Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CuO NPs
2.2. Preparation of SPEEK and SPEEK/CuO Nanocomposite
2.3. Characterization of CuO NPs, SPEEK, and SPEEK/CuO Nanocomposite
2.4. Electrode Modification and Electrochemical Analysis
3. Results and Discussion
3.1. UV–Vis Analysis
3.2. FTIR Analysis
3.3. XRD Analysis
3.4. SEM and EDX Analysis
3.5. Electrochemical Studies Using Cyclic Voltammetry
3.5.1. Electrochemical Characterization of the Bare and Fabricated Electrodes
3.5.2. Effects of Varying Scan Rates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elgrishi, N.; Rountree, K.; McCarthy, B.; Rountree, E.; Eisenhart, T.; Dempsey, J. A Practical Beginner’s Guide to Cyclic Voltammetry. J. Chem. Educ. 2017, 95, 197–206. [Google Scholar] [CrossRef]
- Phiwdang, K.; Suphankij, S.; Mekprasart, W.; Pecharapa, W. Synthesis of CuO NPs Nanoparticles by Precipitation Method Using Different Precursors. Energy Procedia 2013, 34, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Garcia, M.; Rodgriguez, J. Metal Oxide Nanoparticles (No. BNL-79479-2007-BC); Brookhaven National Lab. (BNL): Upton, NY, USA, 2007. [Google Scholar]
- Ejidike, I.P.; Bamigboye, O.M.; Ijimdiya, R.U.; Seyinde, D.O.; Ojo, O.O. Synthesis, characterization and biological evaluation of hexagonal wurtzite structured ZnO nanoparticle from Zn(II)-Schiff base complex. Proc. Niger. Acad. Sci. USA 2020, 13, 136–1475. [Google Scholar]
- Sukumar, S.; Rudrasenan, A.; Padmanabhan Nambiar, D. Green-Synthesized Rice-Shaped Copper Oxide Nanoparticles Using Caesalpinia bonducella Seed Extract and Their Applications. ACS Omega 2020, 5, 1040–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, T.; Nguyen, V. Copper Oxide Nanomaterials Prepared by Solution Methods, Some Properties, and Potential Applications: A Brief Review. Int. Sch. Res. Not. 2014, 2014, 856592. [Google Scholar] [CrossRef]
- Jha, V.K. Synthesis of Nanosized copper oxide particles using hydrothermal treatment. Nep. J. Integr. Sci. 2012, 2, 42–46. [Google Scholar]
- Grigore, M.; Biscu, E.; Holban, A.; Gestal, M.; Grumezescu, A. Methods of Synthesis, Properties and Biomedical Applications of CuO Nanoparticles. Pharmaceuticals 2016, 9, 75. [Google Scholar] [CrossRef]
- Luna, I.; Hilary, L.; Chowdhury, A.; Gafur, M.; Khan, N.; Khan, R. Preparation and Characterization of Copper Oxide Nanoparticles Synthesized via Chemical Precipitation Method. OALib 2015, 2, 68156. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, H.; Geng, C.; Wu, Y.; Dai, G.; Teng, C. Effect of poly (ether ether ketone) and allyl compounds on microstructure and properties of bismaleimide. J. Mater. Sci. Mater. Electron. 2019, 30, 991–1000. [Google Scholar] [CrossRef]
- Arief, R.H.; Aprilina, P.; Tutuk, D.K.; Eniya, L.D. Composite sPEEK with Nanoparticles for Fuel Cell’s Applications: Review. In Proceedings of the International Conference on Chemical and Material Engineering, Semarang Indonesia, 12–13 September 2012; Volume 1. [Google Scholar]
- Ruffmann, R.; Silvaa, H.; Schulte, B.; Nunes, S.P. Organic/inorganic composite membranes for application in DMFC. Solid State Ion. 2003, 162–163, 269–275. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Mol. Clin. Environ. Toxicol. 2012, 133–164. [Google Scholar]
- Quadri, T.W.; Olasunkanmi, L.O.; Fayemi, O.E.; Solomon, M.M.; Ebenso, E.E. Zinc Oxide Nanocomposites of Selected Polymers: Synthesis, Characterization, and Corrosion Inhibition Studies on Mild Steel in HCl Solution. ACS Omega 2017, 2, 8421–8437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Wang, G.; Liu, X. Different CuO nanostructures: Synthesis, characterization, and applications for glucose sensors. J. Phys. Chem. C 2008, 112, 16845–16849. [Google Scholar] [CrossRef]
- Xing, P.; Robertson, G.P.; Guiver, M.D.; Mikhailenko, S.D.; Wang, K.; Kaliaguine, S. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes. J. Mem. Sci. 2004, 229, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Fayemi, O.; Baskar, R.; Adekunle, A.; Sherif, E.; Ebenso, E. SPEEK/ZnO Nanocomposite Fabricated Gold Electrode for Electrochemical Detection of Dopamine. Electroanalysis 2020, 32, 2713–2722. [Google Scholar] [CrossRef]
- Prakash, V.; Diwan, R.K.; Niyogi, U.K. Characterization of Synthesized Copper Oxide nanoparticles and its use in nanofluids for enhancement and thermal conductivity. Indian J. Pure Appl. Phys. 2015, 53, 735–758. [Google Scholar]
- Shameem, M.M.; Sasikanth, S.M.; Annamalai, R.; Raman, R.G.A. A brief review on polymer nanocomposites and its applications. Materials Today: Proceedings. 2021, 45, 2536–2539. [Google Scholar]
- Singh, P.K.; Kumar, P.A.N.K.A.J.; Hussain, M.A.N.O.W.A.R.; Das, A.K.; Nayak, G.C. Synthesis and characterization of CuO nanoparticles using strong base electrolyte through electrochemical discharge process. Bull. Mater. Sci. 2016, 39, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Negro, E.; Vezzù, K.; Pagot, G.; Cavinato, G.; Nale, A.; Bang, Y.H.; Di Noto, V. Hybrid inorganic-organic proton-conducting membranes based on SPEEK doped with WO3 nanoparticles for application in vanadium redox flow batteries. Electrochim. Acta 2019, 309, 311–325. [Google Scholar] [CrossRef]
- Grosmaire, L.; Castagnoni, S.; Huguet, P.; Sistat, P.; Boucher, M.; Bouchard, P.; Bébin, P.; Deabate, S. Probing proton dissociation in ionic polymers by means of in situ ATR-FTIR spectroscopy. Phys. Chem. Chem. Phys. 2008, 10, 1577–1583. [Google Scholar] [CrossRef]
- Kayani, N.Z.; Umer, M.; Riaz, S.; Naseem, S. Characterization of copper oxide nanoparticles fabricated by sol-gel method. J. Electron. Mater. 2015, 44, 3704–3709. [Google Scholar] [CrossRef]
- Kumar, S.K.; Murugesan, S.; Suresh, S.; Raj, S.P. Nanostructured CuO thin films prepared through sputtering for solar selective absorbers. J. Sol. Energy 2013, 2013, 147270. [Google Scholar]
- De Jesús Ruíz-Baltazar, Á.; Reyes-López, S.Y.; de Lourdes Mondragón-Sánchez, M.; Robles-Cortés, A.I.; Pérez, R. Eco-friendly synthesis of Fe3O4 nanoparticles: Evaluation of their catalytic activity in methylene blue degradation by kinetic adsorption models. Results Phys. 2019, 12, 989–995. [Google Scholar] [CrossRef]
- Abdel-Hamid, R.; Rabia, M.K.; Newair, E. Electrochemical behaviour of antioxidants: Part 2. Electrochemical oxidation mechanism of quercetin at glassy carbon electrode modified with multi-wall carbon nanotubes. Arab. J. Chem. 2016, 9, 350–356. [Google Scholar] [CrossRef] [Green Version]
- Kunene, K.; Sabela, M.; Kanchi, S.; Bechelany, M.; Bisetty, K. Functionalized Electrochemical Aptasensor for Sensing of Ochratoxin A in Cereals Supported by in Silico Adsorption Studies. ACS Food Sci. Technol. 2021, 1, 1849–1860. [Google Scholar] [CrossRef]
- Bojang, A.A.; Wu, H.S. Characterization of electrode performance in enzymatic biofuel cells using cyclic voltammetry and electrochemical impedance spectroscopy. Catalysts 2020, 10, 782. [Google Scholar] [CrossRef]
- Laviron, E.E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interf. Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Adekunle, A.S.; Ebenso, E.E. Electrochemical determination of serotonin in urine samples based on metal oxide nanoparticles/MWCNT on modified glassy carbon electrode. Sens. Biosensing Res 2017, 13, 17–27. [Google Scholar] [CrossRef]
Electrodes | Ipa (µA) | Ipc (µA) | Ipa/Ipc | Epa (V) | Epc (V) | ΔEp (V) | Eo (V) |
---|---|---|---|---|---|---|---|
SPAuE | 52.39 | −82.15 | 0.64 | 0.33 | −0.05 | 0.38 | 0.14 |
SPAuE-CuO | 44.02 | −57.33 | 0.77 | 0.28 | 0.0067 | 0.27 | 0.14 |
SPAuE-SPEEK | 2.77 | −0.84 | 3.30 | 0.38 | 0.36 | 0.02 | 0.37 |
SPAuE-SPEEK/CuO | 5.73 | −1.92 | 2.98 | 0.55 | 0.47 | 0.08 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayemi, O.E.; Pooe, O.G.; Adesanya, F.A.; Ejidike, I.P. Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes. Nanomaterials 2022, 12, 1825. https://doi.org/10.3390/nano12111825
Fayemi OE, Pooe OG, Adesanya FA, Ejidike IP. Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes. Nanomaterials. 2022; 12(11):1825. https://doi.org/10.3390/nano12111825
Chicago/Turabian StyleFayemi, Omolola E., Onkarabile G. Pooe, Funmilola A. Adesanya, and Ikechukwu P. Ejidike. 2022. "Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes" Nanomaterials 12, no. 11: 1825. https://doi.org/10.3390/nano12111825
APA StyleFayemi, O. E., Pooe, O. G., Adesanya, F. A., & Ejidike, I. P. (2022). Spectroscopy and Cyclic Voltammetry Properties of SPEEK/CuO Nanocomposite at Screen-Printed Gold Electrodes. Nanomaterials, 12(11), 1825. https://doi.org/10.3390/nano12111825