Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Nanocomposites
2.3. Morphological Characterization
2.4. Thermal Properties
2.5. Mechanical Properties
2.6. Contact Angle
2.7. Dielectric Characterization
3. Results
3.1. SEM Investigation
3.2. Mechanical Properties
3.2.1. DMA Results
3.2.2. Tensile Test Results
3.3. Differential Scanning Calorimetry
3.4. Thermogravimetric Analysis
3.5. Dielectric Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Peng, Z.; Yao, Y.; Chen, S. The microscopic mechanism of size effect in silica-particle reinforced silicone rubber composites. Eng. Fract. Mech. 2021, 255, 107945. [Google Scholar] [CrossRef]
- Romasanta, L.J.; Lopez-Manchado, M.A.; Verdejo, R. Increasing the performance of dielectric elastomer actuators: A review from the materials perspective. Prog. Polym. Sci. 2015, 51, 188–211. [Google Scholar] [CrossRef] [Green Version]
- Yao, S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511. [Google Scholar] [CrossRef] [PubMed]
- Dang, Z.-M.; Yuan, J.-K.; Zha, J.-W.; Zhou, T.; Li, S.-T.; Hu, G.-H. Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater. Sci. 2012, 57, 660–723. [Google Scholar] [CrossRef]
- Barber, P.; Balasubramanian, S.; Anguchamy, Y.; Gong, S.; Wibowo, A.; Gao, H.; Ploehn, H.J.; Zur Loye, H.-C. Polymer composite and nanocomposite dielectric materials for pulse power energy storage. Materials 2009, 2, 1697–1733. [Google Scholar] [CrossRef]
- Dang, Z.-M.; Yuan, J.-K.; Yao, S.-H.; Liao, R.-J. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 2013, 25, 6334–6365. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Azhar, U.; Zong, C.; Zhang, Y.; Xu, A.; Zhai, C.; Zhang, L.; Zhang, S. Core-shell structured PVDF@BT nanoparticles for dielectric materials: A novel composite to prove the dependence of dielectric properties on ferroelectric shell. Mater. Des. 2019, 164, 107556. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Jiang, X.; Jiang, P.; Huang, X. All-organic cross-linked polysiloxane-aromatic thiourea dielectric films for electrical energy storage application. ACS Appl. Energy Mater. 2020, 3, 5198–5207. [Google Scholar] [CrossRef]
- Shit, S.C.; Shah, P.A. Review on Silicone Rubber. Natl. Acad. Sci. Lett. 2013, 36, 355–365. [Google Scholar] [CrossRef]
- Chiulan, I.; Panaitescu, D.M.; Radu, E.R.; Frone, A.N.; Gabor, R.A.; Nicolae, C.A.; Jinescu, G.; Tofan, V. and Chinga-Carrasco, G. Comprehensive characterization of silica-modified silicon rubbers. J. Mech. Behav. Biomed. Mater. 2020, 101, 103427. [Google Scholar] [CrossRef]
- Na, M.; Zhou, N.-L. Synthesis and properties of PDMS/montmorillonite-cetyltrimethylammonium bromide-heparin films. Carbohydr. Polym. 2014, 105, 70–74. [Google Scholar]
- Chen, J.; Liu, J.; Yao, Y.; Chen, S. Effect of microstructural damage on the mechanical properties of silica nanoparticle-reinforced silicone rubber composites. Eng. Fract. Mech. 2020, 235, 107195. [Google Scholar] [CrossRef]
- Faiza; Khattak, A.; Rehman, A.U.; Ali, A.; Mahmood, A.; Imran, K.; Ulasyar, A.; Sheh Zad, H.; Ullah, N.; Khan, A. Multi-stressed nano and micro-silica/silicone rubber composites with improved dielectric and high-voltage insulation properties. Polymers 2021, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Kausar, A. Polydimethylsiloxane-based nanocomposite: Present research scenario and emergent future trends. Polym. Plast. Technol. Eng. 2020, 59, 1148–1166. [Google Scholar] [CrossRef]
- Bertasius, P.; Schaefer, S.; Macutkevic, J.; Banys, J.; Selskis, A.; Fierro, V.; Celzard, A. Dielectric properties of polydimethylsiloxane composites filled with SrTiO3 nanoparticles. Polym. Compos. 2021, 42, 2982–2988. [Google Scholar] [CrossRef]
- Mathias, K.A.; Shivashankar, H.; Shankar, B.M.; Kulkarni, S.M. Influence of filler on dielectric properties of silicone rubber particulate composite material. Mater. Today: Proc. 2020, 33, 5623–5627. [Google Scholar] [CrossRef]
- Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric constant enhancement in a silicone elastomer filled with lead magnesium niobate–lead titanate. Mater. Sci. Eng. C 2007, 27, 110–116. [Google Scholar] [CrossRef]
- Manohar Shankar, B.S.; Hiremath, S.; Kulkarni, S.M. Influence of conductive and dielectric fillers on the relaxation of solid silicone rubber composites. Mater. Res. Express 2019, 6, 125308. [Google Scholar]
- Madidi, F.; Momen, G.; Farzaneh, M. Dielectric properties of TiO2/silicone rubber micro- and nanocomposites. Adv. Mater. Sci. Eng. 2018, 2018, 4682076. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Cheng, Y.; Xu, K.; An, L.; Su, Y.; Li, X.; Zhang, Z. Effect of nano-silica filler on microstructure and mechanical properties of polydimethylsiloxane-based nanocomposites prepared by “inhibition-grafting” method. Compos. Sci. Technol. 2018, 167, 355–363. [Google Scholar] [CrossRef]
- Xue, Y.; Li, X.F.; Zhang, D.H.; Wang, H.S.; Chen, Y.; Chen, Y.F. Comparison of ATH and SiO2 fillers filled silicone rubber composites for HTV insulators. Compos. Sci. Technol. 2018, 155, 137–143. [Google Scholar] [CrossRef]
- Galanti, A.V.; Sperling, L.H. Morphology and structure of silica agglomerates in silica-reinforced silicone rubber. J. Appl. Polym. Sci. 1970, 14, 2785–2796. [Google Scholar] [CrossRef]
- Yue, Y.; Zhang, H.; Zhang, Z.; Chen, Y. Tensile properties of fumed silica filled polydimethylsiloxane networks. Compos. A Appl. Sci. Manuf. 2013, 54, 20–27. [Google Scholar] [CrossRef]
- Mark, J.E.; Jiang, C.-Y.; Tang, M.-Y. Simultaneous curing and filling of elastomers. Macromolecules 1984, 17, 2613–2616. [Google Scholar] [CrossRef]
- Rajan, G.S.; Sur, G.S.; Mark, J.E.; Schaefer, D.W.; Beaucage, G. Preparation and characterization of some unusually transparent poly(dimethylsiloxane) nanocomposites. J. Polym. Sci. B Polym. Phys. 2003, 41, 1897–1901. [Google Scholar] [CrossRef]
- Yang, L.; Qiu, S.; Zhang, Y.; Xu, Y. Preparation of PDMS/SiO2 nanocomposites via ultrasonical modification and miniemulsion polymerization. J. Polym. Res. 2013, 20, 68. [Google Scholar] [CrossRef]
- Geng, C.; Zhang, Q.; Lei, W.; Yu, F.; Lu, A. Simultaneously reduced viscosity and enhanced strength of liquid silicone rubber/silica composites by silica surface modification. J. Appl. Polym. Sci. 2017, 134, 45544. [Google Scholar] [CrossRef]
- Liu, D.; Song, L.; Song, H.; Chen, J.; Tian, Q.; Chen, L.; Sun, L.; Lu, A.; Huang, C.; Sun, G. Correlation between mechanical properties and microscopic structures of an optimized silica fraction in silicone rubber. Compos. Sci. Technol. 2018, 165, 373–379. [Google Scholar] [CrossRef]
- Liu, J.; Yao, Y.; Chen, S.; Li, X.; Zhang, Z. A new nanoparticle-reinforced silicone rubber composite integrating high strength and strong adhesion. Compos. A Appl. Sci. Manuf. 2021, 151, 106645. [Google Scholar] [CrossRef]
- Wacker Chemie AG, Solid and Liquid Silicone Rubber Material and Processing Guidelines. Available online: http://www.wacker.com/cms/media/publications/downloads/6709_EN.pdf (accessed on 23 October 2021).
- Roy, N.; Bhowmick, A.K. Novel in situ silica/polydimethylsiloxane nanocomposites: Facile one-pot synthesis and characterization. Rubber Chem. Technol. 2012, 85, 92–107. [Google Scholar] [CrossRef]
- Imai, Y.; Inukai, Y.; Tateyama, H. Properties of Poly(ethylene terephthalate)/layered silicate nanocomposites prepared by two-step polymerization procedure. Polym. J. 2003, 35, 230–235. [Google Scholar] [CrossRef] [Green Version]
- Di, M.; He, S.; Li, R.; Yang, D. Resistance to proton radiation of nano-TiO2 modified silicone rubber. Nucl. Instrum. Methods Phys. Res. B 2006, 252, 212–218. [Google Scholar] [CrossRef]
- Diao, S.; Jin, K.; Yang, Z.; Lu, H.; Feng, S.; Zhang, C. The effect of phenyl modified fumed silica on radiation resistance of silicone rubber. Mater. Chem. Phys. 2011, 129, 202–208. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, L.; Yin, F.; Farzaneh, M.; Liu, Y.; Gao, S. Comparison of four commonly used high temperature vulcanized silicone rubber formulas for outdoor insulator and their regional adaptability. J. Appl. Polym. Sci. 2019, 136, 47477. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydrophobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B. Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Guth, E. Theory of filler reinforcement. J. Appl. Phys. 1945, 16, 20–25. [Google Scholar] [CrossRef]
- Halpin, J.C. Stiffness and expansion estimates for oriented short fiber composites. J. Compos. Mat. 1969, 3, 732. [Google Scholar] [CrossRef]
- Nielsen, L.E. Generalized equation for the elastic moduli of composite materials. J. Appl. Phys. 1970, 41, 4626–4627. [Google Scholar] [CrossRef]
- Ji, X.L.; Jing, J.K.; Jiang, B.Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983–993. [Google Scholar] [CrossRef]
- Lewis, T.B.; Nielsen, L.E. Viscosity of dispersed and aggregated suspensions of spheres. Trans. Soc. Rheol. 1968, 12, 421–443. [Google Scholar] [CrossRef]
- Tanaka, T.; Kozaka, M.; Fuse, N.; Ohki, Y. Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Dielect. El. In. 2005, 12, 669–681. [Google Scholar] [CrossRef]
- Smith, R.C.; Liang, C.; Landry, M.; Nelson, J.K.; Schadler, L.S. The mechanisms leading to the useful electrical properties of polmyer nanodielectrics. IEEE Dielect. El. In. 2008, 15, 187–196. [Google Scholar] [CrossRef]
- Sattar, M.A. Interface structure and dynamics in polymer-nanoparticle hybrids: A review on molecular mechanisms underlying the improved interfaces. Chem. Sel. 2021, 6, 5068. [Google Scholar] [CrossRef]
- Siqueira, D.F.; Schubert, D.W.; Erb, V.; Stamm, M.; Amato, J.P. Interface thickness of the incompatible polymer system PS/PnBMA as measured by neutron reflectometry and ellipsometry. Colloid Polym. Sci. 1995, 273, 1041–1048. [Google Scholar] [CrossRef]
- Gan, L.; Shang, S.; Jiang, S. Impact of vinyl concentration of a silicone rubber on the properties of the graphene oxide filled silicone rubber composites. Compos. B Eng. 2016, 84, 294–300. [Google Scholar] [CrossRef]
- Chen, D.; Chen, F.; Hu, X.; Zhang, H.; Yin, X.; Zhou, Y. Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin. Compos. Sci. Technol. 2015, 117, 307–314. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Shi, L.; Qi, S.; Cheng, J.; Jin, R. Improvement of thermal resistance of polydimethylsiloxanes with polymethylmethoxysiloxane as crosslinker. Polym. Degrad. Stab. 2008, 93, 242–251. [Google Scholar] [CrossRef]
- Lin, Q.; Cohen, S.; Gignac, L.; Herbst, B.; Klaus, D.; Simonyi, E.; Hedrick, J.; Warlaumont, J.; Lee, H.; Wu, W. Low dielectric constant nanocomposite thin films based on silica nanoparticle and organic thermosets. J. Polym. Sci. B Polym. Phys. 2007, 45, 1482–1493. [Google Scholar] [CrossRef]
- Tian, F.; Ohki, Y. Charge transport and electrode polarization in epoxy resin at high temperatures. J. Phys. D Appl. Phys. 2014, 47, 045311. [Google Scholar] [CrossRef]
- Ishai, P.B.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode polarization in dielectric measurements: A review. Meas. Sci. Technol. 2013, 24, 102001. [Google Scholar] [CrossRef]
- Li, Y.; Tian, M.; Lei, Z.; Zhang, J. Effect of nano-silica on dielectric properties and space charge behavior of epoxy resin under temperature gradient. J. Phys. D Appl. Phys. 2018, 51, 125309. [Google Scholar] [CrossRef]
- Lin, Y.; Wu, K.; Liu, Y.; Wang, L.; Guo, M. Dielectric spectroscopy of aluminium hydroxide particles filled silicone rubber and dielectric model analysis with modified numerical solutions. J. Phys. D Appl. Phys. 2020, 53, 275303. [Google Scholar] [CrossRef]
- Ciuprina, F.; Plesa, I.; Notingher, P.V.; Rain, P.; Zaharescu, T.; Panaitescu, D. Dielectric properties of LDPE-SiO2 Nanocomposites. In Proceedings of the 10th IEEE International Conference on Solid Dielectrics, Potsdam, Germany, 4–9 July 2010. [Google Scholar]
- Ciuprina, F.; Andrei, L. Water and heat exposure influence on dielectric response of LDPE-Al2O3 nanocomposites. In Proceedings of the International Symposium on Fundamentals of Electrical Engineering (ISFEE), Bucharest, Romania, 1–3 November 2018. [Google Scholar]
- Andrei, L.; Ciuprina, F.; Radu, E.; Gabor, A.; Panaitescu, D. Dielectric performances of LSR-SiO2 nanocomposites for wearable antennas substrate. In Proceedings of the 7th International Symposium on Electrical and Electronics Engineering (ISEEE), Galati, Romania, 28–30 October 2021. [Google Scholar]
- Paracha, K.N.; Rahim, S.K.A.; Soh, P.J.; Khalily, M. Wearable antennas: A review of materials, structures, and innovative features for autonomous communication and sensing. IEEE Access 2019, 7, 56694–56712. [Google Scholar] [CrossRef]
Nanocomposites | E’−30 °C, MPa | E’0 °C, MPa | E’30 °C, MPa | E”30 °C, MPa | tan δ(−30 °C) |
---|---|---|---|---|---|
E0 | 14.2 | 10.5 | 8.7 | 0.8 | 0.101 |
E5 | 22.3 | 16.5 | 13.6 | 1.1 | 0.099 |
E10 | 31.2 | 21.7 | 17.4 | 1.7 | 0.111 |
E15 | 41.2 | 28.2 | 22.0 | 2.3 | 0.112 |
E20 | 52.5 | 34.6 | 26.4 | 3.1 | 0.119 |
E25 | 75.0 | 45.8 | 32.7 | 4.7 | 0.134 |
E30 | 95.5 | 56.3 | 39.1 | 5.9 | 0.135 |
Nanocomposites | First Heating | Cooling | Second Heating | Xc (%) | |||
---|---|---|---|---|---|---|---|
Tm1 (°C) | ΔHm1 (J/g) | Tc (°C) | ΔHc (J/g) | Tm2 (°C) | ΔHm2 (J/g) | ||
E0 | −47.3 | 17.1 | −72.0 | 29.8 | −45.6 | 17.0 | 46.2 |
E10 | −45.2 | 15.8 | −71.9 | 22.8 | −46.0 | 14.8 | 47.5 |
E20 | −46.1 | 14.5 | −72.7 | 23.8 | −44.9 | 14.2 | 49.0 |
E30 | −43.8 | 11.8 | −71.9 | 17.2 | −44.5 | 11.1 | 45.6 |
Sample | E0 | E5 | E10 | E15 | E20 | E25 | E30 |
---|---|---|---|---|---|---|---|
T5%, °C | 465.0 | 434.5 | 423.4 | 426.9 | 424.6 | 419.3 | 417.2 |
Td, °C | 678.2 | 596.3 | 591.4 | 588.0 | 585.4 | 587.0 | 590.0 |
WL200 °C, % | 0.2 | 0.4 | 0.7 | 0.8 | 1.0 | 1.2 | 1.3 |
Residue at 1000 °C, % | 68.9 | 53.1 | 56.2 | 55.8 | 57.4 | 60.8 | 64.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radu, E.R.; Panaitescu, D.M.; Andrei, L.; Ciuprina, F.; Nicolae, C.A.; Gabor, A.R.; Truşcă, R. Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices. Nanomaterials 2022, 12, 95. https://doi.org/10.3390/nano12010095
Radu ER, Panaitescu DM, Andrei L, Ciuprina F, Nicolae CA, Gabor AR, Truşcă R. Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices. Nanomaterials. 2022; 12(1):95. https://doi.org/10.3390/nano12010095
Chicago/Turabian StyleRadu, Elena Ruxandra, Denis Mihaela Panaitescu, Laura Andrei, Florin Ciuprina, Cristian Andi Nicolae, Augusta Raluca Gabor, and Roxana Truşcă. 2022. "Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices" Nanomaterials 12, no. 1: 95. https://doi.org/10.3390/nano12010095
APA StyleRadu, E. R., Panaitescu, D. M., Andrei, L., Ciuprina, F., Nicolae, C. A., Gabor, A. R., & Truşcă, R. (2022). Properties of Polysiloxane/Nanosilica Nanodielectrics for Wearable Electronic Devices. Nanomaterials, 12(1), 95. https://doi.org/10.3390/nano12010095