Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Apparatus
2.3. Synthesis of Bulk gCN
2.4. Synthesis of Bulk O-Gcn
2.5. Synthesis of OCNQDs
2.6. Photoluminescence Measurement
2.7. Cell Culture and Viability/Cytotoxicity Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Q.; Zhao, J.G.; Liu, Y.; Pu, P.; Wang, X.S.; Chen, Y.S.; Gao, C.; Chen, J.R.; Zhou, H.J. Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). J. Mater. Sci. 2015, 50, 2571–2576. [Google Scholar] [CrossRef]
- Ju, J.; Chen, W. Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens. Bioelectron. 2014, 58, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Shojaeifard, Z.; Heidari, N.; Hemmateenejad, B. Bimetallic AuCu nanoclusters-based florescent chemosensor for sensitive detection of Fe3+ in environmental and biological systems. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 202–208. [Google Scholar] [CrossRef]
- Wang, X.; Li, R.Y.; Fan, S.Y.; Li, Z.J.; Wang, G.L.; Gu, Z.G.; Liu, J.K. D-penicillamine-functionalized graphene quantum dots for fluorescent detection of Fe3+ in iron supplement oral liquids. Sens. Actuators B Chem. 2017, 243, 211–220. [Google Scholar] [CrossRef]
- Khazaeli, S.; Nezamabadi, N.; Rabani, M.; Panahi, H.A. A new functionalized resin and its application in flame atomic absorption spectrophotometric determination of trace amounts of heavy metal ions after solid phase extraction in water samples. Microchem. J. 2013, 106, 147–153. [Google Scholar] [CrossRef]
- Aragay, G.; Merkoçi, A. Nanomaterials application in electrochemical detection of heavy metals. Electrochim. Acta 2012, 84, 49–61. [Google Scholar] [CrossRef]
- Song, Y.Q.; Ma, Z.Y.; Fang, H.C.; Zhang, Q.; Zhou, Q.H.; Chen, Z.H.; Yang, H.F.; Wang, F. Au sputtered paper chromatography tandem Raman platform for sensitive detection of heavy metal ions. ACS Sens. 2020, 5, 1455–1464. [Google Scholar] [CrossRef]
- Tung, T.T.; Nine, M.J.; Krebsz, M.; Pasinszki, T.; Coghlan, C.J.; Tran, D.N.H.; Losic, D. Recent advances in sensing applications of graphene assemblies and their composites. Adv. Funct. Mater. 2017, 27, 1702891. [Google Scholar] [CrossRef]
- Biranje, A.; Azmi, N.; Tiwari, A.; Chaskar, A. Quantum dots based fluorescent probe for the selective detection of heavy metal ions. J. Fluoresc. 2021, 31, 1241–1250. [Google Scholar] [CrossRef]
- Xu, Q.; Gao, J.J.; Wang, S.Y.; Wang, Y.; Liu, D.; Wang, J.C. Quantum dots in cell imaging and their safety issues. J. Mater. Chem. B 2021, 9, 5765–5779. [Google Scholar] [CrossRef]
- Li, X.C.; Zhao, S.J.; Li, B.L.; Yang, K.; Lan, M.H.; Zeng, L.T. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord. Chem. Rev. 2021, 431, 213686. [Google Scholar] [CrossRef]
- Kim, I.J.; Xu, Y.; Nam, K.H. Metal-induced fluorescence quenching of photoconvertible fluorescent protein DendFP. Molecules 2022, 27, 2922. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.J.; Wang, X.Y.; Wang, H.; Nie, R.R. Synthesis and biomedical applications of graphitic carbon nitride quantum dots. J. Mater. Chem. B 2019, 7, 5432–5448. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.F.; He, F.; Li, Q.; Zhong, L.; Zhao, R.Z.; Che, H.N.; Gao, H.Y.; Fang, B.Z. Emerging graphitic carbon nitride-based materials for biomedical applications. Prog. Mater. Sci. 2020, 112, 100666. [Google Scholar] [CrossRef]
- Vaya, D.; Kaushik, B.; Surolia, P.K. Recent advances in graphitic carbon nitride semiconductor: Structure, synthesis and applications. Mater. Sci. Semicond. Process. 2022, 137, 106181. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, D.B.; Guo, M.L.; Yu, Y.; Cao, Y.J. Facile and efficient fabrication of g-C3N4 quantum dots for fluorescent analysis of trace copper(II) in environmental samples. Chin. Chem. Lett. 2019, 30, 1639–1642. [Google Scholar] [CrossRef]
- Jing, Y.; Chen, Z.Y.; Ding, E.L.; Yuan, R.; Liu, B.X.; Xu, B.H.; Zhang, P. High-yield production of g-C3N4 quantum dots as photocatalysts for the degradation of organic pollutants and fluorescent probes for detection of Fe3+ ions with live cell application. Appl. Surf. Sci. 2022, 586, 152812. [Google Scholar] [CrossRef]
- Cui, Q.L.; Xu, J.S.; Wang, X.Y.; Li, L.D.; Antonietti, M.; Shalom, M. Phenyl-modified carbon nitride quantum dots with distinct photoluminescence behavior. Angew. Chem. Int. Ed. 2016, 55, 3672–3676. [Google Scholar] [CrossRef]
- Lu, W.Y.; Xu, T.F.; Wang, Y.; Hu, H.G.; Li, N.; Jiang, X.M.; Chen, W.X. Synergistic photocatalytic properties and mechanism of g-C3N4 coupled with zinc phthalocyanine catalyst under visible light irradiation. Appl. Catal. B 2016, 180, 20–28. [Google Scholar] [CrossRef]
- Song, X.W.; Wen, H.M.; Ma, C.B.; Cui, H.H.; Chen, H.; Chen, C.N. Efficient photocatalytic hydrogen evolution with end-group-functionalized cobaloxime catalysts in combination with graphite-like C3N4. RSC Adv. 2014, 4, 18853–18861. [Google Scholar] [CrossRef]
- Shiravand, G.; Badiei, A.; Ziarani, G.M. Carboxyl-rich g-C3N4 nanoparticles: Synthesis, characterization and their application for selective fluorescence sensing of Hg2+ and Fe3+ in aqueous media. Sens. Actuators B Chem. 2017, 242, 244–252. [Google Scholar] [CrossRef]
- Liu, X.L.; Ma, R.; Zhuang, L.; Hu, B.W.; Chen, J.R.; Liu, X.Y.; Wang, X.K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751–790. [Google Scholar] [CrossRef]
- Wang, X.; Xiong, H.; Chen, T.H.; Xu, Y.Y.; Bai, G.X.; Zhang, J.J.; Tian, Y.; Xu, S.Q. A phosphorus-doped g-C3N4 nanosheets as an efficient and sensitive fluorescent probe for Fe3+ detection. Opt. Mater. 2021, 119, 111393. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, Y.N.; Tan, H.Q.; Sun, H.Y.; Shang, Q.K.; Zhao, X.Y.; Qiu, T.Y.; Li, Y.G. Foamer-Derived bulk nitrogen defects and Oxygen-doped porous carbon nitride with greatly extended visible-light response and efficient photocatalytic activity. ACS Appl. Mater. Interfaces 2021, 13, 23866–23876. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Y.; Feng, M.B.; Tu, W.G.; Xiao, T.; Xiong, T.; Ang, H.X.; Yuan, X.Z.; Chew, J.W. Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam. Water Res. 2018, 144, 215–225. [Google Scholar] [CrossRef]
- She, X.J.; Wu, J.J.; Zhong, J.; Xu, H.; Yang, Y.C.; Vajtai, R.; Lou, J.; Liu, Y.; Du, D.L.; Li, H.M.; et al. Oxygenated monolayer carbon nitride for excellent photocatalytic hydrogen evolution and external quantum efficiency. Nano Energy 2016, 27, 138–146. [Google Scholar] [CrossRef]
- Li, J.H.; Shen, B.; Hong, Z.H.; Lin, B.Z.; Gao, B.F.; Chen, Y.L. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem. Comm. 2012, 48, 12017–12019. [Google Scholar] [CrossRef]
- Zhang, J.S.; Zhang, G.G.; Chen, X.F.; Lin, S.; Möhlmann, L.; Dołęga, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X.C. Co-monomer control of carbon nitride semiconductors to optimize hydrogen evolution with visible light. Angew. Chem. Int. Ed. 2012, 51, 3183–3187. [Google Scholar] [CrossRef]
- Samanta, S.; Martha, S.; Parida, K. Facile synthesis of Au/g-C3N4 nanocomposites: An inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 2014, 6, 1453–1462. [Google Scholar]
- Yang, S.X.; Wang, L.Y.; Zhang, X.D.; Yang, W.J.; Song, G.L. Enhanced adsorption of Congo red dye by functionalized carbon nanotube/mixed metal oxides nanocomposites derived from layered double hydroxide precursor. Chem. Eng. J. 2015, 275, 315–321. [Google Scholar] [CrossRef]
- Zhao, J.; Liang, G.W.; Zhang, X.L.; Cai, X.W.; Li, R.N.; Xie, X.Y.; Wang, Z.W. Coating magnetic biochar with humic acid for high efficient removal of fluoroquinolone antibiotics in water. Sci. Total Environ. 2019, 688, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Xin, B.; Shan, C.; Zhang, W.M.; Dionysiou, D.D.; Pan, B.C. Roles of oxygen-containing functional groups of O-doped g-C3N4 in catalytic ozonation: Quantitative relationship and first-principles investigation. Appl. Catal. B 2021, 292, 120155. [Google Scholar] [CrossRef]
- Samanta, S.; Yadav, R.; Kumar, A.; Sinha, A.K.; Srivastava, R. Surface modified C, O co-doped polymeric g-C3N4 as an efficient photocatalyst for visible light assisted CO2 reduction and H2O2 production. Appl. Catal. B 2019, 259, 118054. [Google Scholar] [CrossRef]
- Li, H.C.; Shan, C.; Pan, B.C. Fe(III)-doped g-C3N4 mediated peroxymonosulfate activation for selective degradation of phenolic compounds via high-valent iron-oxo species. Environ. Sci. Technol. 2018, 52, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.P.; Lin, T.R.; Lin, L.H.; Lin, S.; Fu, F.F.; Wang, X.C.; Guo, L.Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem. 2016, 128, 2823–2827. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Zhang, C.Y. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chem. Comm. 2013, 49, 8605–8607. [Google Scholar] [CrossRef]
- Rong, M.C.; Lin, L.P.; Song, X.H.; Zhao, T.T.; Zhong, Y.X.; Yan, J.W.; Wang, Y.R.; Chen, X. A label-free fluorescence sensing approach for selective and sensitive detection of 2, 4, 6-trinitrophenol (TNP) in aqueous solution using graphitic carbon nitride nanosheets. Anal. Chem. 2015, 87, 1288–1296. [Google Scholar] [CrossRef]
- Zhu, X.H.; Xiao, X.; Zuo, X.X.; Liang, Y.; Nan, J.M. Hydrothermal preparation of photoluminescent graphene quantum dots characterized excitation-independent emission and its application as a bioimaging reagent. Part. Part. Syst. Charact. 2014, 31, 801–809. [Google Scholar] [CrossRef]
- Irving, H.M.N.H.; Freiser, H.; West, T.S. Compendium of Analytical Nomenclature: Definitive Rules 1977; Elsevier: Amsterdam, The Netherlands, 1978. [Google Scholar]
- United States Environmental Protection Agency. National Primary Drinking Water Regulations, EPA 816-F-09-0004; EPA: Washington, DC, USA, 2009. [Google Scholar]
- Sauer, K.; Scheer, H.; Sauer, P. Förster transfer calculations based on crystal structure data from Agmenellum quadruplicatum C-phycocyanin. Photochem. Photobiol. 1987, 46, 427–440. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.P.; Yi, T. MoS2 quantum dots as a unique fluorescent “turn-off–on” probe for the simple and rapid determination of adenosine triphosphate. J. Mater. Chem. B 2019, 7, 2549–2556. [Google Scholar] [CrossRef]
- Qi, H.J.; Teng, M.; Liu, M.; Liu, S.X.; Li, J.; Yu, H.P.; Teng, C.B.; Huang, Z.H.; Liu, H.; Shao, Q.; et al. Biomass-derived nitrogen-doped carbon quantum dots: Highly selective fluorescent probe for detecting Fe3+ ions and tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. [Google Scholar] [CrossRef] [PubMed]
Materials | C (Atomic %) | N (Atomic %) | O (Atomic %) | C/N (Atomic Ratio) |
---|---|---|---|---|
OCNQDs | 42.41 | 51.67 | 5.92 | 0.82 |
bulk gCN | 41.10 | 56.39 | 2.51 | 0.73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Jing, Y.; Zhang, P.; Xu, B. Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging. Nanomaterials 2022, 12, 1826. https://doi.org/10.3390/nano12111826
Zhang J, Jing Y, Zhang P, Xu B. Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging. Nanomaterials. 2022; 12(11):1826. https://doi.org/10.3390/nano12111826
Chicago/Turabian StyleZhang, Jiahui, Yan Jing, Peng Zhang, and Benhua Xu. 2022. "Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging" Nanomaterials 12, no. 11: 1826. https://doi.org/10.3390/nano12111826
APA StyleZhang, J., Jing, Y., Zhang, P., & Xu, B. (2022). Fluorescent Oxygen-Doped g-C3N4 Quantum Dots for Selective Detection Fe3+ Ions in Cell Imaging. Nanomaterials, 12(11), 1826. https://doi.org/10.3390/nano12111826