A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Phases and Microstructures
3.2. Mechanical Properties
3.3. Thermoelectric Properties and Power Generation of Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yoo, J.Y.; Yang, J.S.; Chung, M.K.; Kim, S.H.; Yoon, J.B. A review of geometric and structural design for reliable flexible electronics. J. Micromech. Microeng. 2021, 31, 074001. [Google Scholar] [CrossRef]
- Kwak, S.; Kang, J.; Nam, I.; Yi, J. Free-form and deformable energy storage as a forerunner to next-generation smart electronics. Micromachines 2020, 11, 347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leung, S.F.; Ho, K.T.; Kung, P.K.; Hsiao, V.K.S.; Alshareef, H.N.; Wang, Z.L.; He, J.H. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energ. 2015, 143, 1–25. [Google Scholar] [CrossRef]
- Soleimani, Z.; Zoras, S.; Ceranic, B.; Cui, Y.; Shahzad, S. A comprehensive review on the output voltage/power of wearable thermoelectric generators concerning their geometry and thermoelectric materials. Nano Energy 2021, 89, 106325. [Google Scholar] [CrossRef]
- Manzano, C.V.; Abad, B.; Munoz Rojo, M.; Koh, Y.R.; Hodson, S.L.; Lopez Martinez, A.M.; Xu, X.; Shakouri, A.; Sands, T.D.; Borca-Tasciuc, T.; et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep. 2016, 6, 19129. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.; Huang, J.; Bernard, F. Electronic structure, elastic and optical properties of Bi2Te3/Sb2Te3 thermoelectric composites in the periodic-superlattice thin films. Compos. Commun. 2021, 28, 100917. [Google Scholar] [CrossRef]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.G.; Dang, X.; Itoh, F.; Wang, T.; Sasaki, Y.; Kondo, H.; Koga, M.; Yabuki, K.; Snyder, K.; Yang, G.J.; et al. Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS2. Nat. Mater. 2015, 14, 622–627. [Google Scholar] [CrossRef]
- Peng, J.; Snyder, G.J. A figure of merit for flexibility. Science 2019, 366, 690. [Google Scholar] [CrossRef]
- Shang, H.D.; Deng, C.; Li, Y.; Gao, T.; Xiao, Z.; Gu, L.; Singh, H.; Ren, D.J.; Ding, Z. Bi0.5Sb1.5Te3-based films for flexible thermoelectric devices. J. Mater. Chem. 2020, 8, 4552–4561. [Google Scholar] [CrossRef]
- Na, J.; Kim, Y.; Park, T.; Park, C.; Kim, E. Preparation of bismuth telluride films with high thermoelectric power factor. ACS Appl. Mater. Interfaces 2016, 8, 32392–32400. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.Z.; Liu, Z.; Wang, Y.; Fang, B.; Qiu, L.; Zhang, J.; Wang, K. Exceptional thermoelectric properties of flexible organic−inorganic hybrids with monodispersed and periodic nanophase. Nat. Commun. 2018, 9, 3817. [Google Scholar] [CrossRef] [PubMed]
- Goo, G.; Anoop, G.; Unithrattil, S.; Kim, W.S.; Lee, H.J.; Kim, H.B.; Jung, M.H.; Park, J.; Ko, H.C.; Jo, J.Y. Proton-irradiation effects on the thermoelectric properties of flexible Bi2Te3/PEDOT:PSS composite films. Adv. Electron. Mater. 2019, 5, 1800786. [Google Scholar] [CrossRef]
- Jin, Q.S.; Zhao, W.; Qiao, Y.; Qiu, J.; Sun, J.; Lei, C.; Tai, H.; Jiang, K. Cellulose fiber-based hierarchical porous bismuth telluride for high-performance flexible and tailorable thermoelectrics. ACS Appl. Mater. Interfaces 2018, 10, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.F.; Sun, F.M.; Xia, F.; Tang, Z.Y. A high-performance and flexible thermoelectric generator based on the solution-processed composites of reduced graphene oxide nanosheets and bismuth telluride nanoplates. Nanoscale Adv. 2020, 2, 3244–3251. [Google Scholar] [CrossRef]
- Edison, T.N.J.I.; Atchudan, R.; Karthik, N.; Ganesh, K.; Xiong, D.; Lee, Y.R. A novel binder-free electro-synthesis of hierarchical nickel sulfide nanostructures on nickel foam as a battery-type electrode for hybrid-capacitors. Fuel 2020, 276, 118077. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, Y.; Zhang, D.; Li, Y.; Song, S.; Ke, Y. Emerging NiCo2O4 electrode materials assembled by nanosheets for high performance hybrid capacitor with high specific capacitance. J. Nanoelectron. Optoelectron. 2020, 15, 498–503. [Google Scholar] [CrossRef]
- Olurin, O. Strength and ductility of as-plated and sintered CVD nickel foams. Compos. Sci. Technol. 2003, 63, 2317–2329. [Google Scholar] [CrossRef]
- Lee, K.; Lewandowski, J.J. Effects of microstructural characteristics on mechanical properties of open-cell nickel foams. Mater. Sci. Technol.-Lond. 2013, 21, 1355–1358. [Google Scholar] [CrossRef]
- Fujita, S.; Ho, H.C.; Okamura, Y. Quantum theory of the Seebeck coefficient in metals. Int. J. Mod. Phys. B 2000, 14, 2231–2240. [Google Scholar] [CrossRef]
- Zong, P.A.; Zhang, P.; Yin, S.; Huang, Y.; Wang, Y.; Wan, C. Fabrication and characterization of a hybrid Bi2Se3/organic superlattice for thermoelectric energy conversion. Adv. Electron. Mater. 2019, 5, 842. [Google Scholar] [CrossRef]
- Hao, S.; Liu, J.W.; Cao, Q.; Zhao, Y.H.; Zhao, X.B.; Pei, K.; Zhang, J.; Chen, G.Y.; Che, R.C. In-situ electrochemical pretreatment of hierarchical Ni3S2-based electrocatalyst towards promoted hydrogen evolution reaction with low overpotential. J. Colloid Interface Sci. 2020, 559, 282–290. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Huang, D.; Zhang, X.; Li, G. Characterization of hexagonal Bi2Te3 nanosheets prepared by solvothermal method. Solid State Commun. 2012, 152, 810–815. [Google Scholar] [CrossRef]
- Yaprintsev, M.; Vasil’ev, A.; Ivanov, O.; Zhezhu, M.; Yaprintseva, E.; Novikov, V. Forming the locally-gradient Ni@NiTe2 domains from initial Ni inclusions embedded into thermoelectric Bi2Te3 matrix. Mater. Lett. 2021, 290, 129451. [Google Scholar] [CrossRef]
- Yuichi, H.; Koji, T.; Masayuki, T. Growth of single-crystalline Bi2Te3 hexagonal nanoplates with and without single nanopores during temperature-controlled solvothermal synthesis. Sci. Rep. 2019, 9, 10790. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, Y.; Wada, K.; Tanaka, M.; Tomita, K.; Takashiri, M. Thermal annealing effect on structural and thermoelectric properties of hexagonal Bi2Te3 nanoplate thin films by drop-casting technique. Jpn. J. Appl. Phys. 2018, 57, 02CC02. [Google Scholar] [CrossRef]
- Chen, X.; Feng, L.; Yu, P.; Liu, C.; Lan, J.; Lin, Y.H.; Yang, X. Flexible thermoelectric films based on Bi2Te3 nanosheets and carbon nanotube network with high n-type performance. ACS Appl. Mater. Interfaces 2021, 13, 5451–5459. [Google Scholar] [CrossRef]
- Chia, X.; Sofer, Z.; Luxa, J.; Pumera, M. Unconventionally layered CoTe2 and NiTe2 as electrocatalysts for hydrogen evolution. Chemistry 2017, 23, 11719–11726. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Gaarenstroom, S.W.; Powell, C.J. NIST X-ray Photoelectron Spectroscopy Database; Version 4.1; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2012. Available online: http://srdata.nist.gov/xps/ (accessed on 1 April 2022).
- Gerda, R.; Peter, R. Mechanical properties of skutterudites. Sci. Adv. Mater. 2011, 3, 517–538. [Google Scholar] [CrossRef]
- Kang, Y.H.; Bae, E.J.; Lee, M.H.; Han, M.; Kim, B.J.; Cho, S.Y. Highly flexible and durable thermoelectric power generator using CNT/PDMS foam by rapid solvent evaporation. Small 2022, 18, 2106108. [Google Scholar] [CrossRef] [PubMed]
- Kee, S.; Haque, M.A.; Corzo, D.; Alshareef, H.N.; Baran, D. Self-healing and stretchable 3D-printed organic thermoelectrics. Adv. Funct. Mater. 2019, 29, 1905426. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, G.; Cheng, X.; Deng, H.; Fu, Q. Stretchable and healable conductive elastomer based on PEDOT:PSS/natural rubber for self-powered temperature and strain sensing. ACS Appl. Mater. Interfaces 2021, 13, 14599–14611. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Zeng, S.; Li, X.; Jiang, J.; Yang, W.; Chen, Y.; Li, M.; Zheng, J. Flexible and high performance of n-type thermoelectric PVDF composite film induced by nickel nanowires. Mater. Des. 2020, 188, 108496. [Google Scholar] [CrossRef]
- Xiao, C.; Xue, Y.; Liu, M.; Xu, X.; Wu, X.; Wang, Z.; Xu, Y.; Chen, G. Polymer composites with lychee-like core covered by segregated conducting and flexible networks: Unique morphology, high flexibility, stretchability and thermoelectric performance. Compos. Sci. Technol. 2018, 161, 16–21. [Google Scholar] [CrossRef]
- Jia, F.; Wu, R.; Liu, C.; Lan, J.; Lin, Y.H.; Yang, X. High thermoelectric and flexible PEDOT/SWCNT/BC nanoporous films derived from aerogels. ACS Sustain. Chem. Eng. 2019, 7, 12591–12600. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, L. A method to calculate the effective thermal conductivity of spherical particle-laden composite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 493, 012049. [Google Scholar] [CrossRef]
- Jin, Q.; Jiang, S.; Zhao, Y.; Wang, D.; Qiu, J.; Tang, D.M.; Tan, J.; Sun, D.M.; Hou, P.X.; Chen, X.Q.; et al. Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 2019, 18, 62–68. [Google Scholar] [CrossRef]
Composition | Tensile Strength (MPa) | Elongation (%) | Power Factor (μW m−1 K−2) | Ref. |
---|---|---|---|---|
CNT/PDMS Foam | 0.78 | 20.6 | 2.9 | [32] |
DMSO/PEDOT:PSS | 38.97 | 6.6 | 108.9 | [33] |
PEDOT:PSS/Rubber | 20.12 | 4.0 | 19.1 | [34] |
PVDF/Ni nanowires | 25.3 | 9.0 | 24.3 | [35] |
PPBH/CNT/PUBI | 6.11 | 3.8 | 6.3 | [36] |
PEDOT/SWCNT/BC | 1.6 | 2.1 | 12.0 | [37] |
Ni Foam/Bi2Te3 | 12.7 ± 0.04 | 28.8 | 850.0 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, T.; Chen, M.; Liu, Z.; Song, Q.; Ou, Y.; Wang, H.; Liang, J.; Zhang, Q.; Mao, Z.; Wang, Z.; et al. A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance. Nanomaterials 2022, 12, 1693. https://doi.org/10.3390/nano12101693
Shi T, Chen M, Liu Z, Song Q, Ou Y, Wang H, Liang J, Zhang Q, Mao Z, Wang Z, et al. A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance. Nanomaterials. 2022; 12(10):1693. https://doi.org/10.3390/nano12101693
Chicago/Turabian StyleShi, Taifeng, Mengran Chen, Zhenguo Liu, Qingfeng Song, Yixiang Ou, Haoqi Wang, Jia Liang, Qihao Zhang, Zhendong Mao, Zhiwen Wang, and et al. 2022. "A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance" Nanomaterials 12, no. 10: 1693. https://doi.org/10.3390/nano12101693
APA StyleShi, T., Chen, M., Liu, Z., Song, Q., Ou, Y., Wang, H., Liang, J., Zhang, Q., Mao, Z., Wang, Z., Zheng, J., Han, Q., Razeeb, K. M., & Zong, P. -a. (2022). A Bi2Te3-Filled Nickel Foam Film with Exceptional Flexibility and Thermoelectric Performance. Nanomaterials, 12(10), 1693. https://doi.org/10.3390/nano12101693