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Abstract: Lately, a new class of nanofluids, namely hybrid nanofluids, has been introduced that
performs much better compared with the nanofluids when a healthier heat transfer rate is the
objective of the study. Heading in the same direction, the present investigation accentuates the
unsteady hybrid nanofluid flow involving CuO, Al2O3/C2H6O2 achieved by an oscillating disk
immersed in the porous media. In a study of the homogeneous and heterogeneous reactions, the
surface catalyzed reaction was also considered to minimize the reaction time. The shape factors of
the nanoparticles were also taken into account, as these play a vital role in assessing the thermal
conductivity and heat transfer rate of the system. The assumed model is presented mathematically in
the form of partial differential equations. The system is transformed by invoking special similarity
transformations. The Keller Box scheme was used to obtain numerical and graphical results. It is
inferred that the blade-shaped nanoparticles have the best thermal conductivity that boosts the heat
transfer efficiency. The oscillation and surface-catalyzed chemical reactions have opposite impacts
on the concentration profile. This analysis also includes a comparison of the proposed model with a
published result in a limiting case to check the authenticity of the presented model.

Keywords: heat transfer analysis; hybrid nanofluid; modeling and simulation; numerical solution

1. Introduction

The importance of base fluids (orthodox liquids) for thermal transfer in industrial
processes cannot be denied. Generally, these liquids possess poor heat transferability. To
overcome this barrier, nano-sized (<100 nm) particles are added to improve the thermal
transport capability. This idea was initially pitched by Choi and Eastman [1]. Generally,
it is an accepted truth that solid particles have higher thermal heat conduction when
compared with liquids. Thus, the inclusion of nano-sized particles in customary fluids
improved their thermal conduction comprehensively. These solid particles are identified
as nanoparticles. The amalgamation of the base fluid and the nanoparticles is termed a
nanofluid. Eastman [2], in an experimental work, claimed that the addition of a small
amount of nano-sized solid material particles can improve the thermal conduction of
conventional liquids. The conclusion of this study revealed that the thermal performance
of ethylene glycol (the base fluid) was improved by 40–50% after the addition of copper
nanoparticles or carbon nanotubes (CNTs) at <1% (volume fraction). This is because
nanofluids have a pivoting role in electro-mechanical gadgets, heat exchange, advanced
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cooling systems, etc. A good number of experimental and theoretical studies have been
conducted with various combinations of the nanoparticles and base fluids [3–12].

Lately, an advanced form of nanofluids has been introduced, namely hybrid nanofluids.
The hybrid nanofluids comprise an orthodox liquid and two or more kinds of nanoparticles.
Hybrid nanofluids are more efficient than customary nanofluids as far as heat transport
is concerned. The synthesis of a hybrid nanofluid comprising Al2O3-Cu/water using a
two-step method was conducted experimentally by Suresh et al. [13]. The study revealed an
enhancement of 12.11% in thermal conduction for a 2% volume fraction. Madhesh et al. [14]
experimentally discussed a copper–titania hybrid nanofluid and copper–titania hybrid
nanocomposite flows with volume concentrations of 0.1–2.0%. The results divulged that
the rate of heat flux is improved by 49% for a volume fraction of up to 1%. An experiment
was conducted by Toghraie et al. [15] on the synthesis of a ZnO–TiO2/EG hybrid nanofluid
to demonstrate the impacts of the nanoparticles’ concentration and temperature on the
hybrid nanofluid’s conduction. The outcome was interesting, revealing that the thermal
conduction was 32% for a volume fraction of 3.5% at 50 ◦C. Parallel to these experimental
works, researchers have also focused on theoretical studies focusing on hybrid nanofluid
flows. Gul et al. [16] conducted a comparative study of Hamilton–Crosser, and Yamada–
Ota hybrid nanofluid models containing titanium oxide and silicon carbide nanoparticles
added into diathermic oil. The hybrid nanofluid was taken through stimulation with a
magnetic dipole and the flow was assumed over an extended surface. The salient outcome
revealed that the Yamada–Ota model was far better in terms of heat transfer performance
than the Hamilton–Crosser hybrid nanofluid flow model. Water-based ternary hybrid
nanofluid flows with numerous nanoparticle shapes including spheres, cylinders, and
platelets of aluminum oxide, carbon nanotubes, and graphene, respectively, between two
parallel sheets, were examined theoretically by Arif et al. [17]. An enhancement in thermal
heat transfer of 33.67% was observed for the ternary hybrid nanofluid flow when compared
with the unitary nanofluid flow. Recent studies featuring hybrid nanofluid flow in various
scenarios may be observed in [18–22].

The problems related to fluid flow over rotating disks are among the well-known active
research topics owing to their applicability in many engineering applications encompassing
hard disks, jet motors, turbine systems, etc. This is why the subject of rotating flow has
gained massive attention and has been welcomed by researchers [23–28].

Studies associated with chemical reactions attract the interest of researchers due to
their importance in various physical and chemical processes. The molecular diffusion of
species in such processes, whether inside or on the surface, cannot be overlooked. Many
chemical, biological, and physical processes involve chemical reactions. Therefore, to study
these reacting systems, the study of homogeneous and heterogeneous reactions is essential.
The presence of a catalyst is essential for a reaction to proceed at a better speed. A reaction
occurring on the surface of absorbent media is also a type of heterogeneous reaction and is
known as a surface-catalyzed chemical reaction [29]. Elattar et al. [30] computed the hybrid
nanofluid flow with Hall current over a slender surface. Recent work focused on chemical
reactions may be found in [31–33].

The published literature and referenced publications demonstrate a plethora of inves-
tigations focusing on nanofluid flows. Nonetheless, there are only a few studies that have
shown a comparison of hybrid flows over a variety of geometries. The current study is
innovative in several ways: Firstly, the flow over a fluctuating rotating disk was combined
with homogeneous–heterogeneous reactions and surface-catalyzed chemical reaction. Sec-
ondly, the heat transfer rate was studied, considering the numerous shapes. Thirdly, porous
media were incorporated for surface catalysis. To solve the problem, various numerical
techniques have been used by various researchers [34–38]. The numerical results were
tabulated by using the Keller Box scheme, and the velocity, temperature, and concentration
profiles were sketched graphically. Finally, the numerical solution included a validation
table to ensure the validity of the proposed model. This research intended to provide
answers to the following essential questions:
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• Which is the best nanoparticle shape to manufacture a hybrid nanofluid?
• Does a fluctuating rotating disk influence the reaction rate?
• Do the Wall temperature and disk fluctuation both affect the heat transfer rate?
• Is there a significant impact of the surface catalyzed reaction on the rate of reaction?
• Is the axial velocity profile affected by variations in the volume fraction?

2. Mathematical Model

Consider an oscillating disk with a velocity
.
a(t) immersed in porous media with

CuO, Al2O3/C2H6O2, a hybrid nanofluid with temperature-dependent thermal conduc-
tivity. The angular velocity of the disk is Ω(t). The velocity components in the radial,
azimuthal, and axial directions are u, v and w. Homogeneous and heterogeneous reactions
also occur on the surface of the absorbent media and the disk. The flow diagram is given in
Figure 1.
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Figure 1. Flow geometry.

The geometrical and mathematical models drawn under the above assumption are as
follows:

The temperature is time-dependent and can be taken in the form [26]:

∆T = Tw(t)− T∞, (1)

where T∞ is the ambient fluid temperature and Tw(t) is as follows [26]:

Tw(t) = T∞ + ca(t)−2α, (2)

The following equation represents the reaction phenomenon [33]:

A∗ + 2B∗ → 3B∗ , rate = kcCaC2
b (3)

A∗ → B∗ , rate = ksCa (4)
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Under the above assumption, the mathematical model is as described by [33]:

u
r
+

∂u
∂r

+
∂w
∂z

= 0, (5)

∂u
∂t

+ u
∂u
∂r

+ w
∂u
∂z
− v2

r
=

1
ρhn f

∂p
∂r

+
µhn f

ρhn f

[
∂2u
∂r2 +

1
r

∂u
∂r

+
∂2u
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u
r2

]
−

µhn f

ρhn f

u
k∗

, (6)
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ρhn f

v
k∗

, (7)
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∂z

= − 1
ρhn f
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(
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)
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, (9)

∂Ca

∂t
+ u

∂Ca

∂r
+ w

∂Ca

∂z
= DA∗

∂

∂z

(
∂Ca

∂z

)
− kcCaC2

b −
∼
SksCa, (10)

∂Cb
∂t

+ u
∂Cb
∂r

+ w
∂Cb
∂z

= DB∗
∂

∂z

(
∂Cb
∂z

)
+ kcCaC2

b +
∼
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The mathematical model is subjected to constraints on the boundaries as follows:

u = 0, v = rΩ(t), w = 0, T = Tw(t), DA∗
∂Ca
∂z = ksCa, DB∗

∂Cb
∂z = −ksCa at z = 0,

u→ 0, v→ 0, T → T∞, Ca → C∞, Cb → 0, at z→ ∞,
(12)

We can then apply the following transformation [26]:

u = rν
a2(t) f (η), v = rν

a2(t) g(η), w = ν
a(t) H(η), p = ρν2

a2(t)P(η), Ca = C∞φ,

Cb = C∞ξ, θ(η) = T−T∞
Tw−T∞

, η = z
a(t) − 1, ηz =

1
a(t) , ηt = −

.
a(t)
a(t) (η + 1).

(13)

The thermophysical features of the nanoparticles and the base fluid are tabulated in
Table 1, and Table 2 presents the sphericity values for numerous nanoparticle shapes.

Table 1. Thermophysical characteristics of C2H6O2, Al2O3, and CuO [2,36].

Properties CuO C2H6O2 Al2O3

k ( W
mK ) 18 0.249 40

ρ (
kg
m3 ) 6500 1116.6 3970

Cp

(
JK−1kg−1

)
540 2382 765

Table 2. Sphericity values for various shapes of the nanoparticles [17,19,36].

Sphericity Blade Platelet Cylinder Brick Sphere

ψ 0.36 0.52 0.62 0.81 1.0

Shape
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δη ξ ξ ξ φξ ξ− + + = + +  (24)
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The thermophysical features in terms of the nanoparticle volume fraction for the
hybrid nanofluid are as follows [36]:

A =
µhn f (T)

µ f
= (1− φ1)

−2.5(1− φ2)
−2.5, (14)

B =
ρhn f

ρ f
= (1− φ2)

{
(1− φ1) + φ1

ρs2

ρ f

}
+ φ2

ρs1

ρ f
, (15)

C1 =
khn f
kb f

=
ks2−kb f (1−n)+(1−n)φ2(kb f−ks2)

ks2−(1−n)kb f +φ2(kb f−ks2)
,

D =
kb f
k f

=
ks1−(1−n)k f +(1−n)φ1(k f−ks1)

ks1−(1−n)k f−φ1(k f−ks1)
, n = 3

ψ ,
(16)

E =

(
ρCp

)
hn f(

ρCp
)

f
= (1− φ2)

{
(1− φ1) + φ1

(
ρCp

)
s1(

ρCp
)

f

}
+

(
ρCp

)
s2(

ρCp
)

f
φ2. (17)

The transformed mathematical model is:

2 f ′ + H = 0, (18)

f ′′ =
(

H f ′ + f 2 − g2 − S
[

η + 1
2

f ′ + f
]
+ λ f

)
, (19)

g′′ =
(

Hg′ + 2 f g− S
[

η + 1
2

g′ + g
]
+ λg

)
(20)

∂P
∂z

=

(
HH′ − S

[
η + 1

2
H′ + H

]
+ λH

)
, (21)

− PrS
C1D

[
αθ +

(η + 1)
2

θ′
]
+

A
BC1D

PrHθ′ = (1 + εθ)θ′′ + εθ′2 (22)

S(η + 1)φ′ − hφ′ = − 1
Sc

φ′′ + Kcφ(1− φ)2 − Kvsφ, (23)

− S(η + 1)ξ ′ + hξ ′ =
δ

Sc
ξ ′′ + Kcφξ2 + Kvsξ, (24)

The transformed bounded constraints are:

f (0) = 0, g(0) = ω, H(0) = 0, θ(0) = 1, ξ ′(0) = Ksξ(0), φ′(0) = Ksφ(0),

f (∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 1, ξ(∞)→ 0,
(25)

where a(t) = d
√

1 +
νhn f S

d2 t is the displacement of the oscillatory disk. The rotation parame-

ter is ω = Ω(t)a2(t)
νhn f

, and S = 2 a(t)
.
a(t)

νhn f
is the parameter for controlling the contraction and

expansion of the disk.
Assuming both species have comparatively the same size, we have:

δ = 1, ξ(η) + φ(η) = 1, (26)

Equations (23) and (24) will be reduced to:

Sc
[
Kcφ(1− φ)2 − S(η + 1)φ′ + hφ′

]
= φ′′, (27)

with the associated boundary condition:

φ′(0) = Ksφ(0), φ(1)→ 1, (28)
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where:
a2(t)

k∗ = λ, Sc =
ν f

DA∗
, Kc =

kcC2
o

Ω , Kvs = SvKs, Ks =
ks
√

ν f

DA∗
√

Ω
,

δ = DB
DA

, Pr =
Cpµ f

k f
Sv =

∼
SDA√

ν f Ω
.

(29)

where λ, Sc, Kc, Kvs, Ks, δ, Pr, Sv represent the porosity parameter, Schmidt number, homoge-
neous reaction parameter, surface catalyzed parameter, heterogeneous reaction parameter,
the ratio of diffusion coefficient, Prandtl number, and parameter of interfacial area, respec-
tively. Detailed work for the conversion of a system of partial differential equations to a
system of ordinary differential equations is given in the Appendix A.

3. Numerical Scheme (Keller Box)

The transformed mathematical model is tackled by using the Keller Box scheme. The
numerical procedure involves the following steps.

First, we utilize the following transformation to convert the problem into the first
order.

f ′ = −H
2

, g′ = X, θ′ = Y, φ′ = Z (30)

The transformed mathematical model is as follows:

H′ = 2
(

H2

2
− f 2 + g2 − S

[
η + 1

4
H − f

]
− λ f

)
, (31)

X′ =
(

HX + 2 f g− S
[

η + 1
2

X + g
]
+ λg

)
, (32)

− PrS
C1D

[
αθ +

(η + 1)
2

Y
]
+

A
BC1D

PrHY = (1 + εθ)θY′ + εY2 (33)

Sc
[
Kcφ(1− φ)2 − S(η + 1)Z + HZ

]
= Z′, (34)

The boundary conditions are:

f (0) = 0, g(0) = ω, H(0) = 0, θ(0) = 1, φ′(0) = Ksφ(0),

f (∞)→ 0, g(∞)→ 0, θ(∞)→ 0, φ(∞)→ 1,
(35)

Next, consider the discretization of η the axis with a step size hj such that:

ηo = 0, ηj = hj + ηj−1, j = 1, 2, 3, . . . J. For J → ∞, ηJ = η∞. (36)

For the point ηj−1/2 on the η axis, we have a central difference approximation defined
by:

f j−1/2 =
f i
j+ f i

j−1
2

f ′
j−1/2

=
f i
j− f i

j−1
hj

(37)

The discretization in the η − z plane is explained in Figure 2.

z0 = 0, zi = zi−1 + ki, i = 1, 2, 3, . . . I, (38)

η0 = 0, zj = ηj−1 + hj, j = 1, 2, 3 . . . J, (39)
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where ki(∆z) and hj(∆η) are the spacing centering on the point
(

zi, ηj− 1
2

)
:

f i
j− f i

j−1
hj

= −
Hi

j+Hi
j−1

4

gi
j−gi

j−1
hj

=
Xi

j+Xi
j−1

2

θi
j−θi

j−1
hj

=
Yi

j+Yi
j−1

2

φi
j−φi

j−1
hj

=
Zi

j+Zi
j−1

2

(40)
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Combining Equation (37) into Equations (31)–(34) and using central difference approx-
imation, we have the following system of equations:

L1 =

(
Hi

j − Hi
j−1

hj

)
− 2B

A


(

Hi
j+Hi

j−1
2

)2

2 −
(

f i
j+ f i

j−1
2

)2
+

(
gi

j+gi
j−1

2

)2

−S
[

η+1
4

(
Hi

j+Hi
j−1

2

)
−
(

f i
j+ f i

j−1
2

)]
− λ

(
f i
j+ f i

j−1
2

)
, (41)

Xi
j − Xi

j−1

hj
− B

A

 Hi
j+Hi

j−1
2

Xi
j+Xi

j−1
2 + 2

f i
j+ f i

j−1
2

gi
j+gi

j−1
2 −

S
[(

η+1
2

)Xi
j+Xi

j−1
2 +

gi
j+gi

j−1
2

]
+ λ

gi
j+gi

j−1
2

 = L2, (42)

− PrS
C1D

[
α

θi
j+θi

j−1
2 + (η+1)

2
Yi

j+Yi
j−1

2

]
+ A

BC1D Pr
Hi

j+Hi
j−1

2
Yi

j+Yi
j−1

2

−ε

(
Yi

j+Yi
j−1

2

)2
=

(
1 + ε

θi
j+θi

j−1
2

)
θi

j+θi
j−1

2 L3,

(43)

Sc

Kc
φi

j + φi
j−1

2

(
1−

φi
j + φi

j−1

2

)2

− S(η + 1)
Zi

j + Zi
j−1

2
+

Hi
j + Hi

j−1

2

Zi
j + Zi

j−1

2

 = L4, (44)
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The boundary constraints are:

f0 = 0, g0 = ω, H0 = 0, θ0 = 1, Z0 = Ksφ0,

f J → 0, gJ → 0, θJ → 0, φJ → 1,
(45)

To linearize the system, we utilized Newton’s method for iteration to solve the system
of equations above. The block tridiagonal elimination technique was used to solve the
system of equations obtained.

4. Results and Discussion

This section addresses the numerous parameters’ impact on the associated profiles.
The discussion is segmented into subsections.

4.1. Thermal Conductivity and Heat Transfer Rate for Different Nanoparticle Shapes

Figure 3 addresses the variable thermal conductivity of the CuO, Al2O3/C2H6O2
hybrid nanofluid with different shapes and volume fractions of Al2O3 by keeping the
volume fraction of CuO φ1 = 0.05. With φ2 = 0.07, the blade-shaped nanoparticles would
give the best thermal conductivity as compared with the other shapes. Figure 4 delineates
the heat transfer analysis by taking different values for the volume fraction of Al2O3 and
considering various nanoparticle shapes. The results obtained were found to have a good
correlation with Figure 2. The blade-shaped Al2O3 with φ1 = 0.05, φ2 = 0.07 (the volume
fraction of CuO) had a higher heat transfer rate. As the Nusselt number is the fraction of
the convective heat transfer and the conductive heat transfer, the blade-shaped particles
would have the maximum heat transfer rate. However, the heat transfer rate was minimum
for the spherical particles.
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4.2. Velocity Profile versus Varying Parameters

Figure 5 gives the radial distribution of velocity for an oscillating disk with varying
porosity parameters. The porous media provide a large surface area for the fluid particles
to penetrate. As the fluid particles penetrate and are absorbed into the pores, causing a
deceleration in the particles’ motion. Therefore, the motion of the particles executed by the
oscillating disk is inhibited by the presence of porous media. Thus, increasing the value of
porosity results in a declining radial profile.
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Figure 6 outlines the axial velocity distribution for varying volume fractions of spheri-
cal nanoparticles of Al2O3. With an increase in the concentration of spherical nanoparticles
of Al2O3, the axial velocity distribution produces a high curve. Physically, the increase in
the volume fraction means that many particles have been added. The momentum transfer
process accelerates owing to the enhancement of the axial inflow.
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4.3. Concentration Profile versus Varying Parameters

Figure 7 shows the concentration profile with fluctuations in the surface catalysis and
disk parameter. It is noticed that the surface catalysis parameter boosts the reaction rate,
causing the concentration profile to decline, while the oscillating disk parameter inhibits
the reaction rate at the same rate. Therefore, the concentration profile is increased through
contraction and relaxation of the disk.
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4.4. Temperature Profile versus Varying Parameters

The temperature profile increases with the expanding and contracting disk parameter
S in Figure 8. An escalating thermal profile is observed for increasing values of S. As the
fluctuating motion of the disk affects the adjacent layers of the fluid, the energy transmission
process increases, causing the thermal profile to increase. Near the disk, the thermal
amplitude is at its maximum.
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4.5. Numerical Results for Drag Force and the Heat and Mass Transfer Rate

The numerical results for drag force (Re1/2C f ), the heat transfer rate (Re−1/2Nu),
and the mass transfer rate (Re−1/2Sh) are delineated by tabulating the results obtained.
Table 3 shows the numerical results for the drag force, heat, and mass transfer rate by fixing
Kvs = 0.5, λ = 0.5, Ω = 0.1, Sc = 1, Pr = 1, α = 0.5, Ks = 0.5, Kc = 0.5 for increasing values
of the oscillating parameter S. This parameter controls the up and down motion of the
disk for corresponding positive and negative values of S. With an increasing positive value
of S, the drag force near the disk increases. Physically, this points to the reality that the
frictional forces increase due to the expansion of the disk. The heat transfer rate is also
triggered due to the energy transfer process among the accelerating nanoparticles of the
hybrid nanofluid. Similarly, the mass transfer process during the reaction process also
accelerates for increasing values of S.

Re1/2C f = A
[(

f ′(0)
)2

+ (g(0))2
] 1

2 , Re−1/2Nu = −C1Dθ′(0), Re−1/2Sh = −φ′(0). (46)
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Table 3. Numerical outcomes for drag force and the heat and mass transfer rate with disk fluctuation,
keeping [26] Kvs = 0.5, λ = 0.5, Ω = 0.1, Sc = 1, Pr = 1, α = 0.5, Ks = 0.5, Kc = 0.5.

S = 0.1 S = 1 S = 5 S = 10

Re1/2C f 0.1172760 0.365540 1.90977 3.529200

Re−1/2Nu 0.0515513 0.052562 0.0613628 0.078571

Re−1/2Sh 0.0000128 0.122310 0.403748 0.450621

Table 4 was constructed to depict the numerical results of the heat transfer rate ob-
tained for various values of the variable wall temperature parameter and the oscillating
parameter of the disk. It is seen that for both parameters, the heat transfer rate is enhanced.
For a zero value of α, the wall is at a fixed temperature. However, with an increase in α,
wall temperature is raised and the heat transfer process increases. The oscillating parameter
modifies the impact of the variable wall temperature parameter.

Table 4. Numerical outcomes for the Nusselt number Re−1/2Nu with a varying wall temperature
parameter [26] and fixing Kvs = 0.5, λ = 0.5, Ω = 0.5, Sc = 1, Pr = 1, Ks = 0.5, Kc = 0.5.

α = −2 α = −1 α = 0 α = 0.2 α = 0.3

S = 1 0.0783255 0.0686171 0.0581365 0.0559352 0.0548204

S = 5 0.1552720 0.1243270 0.0855891 0.0764042 0.0715711

Table 5 quantifies the effect of the upward and downward motion of the disk for
surface drag force and the heat transfer rate by fixing the disk rotation to Ω = 0.5. For
S < 0, acceleration of the disk results in a reduction in the drag force. For S = 0, the disk
is fixed at its position. For S > 0, with an increase in S, the decelerating disk slows down
the nanoparticles, thus causing the momentum transfer process to increase. Thus, the drag
force increases rapidly. The heat transfer rate declines for an accelerating disk (S < 0) and
increases slowly for a decelerating disk (S > 0).

Table 5. Numerical outcomes of drag force and the heat transfer rate under disk fluctuation and
keeping [26] Kvs = 0.5, λ = 0.5, Ω = 0.5, Pr = 1, α = 0.3, Ks = 0.5, Kc = 0.5.

S = −0.3 S = −0.2 S = 0 S = 0.5 S = 1 S = 2

Re1/2C f 0.4199150 0.357956 1.975870 0.5875330 8.782240 18.17200

Re−1/2Nu 0.0327924 0.0245553 0.0213117 0.0530896 0.0548204 0.058571

4.6. Heat Transfer Rate

The heat transfer rate for the hybrid nanofluid is given by:

Re−1/2Nu = −C1Dθ′(0), (47)

where:
C1 =

khn f
kb f

=
ks2−kb f (1−n)+(1−n)φ2(kb f−ks2)

ks2−(1−n)kb f +φ2(kb f−ks2)
,

D =
kb f
k f

=
ks1−(1−n)k f +(1−n)φ1(k f−ks1)

ks1−(1−n)k f−φ1(k f−ks1)
, n = 3

ψ ,
(48)

Table 6 validates the results presented here by comparing them with those of Turkyil-
mazoglu et al. [26] for various values of S. In this table, we have considered φ1 = 0, φ2 = 0
for the limiting case. For more visibility, the equations are written.
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Table 6. Numerical values of θ′(0) with disk fluctuation, keeping Kvs = 0, λ = 0, Ω = 2, Pr = 1,
α = 0.5, Ks = 0, Kc = 0, φ1 = 0, φ2 = 0.

S = −0.3 S = −0.2 S = 0 S = 0.5 S = 1 S = 2

[26] 0.6480310 0.6180880 0.5603780 0.4221660 0.291822 0.052820

Present 0.6480312 0.6180872 0.5603776 0.4221657 0.291821 0.052820

5. Conclusions

The present investigation explored unsteady hybrid nanofluid flow due to a fluctuating
spinning disk. Nanoparticles of Al2O3 were chosen to detect the best shape for thermal
conductivity to obtain an efficient heat transfer process. The physical structure was captured
in the form of graphical and tabulated results. The results and discussion section led us to
the following significant outcomes.

• Blade-shaped nanoparticles of Al2O3 are the best choice for manufacturing the hybrid
nanofluid.

• A fluctuating spinning disk inhibits the reaction rate.
• The wall temperature and disk fluctuation parameters increase the heat transfer rate.
• The surface catalysis parameter significantly boosts the reaction rate.
• An increase in the nanoparticle volume fraction boosts the axial velocity profile.
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Nomenclature

Symbol Unit Description Symbol Unit Description
V = (u, v, w) m/s Components of velocity λ Dimensionless Porosity parameter
Ω s−1 Angular velocity of the disk Sc Dimensionless Schmidt number
ω Dimensionless Constant rotation parameter A∗, B∗ Dimensionless Chemical species
S Dimensionless Parameter for controlling the Ca mol/m3 Concentration of A∗

up/down motion of the disk
a(t) m Vertical displacement of the disk Cb mol/m3 Concentration of B∗
.
a(t) m/s Vertical velocity of the disk ks,kc (mol)2/s Reaction rates
p Pa Pressure DA∗ , DB∗ m2/s Variable diffusion coefficient

of chemical species A∗, B∗

ρhn f kg/m3 Density of the hybrid nanofluid
∼
S m−1 Interfacial surface area

µhn f kgm−1s−1 Dynamic viscosity of the Ks Dimensionless Homogeneous reaction parameter
hybrid nanofluid

k∗ m2 Permeability of the medium Kvs Dimensionless Surface catalysis parameter
µ f kgm−1s−1 Dynamic viscosity of the fluid Kc Dimensionless Heterogeneous reaction parameter
ρ f kg/m3 Density of the fluid Cp Jkg−1K−1 Specific heat
T K Temperature δ Dimensionless Ratio of the diffusion coefficient
T∞ K Ambient temperature α Dimensionless Wall temperature parameter
Tw K Wall temperature C∞ mol/m3 Ambient concentration
Pr Dimensionless Prandtl number
khn f Js−1m−1K−1 Thermal conductivity of the

hybrid nanofluid
kb f Js−1m−1K−1 Thermal conductivity of the base fluid
k f Js−1m−1K−1 Thermal conductivity of the fluid
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Appendix A

The following partial derivatives needed to be utilized in Equations (5)–(11):

∂u
∂t = −2rυ f

a3(t) −
rυ f ′

a3(t)
.
a(t)(η + 1), ∂u

∂r = υ f
a2(t) , ∂u

∂z = rυ f ′

a3(t) , ∂p
∂r = 0,

∂2u
∂r2 = 0, ∂2u

∂z2 = rυ f ′′

a4(t) ,
(A1)

∂v
∂t

=
−2rυg
a3(t)

.
a(t)− rυg′

a3(t)
.
a(t)(η + 1),

∂v
∂r

=
υg

a2(t)
,

∂v
∂z

=
rυg′

a3(t)
,

∂2v
∂r2 = 0,

∂2v
∂z2 =

rυg′′

a4(t)
, (A2)

∂w
∂t

= −υH
.
a(t)

a2(t)
− υH′

a2(t)
.
a(t)(η + 1),

∂w
∂r

= 0,
∂w
∂z

=
υH′

a2(t)
,

∂2w
∂r2 = 0,

∂2w
∂z2 =

υH′′

a3(t)
, (A3)

∂T
∂t = −2αc

.
a(t)(a(t))−2α−1

[
αθ + η+1

2 θ′
]
, ∂T

∂r = 0,

∂T
∂z = c(a(t))−2α

a(t) θ′, ∂2T
∂r2 = 0, ∂2T

∂z2 = c(a(t))−2α

a2(t) θ′′,
(A4)

∂Ca

∂z
=

C∞φ′

a(t)
,

∂Cb
∂z

=
C∞ξ ′

a(t)
,

∂Ca

∂t
=

C∞φ′
.
a(t)(η + 1)
a2(t)

,
∂Cb
∂t

=
C∞ξ ′

.
a(t)(η + 1)
a2(t)

, (A5)

On substituting the above partial derivatives, we can obtain the transformed mathe-
matical model.
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