Multiscale Innovative Materials and Structures (MIMS)
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Tserengombo, B.; Jeong, H.; Dolgor, E.; Delgado, A.; Kim, S. Effects of Functionalization in Different Conditions and Ball Milling on the Dispersion and Thermal and Electrical Conductivity of MWCNTs in Aqueous Solution. Nanomaterials 2021, 11, 1323. [Google Scholar] [CrossRef] [PubMed]
- Abedi, M.; Fangueiro, R.; Correia, A.G. Development of a Novel Multifunctional Cementitious-Based Geocomposite by the Contribution of CNT and GNP. Nanomaterials 2021, 11, 961. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, M.S.; Pinnola, F.P.; Marotti De Sciarra, F.; Barretta, R. Elastostatics of Bernoulli—Euler Beams Resting on Displacement-Driven Nonlocal Foundation. Nanomaterials 2021, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Coclite, A.; Coclite, G.M.; De Tommasi, D. Capsules Rheology in Carreau—Yasuda Fluids. Nanomaterials 2020, 10, 2190. [Google Scholar] [CrossRef] [PubMed]
- De Maio, U.; Fantuzzi, N.; Greco, F.; Leonetti, L.; Pranno, A. Failure Analysis of Ultra High-Performance Fiber-Reinforced Concrete Structures Enhanced with Nanomaterials by Using a Diffuse Cohesive Interface Approach. Nanomaterials 2020, 10, 1792. [Google Scholar] [CrossRef] [PubMed]
- Fraternali, F.; Stehling, N.; Amendola, A.; Tiban Anrango, B.A.; Holland, C.; Rodenburg, C. Tensegrity Modelling and the High Toughness of Spider Dragline Silk. Nanomaterials 2020, 10, 1510. [Google Scholar] [CrossRef] [PubMed]
- Faradilla, R.F.; Lucia, L.; Hakovirta, M. Remarkable Physical and Thermal Properties of Hydrothermal Carbonized Nanoscale Cellulose Observed from Citric Acid Catalysis and Acetone Rinsing. Nanomaterials 2020, 10, 1049. [Google Scholar] [CrossRef] [PubMed]
- Vangelatos, Z.; Micheletti, A.; Grigoropoulos, C.P.; Fraternali, F. Design and Testing of Bistable Lattices with Tensegrity Architecture and Nanoscale Features Fabricated by Multiphoton Lithography. Nanomaterials 2020, 10, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsepelev, V.S.; Starodubtsev, Y.N. Nanocrystalline Soft Magnetic Iron-Based Materials from Liquid State to Ready Product. Nanomaterials 2021, 11, 108. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barretta, R.; De Tommasi, D.; Fraternali, F. Multiscale Innovative Materials and Structures (MIMS). Nanomaterials 2022, 12, 96. https://doi.org/10.3390/nano12010096
Barretta R, De Tommasi D, Fraternali F. Multiscale Innovative Materials and Structures (MIMS). Nanomaterials. 2022; 12(1):96. https://doi.org/10.3390/nano12010096
Chicago/Turabian StyleBarretta, Raffaele, Domenico De Tommasi, and Fernando Fraternali. 2022. "Multiscale Innovative Materials and Structures (MIMS)" Nanomaterials 12, no. 1: 96. https://doi.org/10.3390/nano12010096
APA StyleBarretta, R., De Tommasi, D., & Fraternali, F. (2022). Multiscale Innovative Materials and Structures (MIMS). Nanomaterials, 12(1), 96. https://doi.org/10.3390/nano12010096