.; Aizpurua, J.; Baumberg, J.J. Optimizing SERS from Gold Nanoparticle Clusters: Addressing the Near Field by an Embedded Chain Plasmon Model. J. Phys. Chem. C 2016, 120, 10512–10522. [Google Scholar] [CrossRef] [Green Version]
- Esteban, R.; Taylor, R.W.; Baumberg, J.J.; Aizpurua, J. How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles. Langmuir 2012, 28, 8881–8890. [Google Scholar] [CrossRef] [PubMed]
- Tserkezis, C.; Taylor, R.W.; Beitner, J.; Esteban, R.; Baumberg, J.J.; Aizpurua, J. Optical response of metallic nanoparticle heteroaggregates with subnanometric gaps. Part. Part. Syst. Charact. 2014, 31, 152–160. [Google Scholar] [CrossRef]
- Hanske, C.; Tebbe, M.; Kuttner, C.; Bieber, V.; Tsukruk, V.V.; Chanana, M.; Konig, T.A.F.; Fery, A. Strongly Coupled Plasmonic Modes on Macroscopic Areas via Template-Assisted Colloidal Self-Assembly. Nano Lett. 2014, 14, 6863–6871. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.W.; Lee, T.; Scherman, O.A.; Esteban, R.; Aizpurua, J.; Huang, F.; Baumberg, J.J.; Mahaja, S. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies using Cucurbit[n]uril “Glue”. ACS Nano 2011, 5, 3878–3887. [Google Scholar] [CrossRef]
- Molina, P.; Yraola, E.; Ramírez, M.O.; Tserkezis, C.; Plaza, J.L.; Aizpurua, J.; Bravo-Abad, J.; Bausá, L.E. Plasmon-Assisted Nd3+-based Solid-State Nanolaser. Nano Lett. 2016, 16, 895–899. [Google Scholar] [CrossRef] [Green Version]
- Earp, A.A.; Smith, G.B. Evolution of plasmonic response in growing silver thin films with pre-percolation non-local conduction and emittance drop. J. Phys. D Appl. Phys. 2011, 44, 255102. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-García, L.; Ramírez, M.O.; Tserkezis, C.; Sole, R.; Carvajal, J.J.; Aguiló, M.; Díaz, F.; Bausá, L.E. Anisotropic enhancement of Yb3+ luminescence by disordered plasmonic networks self-assembled on RbTiOPO4 ferroelectric crystal. Nanoscale 2017, 9, 16166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalaev, M.; Ying, C.X.; Zhang, Z.; Cao, H. Coexistence of Localized and Delocalized Surface Plasmon Modes in Percolating Metal Films. Phys. Rev. Lett. 2006, 97, 206103. [Google Scholar]
- Greybush, N.J.; Liberal, I.; Malassis, L.; Kikkawa, J.M.; Engheta, N.; Murray, C.B.; Kagan, C.R. Plasmon Resonances in Self-Assembled Two-Dimensional Au Nanocrystal Metamolecules. ACS Nano 2017, 11, 2917–2927. [Google Scholar] [CrossRef]
- Lee, S.; Sim, K.; Moon, S.; Choi, J.; Jeon, Y.; Nam, J.; Park, S.-J. Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. Adv. Mater. 2021, 2007668. [Google Scholar] [CrossRef] [PubMed]
- Borah, R.; Verbruggen, W. Coupled Plasmon Modes in 2D Gold Nanoparticle Clusters and Their Effect on Local Temperature Control. J. Phys. Chem. C 2019, 123, 30594–30603. [Google Scholar] [CrossRef]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Phan, H.T.; Heiderscheit, T.S.; Haes, A.J. Understanding Time-Dependent Surface-Enhanced Raman Scattering from Gold Nanosphere Aggregates Using Collision Theory. J. Phys. Chem. C 2020, 124, 14287–14296. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Tang, M.; Wang, F.L.; Xiao, Z.Z.; Xiao, J.L.; Huang, Y.Z. Whispering–gallery mode hexagonal micro-/nanocavity lasers. Photonics Res. 2019, 7, 594–607. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Tornero, A.; Bausá, L.E.; Ramírez, M.O. Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements. Nanomaterials 2021, 11, 2394. https://doi.org/10.3390/nano11092394
Gómez-Tornero A, Bausá LE, Ramírez MO. Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements. Nanomaterials. 2021; 11(9):2394. https://doi.org/10.3390/nano11092394
Chicago/Turabian StyleGómez-Tornero, Alejandro, Luisa E. Bausá, and Mariola O. Ramírez. 2021. "Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements" Nanomaterials 11, no. 9: 2394. https://doi.org/10.3390/nano11092394
APA StyleGómez-Tornero, A., Bausá, L. E., & Ramírez, M. O. (2021). Giant Second Harmonic Generation Enhancement by Ag Nanoparticles Compactly Distributed on Hexagonal Arrangements. Nanomaterials, 11(9), 2394. https://doi.org/10.3390/nano11092394