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Abstract: Metal nanoclusters have gained prominence in nanomaterials sciences, owing to their
atomic precision, structural regularity, and unique chemical composition. Additionally, the ligands
stabilizing the clusters provide great opportunities for linking the clusters in higher order dimensions,
eventually leading to the formation of a repertoire of nanoarchitectures. This makes the chemistry of
atomic clusters worth exploring. In this mini review, we aim to focus on the chemistry of nanoclusters.
Firstly, we summarize the important strategies developed so far for the synthesis of atomic clusters.
For each synthetic strategy, we highlight the chemistry governing the formation of nanoclusters. Next,
we discuss the key techniques in the purification and separation of nanoclusters, as the chemical
purity of clusters is deemed important for their further chemical processing. Thereafter which we
provide an account of the chemical reactions of nanoclusters. Then, we summarize the chemical routes
to the spatial organization of atomic clusters, highlighting the importance of assembly formation
from an application point of view. Finally, we raise some fundamentally important questions with
regard to the chemistry of atomic clusters, which, if addressed, may broaden the scope of research
pertaining to atomic clusters.
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1. Introduction

Continuous efforts to achieve superior properties of assembled nanoscale particles
have been limited due to the resulting poly-dispersity associated with colloidal routes of
synthesis [1]. A solution to this limitation seems to have emerged from the advent of ligand-
protected atomic clusters (often called nanoclusters or quantum clusters) [2,3]. In this
case, ligands that stabilize the clusters are highly reactive in nature and thus provide facile
avenue for “ligand mediated spatial organization of nanoclusters” [4–6]. Furthermore, the
most important characteristics of atomic nanoclusters, which distinguish them from other
classes of nanomaterials, is their structural integrity [7]. Notwithstanding the significant
advancements achieved towards designing chemical routes to a synthesis of nanoclusters,
the issue of poly-dispersity—namely a collection of different ligand protected atomic cluster
sizes—remains a challenge to date. Thus, unlike other forms of nanoscale particles, a
dispersion of atomic clusters typically constitutes of structurally and chemically related
species. For example, a dispersion of nanoclusters may be purified following conventional
separation techniques such as gel electrophoresis, size exclusion based ultrafiltration and
normal and reverse phase chromatography [8]. Then, the precise chemical formula of the
nanoclusters may be deciphered using mass spectrometry [9]. This has facilitated the use
of nanoclusters in a plethora of applications such as bio diagnostics, therapeutics, catalysis
and sensing, to mention a few of their uses [10–16].
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Additionally, it has recently been demonstrated that the assembly of nanoclusters
features superior physicochemical properties vis à vis their non-assembled analogues. This
is primarily attributed to the collective properties of constituent nanoclusters in an “as-
sembly” [17]. Thus, as evidenced by the recent upsurge of studies in the literature, [17–19]
much attention is being paid towards the fabrication of complex nanostructures by using
nanoclusters as building blocks. To this end, several strategies have been developed for the
systematic organization of nanoclusters. For example, a straightforward method for assem-
bling atomic clusters into assemblies has been pursued, based on the interaction among
the ligands stabilizing the nanoclusters [20]. Similarly, the use of biological molecules
such as DNA and proteins as templates for the organization of nanoclusters have also
been reported. Notably, supramolecular interactions are also known to be instrumental
in the formation of assembly of nanoclusters [21,22]. In this regard, the use of principles
of coordination chemistry has been recognized as a possible route for the deterministic
ordering of nanoclusters [21]. Formed assemblies of nanoclusters have been demonstrated
to have enhanced stability, advanced property and superior application potential vis-a-vis
the non-assembled clusters [23].

In this mini review, we aim to focus on the developments made so far with regard
to the synthesis and applications of nanoclusters, their chemical reactions and eventual
formation of their hierarchical assemblies endowed with superior application potential.
This is deemed important to pave the way for the deterministic fabrication of tailor-made
assemblies with desired functionalities. The current account is envisioned to not only
enrich the scientific community with fundamental insights but also facilitate the advent of
advanced nanostructures with controllable chemistry and tuneable properties. First, we
focus on the plethora of strategies developed for synthesizing atomically precise clusters
comprised of various metal atoms, stabilized by a definite number of ligands. To this end,
we provide insight to the mechanism of formation of nanoclusters and thereby highlight
the critical roles played by ligands in cluster synthesis. The purification, separation and
isolation of nanoclusters is a necessary step between isolated clusters towards controlled
self-assembly. We thus emphasise the importance of standard techniques that allow for the
thorough purification of such clusters. Next, we discuss the rational strategies developed
so far to add functionality to these nanoclusters, based on the principles of coordination
and supramolecular chemistry [24]. The added functionality allows the nanoclusters to
arrange into higher dimensional structures with superior physicochemical properties vis à
vis in comparison to the non-assembled clusters. Thereafter, we justify the importance of
assembly formation.

2. Ligand-Protected Metal Nanoclusters. Comparing Gold, Silver, Copper and Nickel

There has been a significant surge in efforts to synthesize atomically precise nanoclus-
ters. The most explored metal nanocluster to date is that of gold. Gold is considered the
noblest metal, and gold clusters are usually more stable than other noble metal clusters [25].
Gold nanoclusters have been synthesized using a multitude of stabilizers, including den-
drimers, proteins, DNA, peptides and polymers. In this regard, Dickson et al. synthesized
dendrimer-protected Au nanoclusters exhibiting a quantum yield as high as 40% [26].
Polyamido amine (4th generation) were used for the reduction and stabilization of Au8
nanoclusters (Figure 1a) [26]. On the other hand, natural bio macromolecules such as
protein-stabilized gold nanoclusters have been found to be biocompatible [27]. Proteins
such as Bovine serum albumin (BSA) and Human serum albumin (HSA) have been widely
used for the stabilization of a gold nanocluster, comprising 25 Au atoms featuring red lumi-
nescence (Figure 1b) [28,29]. Other than these proteins, lysozymes, horseradish peroxidase
and insulin have also been reported to stabilize gold nanoclusters [30–32]. DNA-templated
gold nanoclusters have also been reported to feature bright luminescence, photo-stability
and biocompatibility [33,34]. In addition, small molecules such as tripeptides (glutathione)
(Figure 1c), [35–37] mercaptopropionic acid (MPA), [38] mercaptobenzoic acid (MBA), [39]
penicillamine, [40] amino acids [41,42], etc., have been used to produce atomically precise
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gold nanoclusters. Interestingly, microorganisms such as bacteria have also been used
as templates for the synthesis of Au NCs [43]. The key to the synthesis of gold nan-
oclusters is the exploitation of soft–soft interactions between gold and thiolated ligands,
although nitrogenous ligands are also reported to be active in the stabilization of Au NCs
in some cases.
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Figure 1. (a): Excitation and emission spectra of Au8 nanodots. Inset shows digital photograph of
Au8 nanodots, upon excitation at 366 nm. Reprinted with permission from [26]. Copyright 2003
American Chemical Society. (b) (A) Digital photographs of BSA stabilized Au NCs and control BSA
(solution and powder) under visible and UV light. (B) Absorption and emission spectra of BSA
stabilized Au NCs and control BSA. Reprinted with permission from [28]. Copyright 2009 American
Chemical Society. (c1) Electrospray ionization (ESI) mass spectrum of Au10 clusters stabilized by
glutathione. (c2) Experimental and simulated X-ray diffraction patterns of various isomers of Au10

clusters stabilized by glutathione. Reprinted with permission from [35]. Copyright 2017 American
Chemical Society.

The synthesis of silver nanoclusters has always been considered as more challenging
than the synthesis of their gold analogues. This is due to the greater tendency of zero-valent
silver to become oxidized to their +1 oxidation state. Thus, much effort has been invested in
the synthesis of a well-defined Ag nanocluster and in exploration of their properties at a sub-
nanometer scale. Of all the strategies involved in the synthesis of Ag nanoclusters, the case
of chemical etching of Ag nanoparticles has been recognized as the most popular one. This
is largely due to the possibility of controlled Ag nanoclusters in mild etching environment.
In this regard there are several reports where Ag NPs protected by mercapto-succininc acid
(MSA) were etched to produce Ag8 and Ag7 NCs, which could further be separated using
gel electrophoresis [44]. Additionally, red luminescent Ag NCs, comprising 38 Ag atoms,
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could be produced by etching off Ag NPs capped by citrate ions [45]. Another effective
strategy employed for the synthesis of Ag NCs is based on ligand exchange. To this end,
glutathione (SG) molecules stabilizing Ag35 NCs were exchanged with 4 fluorothiophenol
to produce Ag44 NCs, stabilized by the latter ligand [46]. Notwithstanding the advantages
of the above mentioned synthetic strategies the most effective method to obtain Ag NCs is
through direct reduction of silver salts.

Out of all classes of atomic clusters, copper-based nanoclusters were once considered
to be extremely challenging. This is due to the reactive nature of copper, leading to the easy
transformation of Cu (0) to Cu (II) in the presence of aerial oxygen. In this regard, in 2011,
Chen and coworkers successfully reported the synthesis of copper nanoclusters comprising
8 Cu atoms stabilized by four thiolated ligands [47]. The route to the synthesis of the
aforementioned clusters was based on mixing of Cu(NO3)2 and [N(oct)4][Br] in ethanol, fol-
lowing further treatment with 2-mercato-5N propyl pyrimidyl and reduction with NaBH4.
This yielded atomically precise Cu clusters with near homogeneity in composition. On the
other hand, highly luminescent Cu nanoclusters were synthesized using a ‘green’ approach,
with protein as template. Specifically, copper precursors were incubated and reduced in the
presence of proteins such as lysozymes, which eventually led to the formation of highly flu-
orescent Cu nanoclusters with a composition ranging from Cu2 to Cu9 (Figure 2A) [48]. Cu
nanoclusters embedded in BSA [49] and HAS [50] have also been synthesized in an allied
fashion. Additionally, other proteins, such as papain, [51] transferrin [52] and trypsin [53]
have been used for the synthesis of Cu nanoclusters. A common feature that is typical with
regard to the use of proteins in stabilizing Cu nanoclusters is that the synthetic procedure
is associated with mixing the metal precursor with protein at ambient temperatures and
with a basic pH. The use of an additional reducing agent such as ascorbic acid, NaBH4
is reported to have varied from procedure to procedure. DNA has been used to stabilize
Cu nanoclusters featuring bright luminescence [54]. Moreover, small peptides such as
L-glutathione, have been used to stabilize ultra-small Cu nanoclusters exhibiting a quan-
tum yield as high as 8.6%. However, by using the same stabilizer, but varying the ratio
of metal precursor to stabilizer Cu nanoclusters exhibiting blue luminescence have also
been synthesized [55]. Other typical thiolated molecules such as thiosalicylic acid, [56]
cysteine, [57] dihydrolipoic acid [58] and mercaptobenzoic acid [59] have been employed
to synthesize Cu nanoclusters. When using thiolated molecules for the synthesis of copper
nanoclusters, the stabilizer forms a complex with Cu(I) and the latter is reduced to Cu(0),
either with the aid of additional reducing agents or by the thiol groups of the stabilizers
themselves (Figure 2B). Copper nanoclusters exhibiting temporal, chemical and photo
stability have been found suitable for applications ranging from catalysis, fluorescence
based sensing of metal ions, disease markers, contaminants, pH, temperature, as vehicles
for drug delivery, markers for cell labelling and as electrocatalysts, to name a few [60].

With regard to synthesis of Ni nanoclusters, the typical approach was to use carbonyl
ligands as stabilizers. For example, [Ni12-x(PMe)x(CO)24-3x]2- were synthesized using car-
bonyl protection [61]. However, carbonyl stabilized Ni clusters are typically negatively
charged and thus counter cations are essential for their neutralization. Additionally, post
synthetic functionalization of the synthesized clusters is difficult due to the presence of
strongly bound carbonyl ligands. Thus, the advent of protected thiolate was deemed impor-
tant for widening the chemistry of Ni based nanoclusters. To this end, Xu et al. performed
a chemical reaction between NiCl2.6H2O and PhCH2CH2SH in a mixture of THF and
methanol followed by reduction with aqueous NaBH4 to obtain Ni39 and Ni41 clusters [62].
Similarly, Ni4(PET)8 and Ni6(PET)12 [PET = phenylethane thiol] clusters were synthesized
based on the ligand exchange strategy between glutathione-nickel complex and PET. The
formed clusters were found to be effective electrocatalysts for water oxidation [63]. A table
summarizing the synthetic details and properties of various nanoclusters is provided below
(Table 1).
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Table 1. Summary of the synthetic details and properties of various nanoclusters (presented in this review).

Metal Stabilizer No. of Metal Atoms Comprising
the Clusters Emission Color Reference

gold Polyamido amine
(4th generation) 8 blue 26

gold BSA 25 red 28

gold HSA 25 red 29

gold DNA 7 red 33

gold glutathione 10 Non-emissive 35

gold MPA + chitosan 20 orange-red
(pH dependent) 38

gold histidine 10 blue 41

gold MPA + bacteria Not determined white 43

silver produced by Ag NPs protected
by mercapto-succininc acid 8, 7 red, blue green 44

silver produced by etching of Ag NPs
capped by citrate ions 38 red 45

copper lysozymes 2–9 blue 48

copper glutathione 15 blue 55

copper cysteine 4 cyan 57

copper dihydrolipoic acid 4 red 58

nickel phenylethanethiol 4, 6 Not reported 63
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3. Purification, Separation, and Isolation of Nanoclusters

As synthesized NCs are often associated with the presence of NCs with varying
compositions, namely, a dispersion of atomic clusters typically constitutes of structurally
and chemically related species. This is, however, not desirable, as the properties of NCs are
known to vary as a function of the number of atoms constituting the clusters, the structure
of the overall clusters and the ligands (number density per cluster and nature) stabilizing
the clusters. For example, clusters composed of fewer number of atoms are known to
feature luminescence at lower wavelengths as opposed to clusters comprising of greater
number of atoms. Similarly, physical properties of clusters such as solubility is dictated
by the polarity of the ligands. Additionally, the catalytic activity of nanoclusters is highly
dependent on the number density of the ligands stabilizing the clusters. Additionally,
the application potential of nanoclusters becomes attenuated owing to the presence of
unbound ligands in the reaction mixture. Thus, identifying and deciphering the chemical
composition of a particular cluster (amongst a mixture of clusters produced synthetically)
is of key importance to understand and modulate their application potential. In order to
address this issue, several techniques have emerged for the purification of synthesized
nanoclusters. Amongst the several purification techniques employed for the isolation of
metal nanoclusters, the most common is the metal ion induced precipitation of nanoclusters.
In this regard, Guan et al. successfully isolated BSA-stabilized Au25 NCs from unreacted
BSA through Zn ion assisted precipitation of the former. In an allied vein, the pH of the
reaction mixture containing the NCs can be adjusted to cause the precipitation of NCs. This
method has also been used for the purification of BSA-stabilized Au NCs [64]. Precisely, the
pH of the solution containing BSA stabilized Au NCs was reduced to reach the isoelectric
point of BSA wherein the conformation of BSA was altered, leading to the agglomeration
and eventual precipitation of BSA Au NCs. Similarly, methionine-protected Au NCs were
separated following a reduction of the pH, leading to the relaxation of charge repulsion of
the ligands, consequential aggregation of isolation of the NCs. Furthermore, the tuning
of the solvent polarity of the reaction mixture containing the NCs has also been used for
purification of NCs. For example, Galchenko et al. could selectively precipitate Au25
NCs by varying the ratio of methanol to water [65]. Another well-known strategy for the
removal of unbound ligands is through the addition of ionic salts. This is because in the
presence of additional ions, the zeta potential of the ligands stabilizing the NCs becomes
reduced, which further led to the neutralization of charge and consequential aggregation
of NCs. For example, mercaptoundecanoic acid (MUA) protected Au NCs are reported
to aggregate and separate in presence of NaCl [66]. Thus, the use of external agents for
the separation of NCs from unbound ligands, has emerged as a convenient customizable,
rapid and cost effective technique for purification of NCs.

Apart from the aforementioned techniques, the isolation of NCs based on ‘size’ has also
been widely practiced. For example, glutathione-protected Au NCs were separated from
unreacted precursors using dialysis membranes with a cutoff of 3.5 k molecular weight [67].
The principal behind this technique is that glutathione molecules having smaller size vis
à vis glutathione stabilized Au NCs could feasibly pass through the dialysis membrane,
leaving the latter behind. Similarly, lipoic acid stabilized gold nanoclusters were purified
from unreacted lipoic using a membrane of 3 kDa cutoff [68]. Furthermore, 14 kDa cutoff
membranes were used to remove unreacted reactants from polyvinylpyrrolidone stabilized
Cu NCs [69].

In order to isolate NCs of a particular composition from analogous NCs of varying
composition, chromatographic methods have been sought after. The principle behind the
technique is that clusters with polarity react with the stationary phase to a greater extent
as compared to the less polar NCs. This would lead to faster elution of the non-polar
NCs and greater retention of the polar NCs in the stationary phase. Using this principle
Au25 NCs stabilized by phenyl ethane thiol were separated from Au25 stabilized by butane
thiolate owing to difference of polarity of the respective ligands [70]. Glutathione stabilized
clusters of varying composition such as Au10(SG)10, Au15(SG)13, Au18(SG)14, Au22(SG)16,
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Au25(SG)18, Au29(SG)20, Au33(SG)22, Au39(SG)24 were separated using the principle of
reversed phase chromatography [71].

Electrophoretic techniques that involve separation, based on the differential mobility
of charged species under the influence of an external electric field, have also been utilized
for the separation of NCs of varying sizes. To this end, NCs with size difference of only
0.5 nm could be separated using gel electrophoresis. Importantly, the Antoine group
recently demonstrated the use of polyacrylamide gel electrophoretic (PAGE) method to
isolate Au10(SG)10 from Au15(SG)13 and Au25(SG)18 (see Figure 3) [35].
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The above-described techniques are used for separating, purifying, and isolating a
dispersion of atomic clusters, typically constituting different chemically related species.
However, dispersions of atomic clusters for a given chemical composition can also comprise
different but structurally related species. In such cases, molecular species in terms of 3-
dimensional structures and structural dispersity, can be characterized, separated and even
isolated based on the coupling of mass spectrometry with ion mobility spectrometry as
recently demonstrated by Antoine group and other groups [9,72–78]. Thus, from the above
discussion its it is apparent that synthetic and purification techniques of NCs have made
great advancements in the last decade. This not only highlights the importance of research
pertaining to atomic clusters but also presents them as ideal candidates for further chemical
reactions and the advent of newer nanomaterials.

4. Chemical Reactions of Nanoclusters
4.1. Intermolecular Chemical Reactions of Nanoclusters. Example of Zinc Ion Induced
Aggregation Strategy

Atomically precise nanoclusters are the closest analogues to molecules in classical
chemistry. This is because, akin to molecules, atomic clusters have structural integrity,
defined chemical composition and purity. Thus, in the same way that molecules are
building blocks of compounds and bulk materials, nanoclusters are ideally suited as
building blocks of hierarchical nanomaterials. This can be achieved through ‘chemical
reactions’ of nanoclusters. However, unlike atoms and molecules which provide directed
bonds, through covalent bonds for instance, nanoclusters are surrounded by an “isotropic”
ligand shell devoid of such directional bonding. Therefore, in order to equip nanoclusters
with directional bonding, it is essential that the nanoclusters are stabilized with chemically
interacting ligands. This lays the foundation of chemical reactions of nanoclusters, either
among themselves or with external chemical agents.
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To this end, the Paul group has demonstrated a series of chemical reactions involving
gold NCs. As a novel study, gold NCs were stabilized with MUA and were found to feature
red luminescence. The Au NCs were then reacted among themselves via (bi)coordination
between zinc ions and carboxylate terminals of the MUA molecules stabilizing the clusters.
This led to an enhancement in the luminescence of Au NCs. Furthermore, (bi)coordinated
zinc ions were coordinatively saturated following reactions with fluorescein molecules.
The overall composite, constituting fluorescein and MUA stabilized Au NCs bridged with
zinc ions, was rendered with dual red and green fluorescence. The chemical reactivity of
the composite was then used to discriminate the biothiols, to the level of a few particles
(Figure 4a) [79].

In another report, the chemical reactivity of histidine-stabilized Au NCs was ex-
ploited to perform intracellular logic operations. Briefly, the imidazole nitrogen of histidine
moieties stabilizing Au NCs were conjugated with zinc ions, wherein the variation of
luminescence of the former was suited to form a “tri state” logic operation at the cellular
level. Furthermore, the zinc ion-coordinated histidine-stabilized Au NCs, when reacted
with sulfide ions, were observed to quench the luminescence of the Au NCs, which could
be used to construct an “on-off” intracellular switch. Finally, collective reactions among
zinc ions, histidine stabilized Au NCs and sulfide ions, were used to form the basis of the
“INHIBIT” gate within HeLa cells [80].

Additionally, zinc ions induced the aggregation of Au NCs, featuring bright green
luminescence under visible light excitation, which were found to react differentially with
amino acids, based on the pKa of the latter. This formed the basis for the discrimination of
amino acids under visible light excitation using zinc ion-induced aggregates of Au NCs
(Zn Au NCs) as a probe. The carboxylate ends of mercaptopropionic acid (MPA) stabilizing
the clusters were coordinated with zinc ions, leading to the formation of green luminescent
aggregates of Au NCs. The surface of the formed aggregates was further covered with MPA
molecules. The pKa of MPA is reported to be 4.34. Thus, upon their reaction with amino
acids with a pKa less than that of MPA, the surface MPA molecules became protonated,
thereby blocking ligand to metal charge transfer, and quenching of the luminescence of Zn
Au NCs. On the other hand, amino acids with a pKa greater than that of MPA did not react
with the surface MPA molecules, thereby causing no discernible effect on the luminescence
of Zn Au NCs. Thus, based on the differential reactivity of the MPA molecules present
on the surface of Zn Au NCs towards amino acids with varying pKa, the latter could be
distinguished easily (Figure 4b) [81].
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To a similar end, the reactivity of the MPA molecules residing on the surface of allied
Zn Au NCs probes, were also used to discriminate between geometrical isomers. However,
unlike the case of amino acids, the proton-transfer reaction in the current report was
further governed by intra molecular hydrogen bonding interactions among the analytes
(Figure 4c) [81]. Interestingly, in a different study, Antoine and coworkers, measured the
two photon excited fluorescence cross sections of the Zn Au NCs aggregates. Importantly,
a four-fold enhancement in two-photon excited fluorescence of Zn Au NCs was observed
vis à vis non assembled clusters. In the same study, for the first time ever, the molar mass
of individual Au NCs recorded by time-of-flight mass spectrometry indicated the presence
of Au10MPA10 catenane nanoclusters, while the entire mass distribution of aggregates of
Au NCs was measured using charge-detection mass spectrometry [82].

4.2. Intramolecular Chemical Reactions of Nanoclusters. Example of Oxygen and Ligand and Metal
Exchange Reactions

To focus on a different aspect, the luminescence of copper nanoclusters was modulated
based on a reaction between the ligands (stabilizing the clusters) and aerial oxygen in
presence of light. Briefly, Cu NCs stabilized with cysteine molecules, were found to feature
red luminescence. The clusters, however, upon exposure to aerial oxygen in presence of
light, were observed to become non luminescent. This was attributed to the desorption of
cysteine molecules from the surface of Cu NCs, leading to the transformation of the latter
into non luminescent aggregates. The cysteine molecules, in turn, were proposed to have
transformed to S-nitrosothiolates following reaction with reactive nitrogen species [83].
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Additionally, ligand exchange reaction was performed between histidine stabilized
gold nanoclusters and cysteine. The idea behind the study was that cysteine having thiol
groups would replace the histidine molecules stabilizing the Au NCs, owing to greater
aurophilicity of thiol groups in cysteine as compared to nitrogenous groups present in
histidine moieties. This eventually led to alteration in luminescence of the clusters, as
ligands stabilizing the clusters are well known for playing key role in the luminescence
properties of the clusters. The ligand exchange reaction, involving Au NCs was well
validated using X-ray photoelectron spectroscopy (XPS) (Figure 5a) [84].
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For the first time, Antoine and co-workers performed a ligand exchange reaction
of glutathione stabilized Au NCs-Au15(SG)13 with a single aminooxy ligand to yield
Au15(SG)12(aminooxy)1. A detained mass spectrometric analysis revealed the success-
ful ligand exchange of Au15(SG)13 by one aminooxy ligand. The ligand exchanged product
served as a non-linear optical probe for the detection of protein carbonylation. This study
was the first on the ligand exchange reaction for non-linear optical measurement based
detection and quantification of protein carbonylation [85].

Furthermore, ligand exchange reactions have been reported to endow nanoclusters
with achiral NCs with unprecedented chirality following exchange with chiral ligands.
Burgi Yoshiki Niihori et al. successfully demonstrated that ligand exchange reactions
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between clusters and monothiolates commence at the terminal thiol groups of the thiolate
protected NCs proceeding via an associative SN2 type mechanism [86].

Apart than reactions involving ligands present on surface of clusters, metal atom
exchange leading to inter cluster reactions have also been pursued. In this regard, Pradeep
et al. have demonstrated inter cluster reactions between Au25(SR)18 and Ag44(SR)30 where
RS = alkyl/aryl thiolate [87]. Detailed experimental and theoretical analyses were per-
formed to prove the occurrence of the metal exchange reaction. Additionally, this has been
claimed to be the first ever report on inter cluster alloying. On a similar note, bimetallic
NCs constituting Ag and Ni/Pd/Pt protected by dithiols were reacted with monothiol pro-
tected Au NCs [88]. This led to formation of tri-metallic NCs due to inter-cluster reactions
between the starting clusters. In another report, Au25 NCs protected by PhCH2CH2S were
reacted with Ag25 protected by 2,4-dimethyl benzene thiol to inter-cluster alloy. A detailed
mechanistic investigation revealed that the reaction proceeded through two step metal
exchange processes. In the first step, motif–motif exchange reaction leading to formation
of ligand shell doped alloys of clusters occurred whereas in second step motif-motif and
motif-kernel exchange reactions between the alloyed clusters took place. To this end, An-
toine and co-workers reported the systematic doping of Au10 NCs stabilized by glutathione
molecules. 1–3 silver atoms have been doped into Au10 NCs, displacing equivalent number
of gold atoms from the clusters, which led to gradual variation in the two-photon excited
fluorescence of the clusters [89].

The aforementioned examples of chemical reactions involving metal NCs clearly
highlight their resemblance to the chemical reactivity of molecules. The knowledge gained
from all these studies can be further extended to design new materials with tailored
properties suited for diverse applications. This may start with the spatial organization of
atomic NCs in higher dimensions. For example, ions, molecules and allied chemical species
organized into three dimensions, i.e., their crystalline forms, are imbued with properties
that are starkly different from that of the individual molecules. This is why crystalline forms
of molecules are highly desired not only to gain fundamental insight into their chemistry
but also for practical applications. Similarly, the constitutional precision of NCs and the
ease with which they undergo chemical reactions provide great opportunities to expand
the understanding and utility of NCs following assemblage into higher order dimensions.

5. Routes to Self-Assembled Structures of Nanoclusters. from Crystalline Assembly to
Directed Assembly of NCs

Atomically precise clusters feature excellent biocompatibility, photo and temporal
stability, catalytic activity, chemical reactivity, and tunable functionalities, and are thus
envisioned to be model units for the fabrication of devices with an application potential
ranging from catalysis optoelectronics energy storage and theranostics. However, pristine
nanoclusters suffer from inherent limitations such as low quantum yield (in general), low
stability under harsh conditions such as extremes of pH, heat and solvent. Often, clusters
tend to aggregate into undefined moieties thereby losing their integral physicochemical
characteristics. This restricts their application potentials. A possible solution for this issue
is likely to emerge from the systematic organization of these nanoclusters into deterministic
structures. This could be advantageous in several fronts, including gaining complete insight
into the structures of NCs, delineating their structure property relationship, fine tuning
their structures to tailor their properties for a desired application, conferring them with
added stability and making them versatile for practical utilities. In this regard, several
efforts have been directed to spatially organize NCs into well-defined structures.

As stated in earlier sections, the ligands stabilizing the clusters play a determining
role in not only controlling their interactions but also additional chemical agents. For
instance, the charges on the ligands keeps the individual cluster units apart from each other
and prevent their uncontrolled agglomeration. Likewise, ligands with functional groups
capable of hydrogen bonding interact among themselves to confer stability to clusters. On
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the other hand, ligands with terminal groups capable of chemical coordinating with metal
ions, provide a facile platform for a complexation reaction mediated assembly of NCs.

In this regard, Chattopadhyay and coworkers and Paul and coworkers demonstrated,
for the first time, that the complexation reaction between ligands stabilizing gold NCs and
zinc ions can lead to the formation of three to two dimensional crystalline assemblies of
clusters. Interestingly, they have shown MPA and Histidine stabilized Au14 NCs upon
reaction with Zn ions results in the formation of three-dimensional assembly of the clusters.
The three-dimensional structure derived from transmission electron microscopic (TEM)
and selected area electron diffraction (SAED) analysis. The formed 3D assembly of Au NCs
was further used for storage and sensing of hydrogen gas at ambient conditions of 20 ◦C
and 20 bar (Figure 6a) [90]. In a similar fashion, two dimensional crystalline nanosheets
were formed out of reaction between Au14 NCs (stabilized with L phenylaniline and MPA)
and zinc ions. The two dimensional nanosheets were used for reversible storage of oxygen
at pliant conditions of 20 ◦C and 20 bar pressures [91].

Similarly, MPA and L/D tryptophan stabilized Au NCs were assembled into three-
dimensional organization following complexation reaction amongst Zn ions and carboxy-
late groups of MPA and L/D tryptophan. The resultant assembly was characterized using
TEM, SAED and powder XRD, which revealed their crystalline nature. The crystalline
assemblies of Au14 clusters were then used for fluorimetric chiral recognition and sepa-
ration of externally added L and D tryptophan. Interestingly, it was observed that when
Au14 clusters were stabilized with L tryptophan, the resultant crystalline assembly was
responsive to L tryptophan only. Similarly, D tryptophan stabilized Au14 clusters consti-
tuting the crystalline assembly was responsive to D tryptophan only. The basis of chiral
recognition and separation of tryptophan by the crystalline assembly was attributed to
the classical three-point vs. two-point interactions between tryptophan analytes and the
crystalline assembly. It is important to note here that, as opposed to the assembled clusters,
non-assembled Au clusters were observed to be nonresponsive to the chiral behavior of L
and D tryptophan [92].

MPA and L tyrosine-stabilized Au NCs were assembled into nanocrystals following
coordination of the carboxylate groups of the ligand and zinc ions. The so formed nanocrys-
tals were characterized using analytical techniques such as TEM and SAED. The crystalline
assemblies were found to be effective for mitochondria-targeted cancer theranostics with
the rare potential of facile renal clearance. The anticancer activity of the zinc mediated
assembly was attributed to the generation of reactive oxygen species within HeLa cells [93].

Moreover, MPA and L cysteine stabilized Au14 NCs upon complexation reaction with
zinc ions led to the formation of allied crystalline assembles, which could also be suc-
cessfully characterized with TEM and SAED techniques. Importantly, the non-assembled
Au14 clusters were found to feature photoluminescence intermittency when illuminated
at few particle level, whereas the zinc ion-mediated assembly of clusters was found to
be non-blinking under identical conditions. This was attributed to the fact that the non-
radiative relaxation pathways active in non-assembled clusters, due to the conformational
relaxation of the ligands, were blocked due the structural rigidity gained by the clusters
upon complexation with zinc ions in the assembled structure. Additionally, in contrast to
non-assembled clusters, the crystalline assembly of Au14 clusters could be used for storage
of CO2 and sensing of the latter at a few particle level (Figure 6b) [94].
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Copyright Royal Society of Chemistry 2018.

MPA and MBA stabilized Au14 nanoclusters assembled into two dimensional organi-
zations, following the complexation reaction with zinc ions was demonstrated to exhibit
delayed fluorescence with ultra-long luminescence lifetime of 0.5 ms and quantum yield
of ~19%. This marked the advent of the first ever report of crystalline assembly of gold
nanoclusters exhibiting lifetime in sub millisecond range. The occurrence of delayed flu-
orescence was proposed to have originated from the restricted intramolecular motion of
the ligands stabilizing the clusters (in assembly), which consequently led to reduced non
radiative transitions otherwise occurring in non-assembled Au14 clusters [95].

The aforementioned reports of complexation reaction mediated assemblage of Au14
nanoclusters with synergistic properties of nanoscale clusters as well as inorganic com-
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plexes portends to form a new class of hierarchical nanomaterials concerted with futuristic
application potential. Additionally, as opposed to assemblies of clusters, devoid of peri-
odicity, crystalline assemblies are envisioned to have uniform chemical properties and a
predictable application potential.

In addition to the principles of coordination chemistry, other strategies have also been
adopted for the construction of an assembly of nanoclusters. In this regard, assemblies
related to supramolecular chemical interactions are worth mentioning. An important
example is provided by Yoon et al., who performed a large scale preparation of super
crystalline lattices of [Na4Ag44(p-MBA)30]. Hydrogen bonding amongst the carboxylate
groups of the ligands was recognized as the key to form rhombus-shaped super crystals of
[Na4Ag44(p-MBA)30] [96]. Single crystal X-ray crystallography revealed that the layers of
the super lattice were connected through 24 and 36 intra and inter layer hydrogen bonds,
respectively. Yao et al. constructed super structures of [Ag44(p-MBA)30]4- NCs, following
the interaction of the carboxylate ends of the ligands with appropriate counter ions [97].
Zhang et al. fabricated the self-assembly of glutathione stabilized Au NCs, which closely
mimics the self-assembly of capsid proteins. In this study, the initial disruption of hydrogen
bonding between glutathione and water molecules was achieved following introduction
of DMSO. Eventually, hydrogen bonding among glutathione molecules stabilizing the
clusters was promoted through the subsequent removal of water molecules, which led to
the formation of large spherical assemblies of Au22 NCs [98].

In addition to hydrogen bonding, other interactions such as electrostatic interactions,
have also been utilized for the fabrication of self-assembled structures of NCs. The key
idea behind this approach is the proper balance of charges among the ligands present
on the surface of neighboring clusters, such that the clusters should neither undergo
uncontrolled agglomeration nor should they remain too apart to hinder self-assembly.
In order to construct an assembly of clusters, electrostatic interactions are often used in
conjunction with other driving forces such as hydrogen bonding and chemical coordination,
to maintain the delicate balance of proximity of the constituent clusters. Moreover, van
der Waals interactions based assemblies of NCs are also known. For instance, dodecane
thiol stabilized Au15 clusters were self-assembled into distinct nanosheets at elevated
temperatures [99]. Hydrophobic interactions among the non-polar chains of dodecane thiol
were proposed to have played a key role in the assemblage process.

In addition to self-assembly, a directed assembly of NCs have also been pursued. In
this regard, templates, either stabilizing the clusters or externally added to the medium,
have been proposed to play the determinant role in the assemblage process. To this
end, macromolecules such as DNA, [100] macrocycles, [101] synthetic and natural poly-
mers, [102] functionalized graphene oxide [103] have been reported to be instrumental
in guiding the assembly of NCs. The chief idea in this approach is to allow concomitant
binding of the NCs to the templates as well as spatial organization of the former in a way
directed by the latter. For example, polymers imbued with appropriate functionalities can
be tailored to interact with NCs in a specific manner, followed by hierarchical organization
of the clusters into a geometry guided by the polymer. In this regard, nanospheres ex-
hibiting aggregation induced emission have been fabricated via polyethyleneimine guided
self-assembly of Ag(I) NCs [104]. Further, multi-thiolated co-polymers were used as scaf-
fold for synthesis of Cu NCs. This was claimed to not only render the as synthesized NCs
resistant towards oxidation and uncontrolled aggregation, but also imbued the clusters
with thermo and pH responsive properties of the pristine co-polymers. The so formed
polymeric hybrid structure of NCs was further used for sensing of Hg ions [105]. Moreover,
natural biopolymers such as bacterial proteins have been used to self-assemble glutathione
stabilized NCs. These nanocomposites could further be used as agents for cell imaging
and cargo for protein delivery [106]. However, assembly induced by polymers often lead
to uncontrolled agglomeration of clusters which render them inappropriate for practical
applications.
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This issue is often circumvented by the use of DNA as a template for assemblage of
NCs. This is primarily attributed to the fact that DNA templates provide the combined
options of deterministic structural motif as well as intrinsic binding sites, namely, the
nucleobases. As a consequence, several nano-architectures have been constituted following
the DNA-guided assembly of atomic clusters. For example, DNA nanoribbons constituting
appropriate binding sites have been used as a template for synthesis cum assembly of ultra-
small Cu NCs. DNA assembled Cu NCs were reported to feature aggregation induced
emission attributed to structural rigidity gained by Cu NCs upon being assembled by
DNA [107]. Furthermore, Wang and coworkers assembled Au NCs in the presence of dou-
ble stranded DNA and used them for cancer theranostics [108]. Similarly, Chattopadhyay
and co-workers synthesized Au NCs using double stranded DNA as templates, mimicking
the process of polymerase chain reaction. Further luminescence intensity of the clusters
could be used to probe and quantify double stranded DNA, i.e., the PCR products [34].

Moreover, macrocyclic molecules have been appropriately tailored to interact with
the ligands of the atomic clusters to produce rigid assemblies featuring alluring photo
physical properties. For example, Au22 NCs stabilized by peptides of sequence Phe-Gly-
Gly-Cys were reported to undergo non-covalent interactions with Cucurbiturils, leading
to the formation of rigid assemblies exhibiting enhanced quantum yield as opposed to
non-assembled clusters [101]. Moreover, Ag29 NCs stabilized by 1,3-benzene dithiol and
triphenyl phosphine were reported to react with crown ethers, leading to crystallization
induced organization of the crown ether molecules into the interstitial sites of the lattice
of Ag29 NCs [109]. The crystalline co-assembly of Ag29 NCs were found to be 3.5 times
more luminescent than for the non-assembled clusters. Likewise, an aggregation-induced
emission probe, constituting cyclodextrin functionalized Cu NCs, and di(adamantan-1-yl)
phosphine, was designed for in situ imaging of membrane associated glycoproteins [110].

Additionally, external stimuli such as pH have been used to trigger assemblies of
ultra-small copper nanoclusters. For instance, Cu NCs stabilized by L cysteine were found
to undergo reversible aggregation and disaggregation, as a function of pH. Monodispersed
Cu NCs were found to form insoluble macroscopic aggregates featuring red luminescence
at pH ~ 3, whereas the aggregates were reported to disintegrate into soluble dispersion,
showing weak luminescence at pH > 4. Similarly, orange-red emitting Cu NCs were
spontaneously self-assembled into nano-spheres, nano-meshes and nanosheets by fine
tuning the extent of hydrogen bonding interactions among m-amino thiophenols stabilizing
the Cu NCs clusters [111]. A further development was achieved by Chattopadhyay and
co-workers, who reported the synthesis of pH responsive Cu NCs, featuring aggregation-
induced emission within cancer cells. Cu NCs were reported to exhibit orange-red emission
at pH 4.5, whereas the same Cu NCs, following intracellular aggregation, featured bright
green luminescence at pH 7.4. Interestingly, the rate constants for intracellular aggregation
of Cu NCs were found to be different for different cancer cell lines [112].

6. Concluding Remarks

Atomically precise nanoclusters, once considered to be “just another” luminescent
nanomaterial, has now become the heart and soul of research pertaining to nanoscale
science and technology. This, as discussed in the earlier sections, is primarily attributed
to their chemical and structural integrity. Thus, nanoclusters are being widely explored
as model analogues of molecules in classical chemistry. They are often called supertoms
or superatomic molecules [113–115]. Significant resources are being invested in designing
rational and facile strategies for the synthesis of atomic clusters. Purification techniques are
coming up to isolate ultra-pure atomic clusters [8]. Chemical reactions are being performed
on atomic clusters to form “products” akin to reactions of molecules and compounds.
Research is being directed to elucidate the mechanism of such reactions, gaining insights
into the intermediates formed and maximizing the yield of the products. Further, controlled
assemblies of atomic clusters are being fabricated using various principles of chemistry
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ranging from coordination to supramolecular. The as-described assemblies of nanoclusters
have found finding applications in wide areas ranging from catalysis to theranostics.

In this mini review, we aimed to summarize the recent advancements made with
regard to all these aspects of atomic clusters. Additionally, in the conclusion, we raise
questions, which, if addressed in the near future, may further illustrate the versatility of
atomic clusters. Firstly, it is important to elucidate the relationship between the number of
atoms constituting the clusters and their corresponding properties (optical and chemical).
For instance, it is well known that clusters with less atoms feature luminescence at wave-
lengths lower than the emission wavelengths of clusters with comparatively more atoms.
However, an exact relationship between the number of atoms composing the clusters and
the resultant emission properties is not fully understood. This is largely because, in addition
to the number of atoms constituting the clusters, the ligands stabilizing the clusters also
play key roles in determining their luminescence properties [116]. Thus, the emergence of
generalized principles governing the properties of clusters is deemed essential. Clearly,
quantum chemistry methods elucidating the geometry of the clusters and configuring their
optical properties in terms of molecular transitions should be conducted in further depth
for the assembly of clusters, and innovative approaches such as the hybrid QM/MM (quan-
tum mechanics/molecular mechanics) approach might address their structure–properties
relationships [117–121].

Secondly, with regard to the reactions of atomic clusters, the study of chemical kinetics
has remained largely unexplored. Additionally, in classical chemistry, the mystery of “bond
breaking and making” in molecules has been, and continues to be, gradually unveiled.
However, such mysteries continue to prevail with regard to the chemistry of atomic clusters.
These studies, if performed, may open up newer domains to control the yield of reactions,
optimize the conditions of reactions, trap the essential intermediates, and identify the
transition states of relevant reactions.

Thirdly, with regard to the controlled assembly of clusters, delineation of a definite
structure property relationship is deemed important. Notwithstanding the robustness
of the strategies for systematic organization of clusters developed so far, little effort has
been directed towards deciphering a “one to one” correlation between the structures of
assembled clusters and their emerging properties. This is not only important to enhance
the ease of assemblage of nanoscale clusters, but also to widen their application potential.
Finally, in an assembly of clusters, it is important to understand whether the ultimate
properties are an outcome of additive behavior of the individual clusters, or a result of a
synergistic behavior between the clusters, ligands, and the templates.
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