Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of N-Nb2O5 Microspheres
2.3. Photocatalytic Reaction
2.4. Characterization of the Catalysts
2.5. Computational Methods and Models
3. Results and Discussion
3.1. Doping and Distribution of N in Nb2O5
3.2. Photo Response and Photodegradation Performance
3.3. Enhancement Mechanism of Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, S.; Takata, T.; Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2017, 2, 17050. [Google Scholar] [CrossRef]
- Zhao, Y.; Hoivik, N.; Wang, K. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy 2016, 30, 728–744. [Google Scholar] [CrossRef]
- Morales-García, Á.; Valero, R.; Illas, F. Morphology of TiO2 Nanoparticles as a Fingerprint for the Transient Absorption Spectra: Implications for Photocatalysis. J. Phys. Chem. C 2020, 124, 11819–11824. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Yu, S.; Fan, X.B.; Wang, X.; Li, J.; Zhang, Q.; Xia, A.; Wei, S.; Wu, L.Z.; Zhou, Y.; Patzke, G.R. Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. Nat. Commun. 2018, 9, 4009. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, T.; Panov, M.S.; Mereshchenko, A.; Tarnovsky, A.N.; Lorek, R.; Perera, D.; Diederich, G.; Lambright, S.; Moroz, P.; Zamkov, M. The Effect of the Charge-Separating Interface on Exciton Dynamics in Photocatalytic Colloidal Heteronanocrystals. ACS Nano 2012, 6, 8156–8165. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Ji, S.; Sun, W.; Lei, Y.; Wang, Q.; Li, A.; Chen, W.; Zhou, G.; Zhang, Z.; Wang, Y.; et al. Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production. Angew. Chem. Int. Ed. 2019, 59, 1295–1301. [Google Scholar] [CrossRef]
- Wu, K.; Zhu, H.; Liu, Z.; Rodríguez-Córdoba, W.; Lian, T. Ultrafast Charge Separation and Long-Lived Charge Separated State in Photocatalytic CdS–Pt Nanorod Heterostructures. J. Am. Chem. Soc. 2012, 134, 10337–10340. [Google Scholar] [CrossRef]
- Fang, W.; Xing, M.; Zhang, J. Modifications on reduced titanium dioxide photocatalysts: A review. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 21–39. [Google Scholar] [CrossRef]
- Yang, H.; Kim, E.; Kim, S.H.; Jeong, M.S.; Shin, H. Hole trap, charge transfer and photoelectrochemical water oxidation in thickness-controlled TiO2 anatase thin films. Appl. Surf. Sci. 2020, 529, 147020. [Google Scholar] [CrossRef]
- Tamaki, Y.; Furube, A.; Murai, M.; Hara, K.; Katoh, R.; Tachiya, M. Dynamics of efficient electron-hole separation in TiO2 nanoparticles revealed by femtosecond transient absorption spectroscopy under the weak-excitation condition. Phys. Chem. Chem. Phys. 2007, 9, 1453–1460. [Google Scholar] [CrossRef] [PubMed]
- Simon, T.; Bouchonville, N.; Berr, M.J.; Vaneski, A.; Adrovic, A.; Volbers, D.; Wyrwich, R.; Doblinger, M.; Susha, A.S.; Rogach, A.L.; et al. Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 2014, 13, 1013–1018. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Song, N.; Lv, H.; Hill, C.L.; Lian, T. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. J. Am. Chem. Soc. 2012, 134, 11701–11708. [Google Scholar] [CrossRef] [PubMed]
- Zawadzki, P. Absorption Spectra of Trapped Holes in Anatase TiO2. J. Phys. Chem. C 2013, 117, 8647–8651. [Google Scholar] [CrossRef]
- Amirav, L.; Alivisatos, A.P. Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051–1054. [Google Scholar] [CrossRef]
- Xiao, S.-T.; Wu, S.-M.; Dong, Y.; Liu, J.-W.; Wang, L.-Y.; Wu, L.; Zhang, Y.-X.; Tian, G.; Janiak, C.; Shalom, M.; et al. Rich surface hydroxyl design for nanostructured TiO2 and its hole-trapping effect. Chem. Eng. J. 2020, 400, 125909. [Google Scholar] [CrossRef]
- Bajorowicz, B.; Kobylanski, M.P.; Golabiewska, A.; Nadolna, J.; Zaleska-Medynska, A.; Malankowska, A. Quantum dot-decorated semiconductor micro- and nanoparticles: A review of their synthesis, characterization and application in photocatalysis. Adv. Colloid Interface Sci. 2018, 256, 352–372. [Google Scholar] [CrossRef]
- Nurlaela, E.; Wang, H.; Shinagawa, T.; Flanagan, S.; Ould-Chikh, S.; Qureshi, M.; Mics, Z.; Sautet, P.; Le Bahers, T.; Cánovas, E.; et al. Enhanced Kinetics of Hole Transfer and Electrocatalysis during Photocatalytic Oxygen Evolution by Cocatalyst Tuning. ACS Catal. 2016, 6, 4117–4126. [Google Scholar] [CrossRef] [Green Version]
- Si, Y.; Cao, S.; Wu, Z.; Ji, Y.; Mi, Y.; Wu, X.; Liu, X.; Piao, L. The effect of directed photogenerated carrier separation on photocatalytic hydrogen production. Nano Energy 2017, 41, 488–493. [Google Scholar] [CrossRef]
- Harb, M.; Sautet, P.; Raybaud, P. Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO2 from First-Principles Calculations. J. Phys. Chem. C 2011, 115, 19394–19404. [Google Scholar] [CrossRef]
- Chen, L.; Gu, Q.; Hou, L.; Zhang, C.; Lu, Y.; Wang, X.; Long, J. Molecular p–n heterojunction-enhanced visible-light hydrogen evolution over a N-doped TiO2 photocatalyst. Catal. Sci. Technol. 2017, 7, 2039–2049. [Google Scholar] [CrossRef]
- Wang, W.; Chen, M.; Huang, D.; Zeng, G.; Zhang, C.; Lai, C.; Zhou, C.; Yang, Y.; Cheng, M.; Hu, L.; et al. An overview on nitride and nitrogen-doped photocatalysts for energy and environmental applications. Compos. Part B Eng. 2019, 172, 704–723. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, N.; Ye, J. Role of complex defects in photocatalytic activities of nitrogen-doped anatase TiO2. Phys. Chem. Chem. Phys. 2012, 14, 5924–5934. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Chi, Q.; Zhou, H.; Ye, W.; Zhu, G.; Gao, P. A continuous valence band through N-O orbital hybridization in N-TiO2 and its induced full visible-light absorption for photocatalytic hydrogen production. Int. J. Hydrogen Energy 2019, 44, 3553–3559. [Google Scholar] [CrossRef]
- Di Valentin, C.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Giamello, E. Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations. J. Phys. Chem. B 2005, 109, 11414–11419. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, C.; Huang, J.; Wang, X.; Du, Y.; Yang, P. Structure inherited synthesis of N-doped highly ordered mesoporous Nb2O5 as robust catalysts for improved visible light photoactivity. Nanoscale 2014, 6, 7274–7280. [Google Scholar] [CrossRef]
- Hu, B.; Liu, Y.H. Nitrogen-doped Nb2O5 nanobelt quasi-arrays for visible light photocatalysis. J. Alloys Compd. 2015, 635, 1–4. [Google Scholar] [CrossRef]
- Hemmati, S.; Li, G.; Wang, X.L.; Ding, Y.L.; Pei, Y.; Yu, A.P.; Chen, Z.W. 3D N-doped hybrid architectures assembled from 0D T-Nb2O5 embedded in carbon microtubes toward high-rate Li-ion capacitors. Nano Energy 2019, 56, 118–126. [Google Scholar] [CrossRef]
- Fu, S.D.; Yu, Q.; Liu, Z.H.; Hu, P.; Chen, Q.; Feng, S.H.; Mai, L.Q.; Zhou, L. Yolk-shell Nb2O5 microspheres as intercalation pseudocapacitive anode materials for high-energy Li-ion capacitors. J. Mater. Chem. A 2019, 7, 11234–11240. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Yang, W.T. Comment on "Generalized gradient approximation made simple". Phys. Rev. Lett. 1998, 80, 890. [Google Scholar] [CrossRef]
- Segall, M.D.; Lindan, P.J.D.; Probert, M.J.; Pickard, C.J.; Hasnip, P.J.; Clark, S.J.; Payne, M.C. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys.-Condens. Matter 2002, 14, 2717–2744. [Google Scholar] [CrossRef]
- Bitzek, E.; Koskinen, P.; Gahler, F.; Moseler, M.; Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 2006, 97, 170201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valencia-Balvín, C.; Pérez-Walton, S.; Dalpian, G.M.; Osorio-Guillén, J.M. First-principles equation of state and phase stability of niobium pentoxide. Comput. Mater. Sci. 2014, 81, 133–140. [Google Scholar] [CrossRef]
- Kulkarni, A.K.; Praveen, C.S.; Sethi, Y.A.; Panmand, R.P.; Arbuj, S.S.; Naik, S.D.; Ghule, A.V.; Kale, B.B. Nanostructured N-doped orthorhombic Nb2O5 as an efficient stable photocatalyst for hydrogen generation under visible light. Dalton Trans. 2017, 46, 14859–14868. [Google Scholar] [CrossRef]
- Xue, J.; Wang, R.; Zhang, Z.; Qiu, S. Facile preparation of C, N co-modified Nb2O5 nanoneedles with enhanced visible light photocatalytic activity. Dalton Trans. 2016, 45, 16519–16525. [Google Scholar] [CrossRef]
- Huang, D.G.; Liao, S.J.; Quan, S.Q.; Liu, L.; He, Z.J.; Wan, J.B.; Zhou, W.B. Synthesis and characterization of visible light responsive N-TiO2 mixed crystal by a modified hydrothermal process. J. Non-Cryst. Solids 2008, 354, 3965–3972. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Y.; Li, H.; Cui, X.; Lin, Y. Annealing-free synthesis of carbonaceous Nb2O5 microspheres by flame thermal method and enhanced photocatalytic activity for hydrogen evolution. Mater. Res. Bull. 2015, 66, 51–58. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V. Nb 3d and O 1s core levels and chemical bonding in niobates. J. Electron. Spectrosc. Relat. Phenom. 2005, 142, 129–134. [Google Scholar] [CrossRef]
- Atuchin, V.V.; Grivel, J.C.; Korotkov, A.S.; Zhang, Z.M. Electronic parameters of Sr2Nb2O7 and chemical bonding. J. Solid State Chem. 2008, 181, 1285–1291. [Google Scholar] [CrossRef]
- Etacheri, V.; Seery, M.K.; Hinder, S.J.; Pillai, S.C. Highly Visible Light Active TiO2-xNx Heterojunction Photocatalysts. Chem. Mater. 2010, 22, 3843–3853. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wang, H.; Huang, G.; Zhang, Z.; Han, L.; Song, W.; Li, M.; Zhang, Y. Facile synthesis of urchin-like hierarchical Nb2O5 nanospheres with enhanced visible light photocatalytic activity. J. Alloys Compd. 2017, 728, 19–28. [Google Scholar] [CrossRef]
- Qamar, M.; Abdalwadoud, M.; Ahmed, M.I.; Azad, A.M.; Merzougui, B.; Bukola, S.; Yamani, Z.H.; Siddiqui, M.N. Single-Pot Synthesis of (001)-Faceted N-Doped Nb2O5/Reduced Graphene Oxide Nanocomposite for Efficient Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2015, 7, 17954–17962. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tadé, M.O.; Shao, Z. Nitrogen-doped simple and complex oxides for photocatalysis: A review. Prog. Mater Sci. 2018, 92, 33–63. [Google Scholar] [CrossRef]
- Liu, T.H.; Chen, X.J.; Dai, Y.Z.; Zhou, L.L.; Guo, J.; Ai, S.S. Synthesis of Ag3PO4 immobilized with sepiolite and its photocatalytic performance for 2,4-dichlorophenol degradation under visible light irradiation. J. Alloys Compd. 2015, 649, 244–253. [Google Scholar] [CrossRef]
- Di Valentin, C.; Finazzi, E.; Pacchioni, G.; Selloni, A.; Livraghi, S.; Paganini, M.C.; Giamello, E. N-doped TiO2: Theory and experiment. Chem. Phys. 2007, 339, 44–56. [Google Scholar] [CrossRef]
- Nelson, J.; Chandler, R.E. Random walk models of charge transfer and transport in dye sensitized systems. Coord. Chem. Rev. 2004, 248, 1181–1194. [Google Scholar] [CrossRef]
- Li, X.; Liu, P.W.; Mao, Y.; Xing, M.Y.; Zhang, J.L. Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis. Appl. Catal. B-Environ. 2015, 164, 352–359. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, W.; Bo, C.; Li, W.; Feng, Z.; Cong, E.; Yang, L.; Yang, L. Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes. Nanomaterials 2022, 12, 1690. https://doi.org/10.3390/nano12101690
Guo W, Bo C, Li W, Feng Z, Cong E, Yang L, Yang L. Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes. Nanomaterials. 2022; 12(10):1690. https://doi.org/10.3390/nano12101690
Chicago/Turabian StyleGuo, Wei, Chang Bo, Wenjing Li, Zhiying Feng, Erli Cong, Lijuan Yang, and Libin Yang. 2022. "Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes" Nanomaterials 12, no. 10: 1690. https://doi.org/10.3390/nano12101690
APA StyleGuo, W., Bo, C., Li, W., Feng, Z., Cong, E., Yang, L., & Yang, L. (2022). Enhanced Photocatalytic Activity of Nonuniformly Nitrogen-Doped Nb2O5 by Prolonging the Lifetime of Photogenerated Holes. Nanomaterials, 12(10), 1690. https://doi.org/10.3390/nano12101690