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Abstract: This paper presents a numerical simulation of a magneto-convection flow in a 3D chamber.
The room has a very specific permeability and a zigzag bottom wall. The fluid used in this study
is Al2O3-Cu/water with 4% nanoparticles. The Galerkin finite element technique (GFEM) was
developed to solve the main partial equations. The hybrid nanofluid inside the container is subjected
to the horizontal motion of the upper wall, an external magnetic field, and a thermal buoyancy force.
The present numerical methodology is validated by previous data. The goal of this investigation
was to understand and determine the percentage of heat energy transferred between the nanofluid
and the bottom wall of the container under the influence of a set of criteria, namely: the movement
speed of the upper wall of the cavity (Re = 1 to 500), the amount of permeability (Da = 10−5 to 10−2),
the intensity of the external magnetic field (Ha = 0 to 100), the number of zigzags of the lower wall
(N = 1 to 4), and the value of thermal buoyancy when the force is constant (Gr = 1000). The contours
of the total entropy generation, isotherm, and streamline are represented in order to explain the fluid
motion and thermal pattern. It was found that the heat transfer is significant when (N = 4), where the
natural convection is dominant and (N = 2), and the forced convection is predominant.

Keywords: convection; irreversibility analysis; MHD; hybrid nanofluid; GFEM

1. Introduction

Mixed convection is a complicated phenomenon in thermal transfer processes, and
it is generated owing to the interplay of shear flow induced by a moving interface and
buoyancy-driven flow. It helps in boosting heat transfer and flow mixing characteristics.
Apart from this, an increase in the ratio of heat transfer is a vital concern owing to the
sparkling improvements in current technologies. Among the most important thermal trans-
fer processes, mixed convection heat transfer is massively confronted in many engineering
and industrial investigations such as heat exchangers, the cooling of microelectronic and
electronic devices, solar collectors, pharmaceutical processes, etc.
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Engineers and researchers have assembled to build revolutionary thermal transport
fluids by incorporating very fine particles with regular cooling liquids called nanofluids.
Nanofluids feature specific qualities, including greater heat conductivity, stability, the
lowest dragging force, etc. Therefore, various studies have been undertaken on double-
diffusion convection inside a lid-driven container loaded with normal fluids or nanofluids
with varied temperature settings. A few relevant past studies have been provided here [1–4].
Zakaria et al. [5] explored the magneto-convection flow generated by the lid in a chamber
with two curved edges; here, the bottom side was partly heated and loaded with a hybrid
nanofluid composed of Al2O3-Cu/water. The authors observed that the composition ratio
(Al2O3 75%, Cu 25%) offered the greatest values of both the total entropy production and the
mean Nusselt number. Furthermore, the overall irreversibility and heat transfer diminish
with rising Ha and declining Ri. Haiying et al. [6] modeled the laminar regime’s mixed
flow and nanofluid’s heat transfer within an enclosed semi-elliptic lid-driven chamber. The
collected findings suggest that introducing a greater volume percentage of nanoparticles at
small values of Richardson numbers contributes to the augmentation of heat transfer and
the mean Nusselt number. An-Yang et al. [7] provided a very accurate wavelet-homotopy
resolution for a double-diffusion convection hybrid nanofluid flow inside a tilted squared
lid-driven enclosure. They determined that the hybrid nanofluid is better than regular
heat transfer fluids for heat transfer improvement and is comparable to nanofluids, but
it might be simpler and cheaper. Jakeer et al. [8] evaluated the influence of a hot barrier
location on a magneto-hybrid nanoliquid flow in a porous chamber under the effect of
a lid-driven flow with a Cattaneo–Christov heat flux. Based on their conclusions, the
thermo-fluidic coefficients in the direction of the displacement of the heated obstruction are
discovered to have an essential effect. Manchanda et al. [9] assessed the double-diffusion
convection flow computationally inside a double lid-driven rectangular chamber with a
heated triangular obstruction.

The Lorentz force connected with fluids that carry electric charges has garnered
substantial study owing to its relevance in engineering applications. In the event of double
diffusion, which refers to flow owing to moving walls, the involvement of a magnetic
field might impact the fluid flow and heat transfer processes. It is of primary interest to
investigate the features of the energy transport of the double diffusion of nanofluids inside
lid-driven enclosures with the impact of magnetic forces for the optimal development
of engineering devices [10–12]. Bakar et al. [13] employed a finite volume approach to
uncover the considerable influence of the Lorentz force on the flow and thermal field
inside a lid-driven rectangular enclosure. They finally demonstrated that both the heat
transfer and flow convection rate diminished with higher Ha. Khanafer et al. [14] utilized
the commercial program ADINA to explore mixed convective heat transfer inside a lid-
driven enclosure with a spinning obstacle. It was noted that the mean Nusselt number is
related to the direction of the rotational velocity and increases with a rise in the angular
velocity. Ali et al. [15] explored the double-diffusion convection in a nanoliquid loaded-
cavity generated by thermal buoyancy force. They also included impacts from an external
magnetic field, a sliding wall and a rotating flat plate. According to their data, the optimum
heat transfer is guaranteed when the movement of the spinning plate is the same as the
movement of the lid wall. Furthermore, excellent heat transfer performance is attained
when using nanoparticles with a 5 percent concentration. The heat transfer rate was found
to be 123.02 percent greater than that for simple fluid. Ghasemi et al. [16] computationally
explored the MHD convective flow of nanoliquid in a cubical chamber containing lid-
driven walls. The acquired findings indicated that nano additives improve heat transfer,
whereas a magnetic field decreases the proposed convective process. Geridonmez et al. [17]
explored mixed convective flow in a lid-driven chamber. The influence of a magnetic
field was partially applied. They observed that the fluid movement and heat transfer
are delayed when the Lorentz force grows. Hussain et al. [18] examined the influence of
fins and Lorentz force with nanoliquid in both double-lid-driven and single-lid-driven
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chambers. The collected data determined that the velocity of flow and convective heat
transfer decline with the rise in Ha and Ri numbers in all conditions.

Many scholars have investigated double-diffusion convection in a porous space under
a variety of settings, such as lid-driven cavities filled with nanofluid. Gutt et al. [19]
explored lid-driven chamber issues using the Darcy –Brinkman model numerically and
analytically. It was noticed that an increment in space permeability resulted in moving the
vorticity center and reducing the value of ϕ max (the stream function). Eren Çolak et al. [20]
numerically studied mixed convection inside a lid-driven container with a partly heated
porous block. It was noticed that space permeability might be utilized to regulate the
counter-rotating zone generation in the space under specified geometrical conditions.
Astanina et al. [21] explored double porous sections’ lid-driven enclosure issues, and
they employed nanofluid as a thermal transfer medium. They observed that the impact
of the layer thickness of porous sections on heat transfer and flow is non-linear, and a
Darcy number of the lowest porous layer has a limited effect on the hydrodynamic pattern.
Lei et al. [22] studied double diffusion with porous fins issues and numerically explored the
lid-driven chamber scenario. It was noticed that a rise in Darcy number improves the heat
transfer; however, the amplification is restricted, and beyond a given space permeability,
heat transfer diminishes. Dadavi et al. [23] explored a lid-driven container issue under a
double-diffusion flow and coarse porous material. They concluded that a porous medium
decreases the mean value of Nu under Re = 1000 settings.

Flow and heat transfer from non-linear surfaces are regularly found in various en-
gineering utilizations. One of the potential approaches for heat transfer enhancement
in cavities is to employ irregular (zigzag) active walls rather than smooth ones [24–27].
Masoud Ali et al. [28] examined the microchannel heat sink topologies’ dynamic flow
and thermal characteristics using zigzag, rectangular, and twisted fins. They discovered
that the zigzag fin and 3% of Al2O3 nanoparticles give the highest heat efficiency, with
a 60% higher value of Nu and 15% greater efficiency of second law than without fins
and with ordinary liquid cooling (water). A. Alnaqi et al. [29] examined the heat transfer
performance in hybrid nanofluids utilized to cool micro-heat sink with the zigzag surfaces
of micro-channels exposed to a continuous heat source. The findings indicated that raising
the velocity enhances the heat generation from the MHS, whereas extending the length of
the zigzag of the channel enhances the temperature distribution from the MHS’s surface,
and therefore improves the evacuation of thermal energy, which is related to a rise in the
pressure difference (∆P) of the passing fluid. Oudina et al. [30] assessed the influences of
convection and entropy production on a hybrid nanofluid within a trapezoidal chamber
with a zigzagged surface and magnetized system. The findings demonstrated that an
intervening magnetic field greatly impacts the generated flow of the working fluid, and the
heat efficiency of the chamber is enhanced by increasing the Ra and Ha values. Abderrah-
mane et al. [31] presented a numerical experience of double-diffusion heat transfer in a 3D
triangular porous container with a zigzag wall and a revolving obstacle in the center of the
studied area. The results demonstrate that for obtaining optimal rates of heat transfer in
hybrid nanofluid in a 3-D triangular porous compartment equipped with a rotating obstacle
and exposed to an external magnetic field, a Hartmann number of <0, Darcy number of
10−3, rotation speed of >500 of the cylinder in the flow direction, and one zigzag on the
hot surface are advised. Chabani et al. [32] numerically investigated thermal transmission
using a Cu-TiO2/EG hybrid nanofluid within a porous annular zone between a zigzagged
triangle and various obstacles and in the existence of an inclined magnetic field. From the
findings, it was obtained that by excluding the Ha number, which decelerates the flow rate,
the Rayleigh number, the nanofluid volumetric fraction, and the rotational speed of the
obstacle have a beneficial influence on the thermal transmission rate.

Since the use of nanofluids with wall zigzags helps to improve heat transfer, we
decided through this paper to present new data on this issue. Accordingly, this paper
simulates the motion of a hybrid nanofluid inside a three-dimensional chamber immersed
in a magnetic field. The interior space of the cavity is permeable to the fluids, while all
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walls are impermeable. As for the cavity walls, the upper wall moves horizontally at a
constant speed, while the lower zigzag wall is stationary.

The results of this work help expand the theoretical facts about nanofluids and provide
some values for the coefficient that helps in the achievement and development of heat
exchangers and cooling systems.

2. Mathematical Model and the Study Configuration

The values of the thermophysical properties of the elements of the nanofluid are listed
in Table 1. The considered configuration of this work is illustrated in Figure 1 as a 3D-zigzag
porous cavity containing a nanofluid with a magnetic force applied along the positive y-
and z-directions. All walls are assumed to be adiabatic and no-slip, except the zigzag wall,
which is considered at the hot temperature denoted (Th), and the front wall is at the cold
temperature denoted (Tc). The zigzag wall is taken to be the main geometry influencer,
which will have different undulations (various peak numbers, N = 4, 2, and 1). The top
walls are moving in opposite directions with a constant speed of U.

Table 1. Thermophysical properties of solid nanoparticles (Al2O3 and Cu base liquid (water) [33,34].

Thermophysical Properties Al2O3 Cu Water

Density [ ρ
(
kg/m3)] 3970 8933 997.1

Specific heat [ Cp(J/kgK)] 765 385 4179

Thermal conductivity
[
k
(

W
mK

)]
40 400 0.613

Electrical conductivity [ σ(S/m)] 3.69× 107 5.96× 107 0.05
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2.1. Mathematical Model

By assuming that the study is within a 3D porous cavity and the selected liquid is a
Newtonian-incompressible fluid undergoing a laminar regime, the governing equations
are as follows [35]:

The conservation equations are:

∂U
∂X

+
∂V
∂Y

+
∂W
∂Z

= 0 (1)
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The momentum equations, along with the three directions, are:

ρn f
ρ f

[
U
ε2

∂U
∂X + V

ε2
∂U
∂Y + W

ε2
∂U
∂Z

]
= − ρn f

ρ f
∂P
∂X + 1

Re
1
ε

µhn f
µ f

(
∂U
∂X + ∂U

∂Y + ∂U
∂Z

)
− µhn f

µ f ReDa U − ρhn f
ρ f

0.55√
Da

√
U2 + V2 + W2 U

(2a)

ρn f
ρ f

[
U
ε2

∂V
∂X + V

ε2
∂V
∂Y + W

ε2
∂V
∂Z

]
= − ρhn f

ρ f
∂P
∂Y + 1

Re
1
ε

µhn f
µ f

(
∂V
∂X + ∂V

∂Y + ∂V
∂Z

)
− µn f

µ f ReDa V − ρhn f
ρ f

0.55√
Da

√
U2 + V2 + W2V − σhn f

σf
Ha2 V

ε

(2b)

ρhn f
ρ f

[
U
ε2

∂W
∂X + V

ε2
∂W
∂Y + W

ε2
∂W
∂Z

]
= − ρhn f

ρ f
∂P
∂Z + 1

Re
1
ε

µhn f
µ f

(
∂W
∂X + ∂W

∂Y + ∂W
∂Z

)
− µn f

µ f ReDa W − ρhn f
ρ f

0.55√
Da

√
U2 + V2 + W2 W +

(ρβ)hn f
(ρβ) f

Riθ − σhn f
σf

Ha2 W
ε

(2c)

where the latest term in Equations (2b) and (2c) are Lorentz forces.
The heat equation is:

U
∂θ

∂X
+ V

∂θ

∂X
+ W

∂θ

∂Z
=

(ρcP) f

(ρcP)hn f

ke f f

k f

1
RePr

[
∂2θ

∂X2 +
∂2θ

∂Y2 +
∂2θ

∂Z2

]
(3)

where ke f f = (1− ε)ks + εkn f (ks is referred to the solid thermal conductivity for the matrix
of the porous layer, ks = 0.78 W/m.K and ε = 0.37),

X, Y, Z = x,y,z
L , U, V, W = (u,v,w)L

αn f
, θ = T−Tc

Th−Tc
, P = pL2

ρn f α2
f l

, Pr =
v f
α f

, Da = K
L2 , Ra =

gβ f (Th−Tc)L3

α f v f
, Ha = LB

√
σn f
µn f

, ε is the porosity, and Ri = Gr
Re2 .

In the present study, the thermophysical properties of the hybrid nanofluid [36–39]
are considered as follow:

• Dynamic viscosity: µhn f = µ f
(
1− φAl2O2 − φCu

)−2.5;

• Density: ρhn f = φAl2O3 ρAl2O3 + φCuρCu +
(

1− φhn f

)
ρ f ;

• Specific heat:
(
ρCp

)
hn f = φAl2O3

(
ρCp

)
Al2O3

+ φCu
(
ρCp

)
Cu +

(
1− φhn f

)(
ρCp

)
f ;

• Thermal expansion coefficient: βhn f = ϕ1βs1 + ϕ2βs2

(
1− ϕhn f

)
β f ,

where ϕhn f = ϕ1 + ϕ2;

• Electrical conductivity:
σhn f
σf

=
{

φAl2O3
σAl2O3

+φCuσCu
φAl2O3

+φCu
+ 2σf + 2

(
φAl2O3 σAl2O3 + φCuσCu

)
−2
(
φAl2O3 + φCu

)
σf

}
×
{

φAl2O3
σAl2O3

+φCuσCu
φAl2O3

+φCu
+ 2σf −

(
φAl2O3 σAl2O3 + φCuσCu

)
+
(
φAl2O3 + φCu

)
σf

}−1
; and

• Thermal conductivity:
khn f
k f

=

{
φAl2O3

kAl2O3
+φCukCu

φAl2O3
+φCu

+ 2k f + 2
(
φAl2O3 kAl2O3 + φCukCu

)
−2
(
φAl2O3 + φCu

)
k f

}
×
{

φAl2O3
kAl2O3

+φCukCu
φAl2O3

+φCu
+ 2k f −

(
φAl2O3 kAl2O3 + φCukCu

)
+
(
φAl2O3 + φCu

)
k f

}−1
.

2.2. Boundary Conditions

The following table lists the boundary conditions of the presented study:

Thermal Condition Velocity Condition

The left wall θ = 0 U, V, W = 0
The right wall θ = 0 U, V, W = 0
The top wall adiabatic U = 1, V, W = 0

The lower wall θ = 1 U, V, W = 0
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2.3. The Total Entropy Generation Stot

The dimensionless form of the total entropy generation STOT is expressed as
follows [40]:

STOT = SHT + SFF + SMF (4)

where

SHT =
khn f

k f luid

[(
∂θ

∂X

)2
+

(
∂θ

∂Y

)2
+

(
∂θ

∂Z

)2
]

, (5)

SFF =
µhn f
µ f luid

ϕ


2
(

∂U
∂X

)2
+ 2
(

∂V
∂Y

)2
+ 2
(

∂W
∂Z

)2

+
(

∂U
∂Y + ∂V

∂X

)2
+
(

∂W
∂Y + ∂V

∂Z

)2

+
(

∂U
∂Z + ∂W

∂X

)2
+ U2+V2+W2

Da

 (6)

and

SMF = ϕ
σhn f

σf luid

Ha2

ε

(
W2 + V2

)
, (7)

where ϕ =
εµn f T0

ke f f

(
αn f
L∆T

)2
, with T0 = Th+Tc

2 = 0.5 and ∆T = Th − Tc.
The dimensionless form of the Bejan number is as follows:

Be =
SHT
STOT

(8)

The local and average Nusslet numbers are valued as follows:
Locale Nusslet,

Nu = −
ke f f

k f l

∂θ

∂S
; and (9)

Average Nusslet,

Nu =
1
S

S∫
0

Nu dxdz (10)

3. Numerical Method and Validation

In order to calculate the Equations (4)–(10), the main partial Equations (1)–(3) were
numerically solved using the suitable boundary conditions. Solving the equations was car-
ried out using the Galerkin weighted residual finite element [41]. Non-uniform triangular
components were obtained to discretize the issuing domain. The triangular elements with
six nodes were adopted to construct the finite element equations. The main partial differen-
tial equations were covered in a system of integral equations using he Galerkin weighted
residual approach. Gauss’s quadrature method was then used to solve each term. Generally,
the purpose is to determine an algebraic system appropriate to the boundary conditions.
Different grids were used for the mesh dependence study. For the present simulations,
a grid of 511,449 elements was selected (Table 2). In order to test the present numerical
approach of the mathematical methodology of the code, the velocity profile inside a room
with cylinders was determined and compared (Figure 2) with Iwatsu et al.’s [42] work.

Table 2. Nuavg and Beavg for the different mesh sizes.

No. of Grid Elements 6287 59,960 159,022 511,449 2,163,030

Nuavg 15,555 15,542 15,549 15,548 15,548

Beavg 0.14927 0.14852 0.14832 0.14832 0.14832
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4. Results and Discussion

This paper intends to present new results concerning the dynamic behavior of a hybrid
nanofluid in a 3D container under the impact of Lorentz and thermal buoyancy forces.
An understanding the hybrid nanofluids’ dynamic behavior and its retroactive effect on
heat transfer was achieved by analyzing and interpreting the pathlines, distribution of
isotherms, and total energy. Further, the interior of the chamber was characterized by a
specific permeability to fluids.

The pertinent parameters for the present study are as follows: Reynolds number
(Re = 1, 10, 100, and 500), Darcy number (Da = 10−5 to 10−2), Hartmann number (Ha = 0 to
100), and, finally, the number of zigzags in the bottom wall of the cavity (N = 1, 2, 3, and
4). In addition to this, we mentioned that 4% was the percentage of the nanoparticles in
the fluid.

This flow indices a forced-type of convection heat transfer. Before we proceed to
presenting and analyzing the results, we would like to highlight the following: the upper
wall of the chamber moves horizontally, and this is what moves the adjacent fluid layers
with it, and accordingly, a forced flow is created inside the chamber. On the other hand, the
fact that the bottom wall is hot and the nanofluid in the room is cold created a difference
in density distribution and, thus, the formation of an internal natural flow accompanied
by the natural convection heat transfer. Together, the heat transfer is of mixed type. Since
the value of the Grashof number in this work is (Gr = 1000), this means that the natural
convection is predominant for Re = 1 and 10, whereas, for Re = 100 and 500, the forced
convection is predominant.

Figure 3 represents the effect of the Darcy number value on each of the velocity
pathlines and the thermal and total entropy distributions inside the studied container. The
value of the Reynolds number is 100, and the number of zigzags is 4 (N = 4). The effect
of the Lorenz force is nil in this case as Ha = 0. Through Figure 3, it is clear that raising
the value of the Darcy number makes the permeability of the medium greater and moves
the fluid particles faster and more easily. The movement of the flow is circular; this is
what is indicated in the contours of pathlines. It is also noted that due to the shape of
the zigzags on the bottom side, the flow was divided into two parts for Da = 10−2. The
distribution of isotherms confirms the previous observation. The temperature gradient is
higher on the right side of the bottom wall than on the left side, which confirms that the
evacuation of heat on the right side is greater. The ease of movement of the fluid particles
inside the container due to the improvement of the medium’s permeability augmented the
total entropy by augmenting the value of the number of (Da).
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Figure 4 mainly depicts the effects of the Hartmann number value on the contours of
the pathline, isotherm, and total entropy for the constant values of the Reynolds number
(Re = 100) and zigzag number (N = 4). Through the streamlines of Figure 4, it is clear
that raising the value of Ha from 0 to 100 negatively affects the movement of the fluid
particles; that is, the movement becomes less uniform, reducing the inertia of the flow.
This is, of course, due to the emergence of the Lorentz force, which hinders the direction
of the movement of the flow. It is also noted that this movement negatively affected the
heat transfer between the bottom side and the nanofluid, and this is what the isotherms in
Figure 4 show. That is, there is a decrease in the temperature gradient as the value of Ha
increases. Further, Figure 4 shows a decrease in total entropy generation due to a decrease
in flow velocity due to the negative effect of the Lorentz force.
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Figure 5 shows the impact of the number of zigzags of the lower wall of the room
on the distribution pattern of the pathlines, isotherms, and total entropy generation for
Re = 100, Ha = 0, and Da = 10−2. Initially, it is observed that there is a significant effect of
the number of zigzags on the displayed elements. Through Figure 5, it is clearly shown that
the movement of the flow inside the container, as well as the temperature gradient near the
bottom wall, are very significant for the number of zigzags (N = 2). Through this, it can be
predicted that the heat transfer is very important when the number of zigzags is (N = 2).
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Figure 6 illustrates the influence of the speed of the movement of the upper wall on
the velocity pathlines, isotherms, and total entropy for Da = 10−2 and Ha = 0. The speed
of the wall movement is expressed in Reynolds numbers. That is, the higher the value of
the Reynolds number, the faster the wall. From Figure 6, it is clear that there is a strong
influence of the speed of the wall on the displayed items. Generally, the higher the value
of the Reynolds number, the greater the permeability of the fluid movement towards the
bottom of the chamber. For the contours of pathlines, a circular flow is formed inside
the chamber for Re = 1, and then the movement of fluid particles increases in complexity
as the value of Re increases. Of course, the transmission of the movement between the
moving upper wall and the fluid layers was done through the physical property of the
fluid presented by viscosity.
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Figure 6. Distribution of velocity pathlines, isotherm, and total entropy for different Re at different
scenarios where Ha = 0, Da = 10−2, and ϕ = 0.04.

With regard to total entropy contours, it is noted that the higher the value of the Re
number, the maximum values of total entropy generation move towards the bottom of
the room. The latter increases the temperature gradient around the bottom wall of the
chamber, as indicated by the isotherms. Accordingly, we can conclude that the heat transfer
is augmented with the increase in the value of Re.

Figure 7A,B presents the evolution of the mean values of the Nusselt and Bejan
numbers in terms of the Re number with the change in the applied value of the Hartmann
number (Ha) for Da = 10−2 and N = 4. It is noticed that raising the value of the Re
number has a positive impact on the Nu number, while raising the value of the Ha number
negatively affects the value of the Nu number. This is, of course, a result of the following:
increasing the value of the Reynolds number increases the displacement of the flow inside
the container, and the latter improves heat transfer. While raising the Hartmann number
increases Lorenz’s effective force that damps the velocity of the flow. Therefore, there is
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a reduction in heat transfer. Recall that the Bejan number is an expression of the ratio
between entropy generation caused by heat transfer and entropy due to friction of flow
movement. From Figure 7B, the mean values of the Bejan number (Be) are completely
opposite to the values of the Nusselt number. This is due to the fact that the greater the fluid
movement, the greater the coefficient of friction, and accordingly, there will be a decrease
in Bejan number.
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Figure 8A,B represents the effect of room permeability (Darcy number) on the mean
values of the Nusselt and Bejan numbers for various values of Re at Ha = 0 and N = 4. It
is clear that the higher value of the Darcy number (Da), the higher value of the Nusselt
number (Nu), and this is mainly due to the increase in the permeability of the medium,
which facilitates the movement of the flow, which makes the heat transfer process better.
There is a slight regression of the values of the Bejan number in terms of the Darcy number.
However, the influence of the Reynolds number on the Nu and Be numbers remains the
same, as in the previous case.
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Figure 9A,B presents the influence of the number of lower wall zigzags on the average
values of the Nusselt number (Nu) and Bejan number (Be) for Ha = 0 and Da = 10−2. The
number of zigzags in the bottom wall of the container changes the course of flow, which
affects the heat transfer and total entropy generation. Figure 9A proves that the Reynolds
number positively affects the Nusselt number for all values of the number of zigzags.
In addition, when the value of the Reynolds number is less than 100, meaning that the
buoyancy-driven flow is dominant, the values of the Nusselt number are the largest for
N = 4. On the other hand, when the Re value is greater than 100, i.e., the forced convection
is dominant, the values of the Nusselt number become greater for N = 2, whereas the mean
value of the Bejan number is significant when N = 3.
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Through the results of the numerical simulations, we were able to conclude the following 
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ment of the flow particles ,and thus negatively affects the thermal transfer. 
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5. Conclusions

Through this work, we studied the dynamic and thermal nanofluid patterns inside a
three-dimensional chamber. The hybrid nanofluid is of Al2O3-Cu/water and 4% nanoparti-
cles. The fluid inside the chamber is affected by the medium’s permeability, the horizontal
movement of the upper wall, the external magnetic field, the number of zigzags on the
bottom side, and the intensity of the thermal buoyancy. The thermal pattern and the
dynamic behavior of the hybrid nanofluid under these factors have been studied and
understood. The permeability of the medium is well determined in terms of the Darcy
number (Da = 10−5 to 10−2), the velocity of the upper wall was controlled by the Reynolds
number (Re = 1 to 500), the intensity of the magnetic system was expressed in terms of
a Hartmann number (Ha = 0 to 100), and, finally, the zigzag number was denoted by N
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(N = 1 to 4). Through the results of the numerical simulations, we were able to conclude
the following points:

• Increasing the speed of the horizontal displacement of the upper wall or the perme-
ability of the chamber accelerates the movement of the flow within the room and
improves heat transfer.

• Applying the magnetic field and gradually increasing its intensity hinders the move-
ment of the flow particles, and thus negatively affects the thermal transfer.

• The concentration of the total entropy generation depends mainly on the value of the
Reynolds number. As the Re value increases, the entropy generation shifts downward.

• The mean value of the number (Nu) is more significant for N = 4 in the case where
the natural convection is predominant and for N = 2 in the case where the forced
convection is predominant.

Author Contributions: Conceptualization, H.L. and A.A.; methodology, A.A. and K.G.; software,
A.M.; validation, O.Y. and A.M.; formal analysis, H.L.; investigation, A.M.; resources, A.M.S.; data
curation, O.Y.; Writing—original draft preparation, A.M.S. and A.A.; writing—review and editing, all
authors; visualization, W.W.; supervision, A.A.; project administration, W.W.; funding acquisition,
W.W.; A.M.S. and A.A. collaborated equally to this work and are co-first authors. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Scientific Research at King Khalid University,
grant number RGP2/224/43. The authors would like to thank the Deanship of Scientific Research
at Umm Al-Qura University for supporting this work by Grant Code: 22UQU4331317DSR09. This
research received funding support from the NSRF via the Program Management Unit for Human
Resources and Institutional Development, Research and Innovation (grant number B05F640092).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The results of this study are available only within the paper to support
the data.

Conflicts of Interest: The authors announce that no conflict of interest exists.

References
1. Mustafa, M.A.S.; Hussain, H.M.; Abtan, A.A.; Habeeb, L.J. Review on Mixed Convective Heat Transfer in Different Geometries of

Cavity with Lid Driven. J. Mech. Eng. Res. Dev. 2020, 43, 12–25.
2. Koulali, A.; Sahi, A.; Meziani, B.; Aissa, A.; Sadaoui, D.; Ali, H.M. CFD analysis of natural convection between two superposed

fluids: Role of corrugated bottoms. Chem. Eng. Commun. 2021, 1–17. [CrossRef]
3. Ahmed, S.E.; El-Aziz, A. Effect of local thermal non-equilibrium on unsteady heat transfer by natural convection of a nanofluid

over a vertical wavy surface. Meccanica 2013, 48, 33–43. [CrossRef]
4. Rasool, G.; Saeed, A.M.; Lare, A.I.; Abderrahmane, A.; Guedri, K.; Vaidya, H.; Marzouki, R. Darcy-Forchheimer Flow of Water

Conveying Multi-Walled Carbon Nanoparticles through a Vertical Cleveland Z-Staggered Cavity Subject to Entropy Generation.
Micromachines 2022, 13, 744. [CrossRef]

5. Korei, Z.; Benissaad, S.; Berrahil, F.; Filali, A. MHD mixed convection and irreversibility analysis of hybrid nanofluids in a
partially heated lid-driven cavity chamfered from the bottom side. Int. Commun. Heat Mass Transf. 2022, 132, 105895. [CrossRef]

6. Zhang, H.; Nie, X.; Bokov, D.O.; Toghraie, D.; Akbari, O.A.; Montazerifar, F.; Pourfattah, F.; Esmaeili, Y.; Khodaparast, R.
Numerical study of mixed convection and entropy generation of Water-Ag nanofluid filled semi-elliptic lid-driven cavity. Alex.
Eng. J. 2022, 61, 8875–8896. [CrossRef]

7. Wang, A.-Y.; Xu, H. Highly accurate wavelet-homotopy solutions for mixed convection hybrid nanofluid flow in an inclined
square lid-driven cavityImage 1. Comput. Math. Appl. 2022, 108, 88–108. [CrossRef]

8. Jakeer, S.; Reddy, P.B.; Rashad, A.M.; Nabwey, H.A. Impact of heated obstacle position on magneto-hybrid nanofluid flow in a
lid-driven porous cavity with Cattaneo-Christov heat flux pattern. Alex. Eng. J. 2021, 60, 821–835. [CrossRef]

9. Manchanda, M.; Gangawane, K.M. Mixed convection in a two-sided lid-driven cavity containing heated triangular block for
non-Newtonian power-law fluids. Int. J. Mech. Sci. 2018, 144, 235–248. [CrossRef]

10. Izadi, S.; Armaghani, T.; Ghasemiasl, R.; Chamkha, A.J.; Molana, M. A comprehensive review on mixed convection of nanofluids
in various shapes of enclosures. Powder Technol. 2019, 343, 880–907. [CrossRef]

11. Zhou, W.; Yan, Y.; Xie, Y.; Liu, B. Three dimensional lattice Boltzmann simulation for mixed convection of nanofluids in the
presence of magnetic field. Int. Commun. Heat Mass Transf. 2017, 80, 1–9. [CrossRef]

http://doi.org/10.1080/00986445.2021.1976162
http://doi.org/10.1007/s11012-012-9581-y
http://doi.org/10.3390/mi13050744
http://doi.org/10.1016/j.icheatmasstransfer.2022.105895
http://doi.org/10.1016/j.aej.2022.02.028
http://doi.org/10.1016/j.camwa.2022.01.004
http://doi.org/10.1016/j.aej.2020.10.011
http://doi.org/10.1016/j.ijmecsci.2018.06.005
http://doi.org/10.1016/j.powtec.2018.11.006
http://doi.org/10.1016/j.icheatmasstransfer.2016.11.012


Nanomaterials 2022, 12, 1747 16 of 17

12. M’hamed, B.; Sidik, N.A.C.; Yazid, M.N.A.W.M.; Mamat, R.; Najafi, G.; Kefayati, G.H.R. A review on why researchers apply
external magnetic field on nanofluids. Int. Commun. Heat Mass Transf. 2016, 78, 60–67. [CrossRef]

13. Bakar, N.A.; Roslan, R.; Karimipour, A. Magnetic Field Effect on Mixed Convection Heat Transfer in a Lid-Driven Rectangular
Cavity. CFD Lett. 2020, 12, 13–21.

14. Khanafer, K.; Aithal, S.M. Mixed convection heat transfer in a lid-driven cavity with a rotating circular cylinder. Int. Commun.
Heat Mass Transf. 2017, 86, 131–142. [CrossRef]

15. Ali, M.M.; Akhter, R.; Alim, M.A. Magneto-mixed convection in a lid driven partially heated cavity equipped with nanofluid and
rotating flat plate. Alex. Eng. J. 2022, 61, 257–278. [CrossRef]

16. Ghasemi, K.; Siavashi, M. Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside
a lid-driven enclosure using MRT-LBM. Int. J. Mech. Sci. 2020, 165, 105199. [CrossRef]

17. Geridonmez, B.P.; Oztop, H.F. Mixed Convection Heat Transfer in a Lid-Driven Cavity under the Effect of a Partial Magnetic
Field. Heat Transf. Eng. 2020, 42, 875–887. [CrossRef]

18. Hussain, S.; Jamal, M.; Geridonmez, B.P. Impact of fins and inclined magnetic field in double lid-driven cavity with Cu–water
nanofluid. Int. J. Therm. Sci. 2021, 161, 106707. [CrossRef]
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