Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application
Abstract
:1. Introduction
2. Device Fabrication and Cathode Preparation
3. Results and Discussion
3.1. Materials Characterization
3.2. Field Emisison Characteristics and Stability of Gated CNT Electron Gun
3.3. Application in X-ray Source
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, G.H. Biomedical X-ray Imaging Enabled by Carbon Nanotube X-ray Sources. Chin. J. Chem. Phys. 2018, 31, 529–536. [Google Scholar] [CrossRef]
- Jeong, J.W.; Kang, J.T.; Choi, S.; Kim, J.W.; Ahn, S.; Song, Y.H. A digital miniature X-ray tube with a high-density triode carbon nanotube field emitter. Appl. Phys. Lett. 2013, 102, 023504. [Google Scholar] [CrossRef]
- Kim, J.W.; Jeong, J.W.; Kang, J.T.; Choi, S.; Choi, J.; Ahn, S.; Song, Y.H. A digital compact X-ray tube with carbon nanotube field emitters for advanced imaging systems. Conf. Med. Imaging-Phys. Med. Imaging 2013, 102, 023504. [Google Scholar]
- Wang, L.B.; Zhao, Y.Y.; Zheng, K.S.; She, J.C.; Deng, S.Z.; Xu, N.S.; Chen, J. Fabrication of large-area ZnO nanowire field emitter arrays by thermal oxidation for high-current application. Appl. Surf. Sci. 2019, 484, 966–974. [Google Scholar] [CrossRef]
- Hong, J.H.; Kang, J.S.; Park, K.C. High Electron Transmission Coefficient on Carbon Nanotube Emitters for X-ray Sources. J. Nanosci. Nanotechnol. 2017, 17, 7200–7204. [Google Scholar] [CrossRef]
- Zhou, W.; Lu, J.; Zhou, O.; Chen, Y. Evaluation of Back Projection Methods for Breast Tomosynthesis Image Reconstruction. J. Digit Imaging. 2015, 28, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.S.; Hong, J.H.; Park, K.C. High-performance carbon-nanotube-based cold cathode electron beam with low-thermal-expansion gate electrode. J. Vac. Sci. Technol. B 2018, 36, 02C104. [Google Scholar] [CrossRef]
- Park, S.; Kang, J.T.; Jeong, J.W.; Kim, J.W.; Yun, K.N.; Jeon, H.; Song, Y.H. A Fully Closed Nano-Focus X-Ray Source with Carbon Nanotube Field Emitters. IEEE Electron Device Lett. 2018, 39, 1936–1939. [Google Scholar] [CrossRef]
- Lei, W.; Zhu, Z.Y.; Liu, C.Y.; Zhang, X.B.; Wang, B.P.; Nathan, A. High-current field-emission of carbon nanotubes and its application as a fast-imaging X-ray source. Carbon 2015, 94, 687–693. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Iemmo, L.; Luongo, G.; Urban, F. Field emission from carbon nanostructures. Appl. Sci. 2018, 8, 526. [Google Scholar] [CrossRef] [Green Version]
- Sugie, H.; Tanemura, M.; Filip, V.; Iwata, K.; Takahashi, K.; Okuyama, F. Carbon nanotubes as electron source in an X-ray tube. Appl. Phys. Lett. 2001, 78, 2578–2580. [Google Scholar] [CrossRef]
- Eaton, D.J. Electronic brachytherapy-current status and future directions. Br. J. Radiol. 2015, 88, 20150002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, G.; Lee, Y.Z.; Peng, R.; Liu, Z.; Rajaram, R.; Calderon-Colon, X.; An, L.; Wang, P.; Phan, T.; Sultana, S.; et al. A dynamic micro-CT scanner based on a carbon nanotube field emission X-ray source. Phys. Med. Biol. 2009, 54, 2323–2340. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.H.; Lee, Y.Z.; Liu, Z.J.; Rajaram, R.; Peng, R.; Calderon-Colon, X.; An, L.; Wang, P.; Phan, T.Y.; Lalush, D.; et al. Respiratory-gated micro-CT using a carbon nanotube based micro-focus field emission X-ray source. Med. Imaging 2008 Phys. Med. Imaging 2008, 6913, 691304. [Google Scholar]
- Suomalainen, A.; Esmaeili, E.P.; Robinson, S. Dentomaxillofacial imaging with panoramic views and cone beam CT. Insights Into Imaging 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Liu, R.; Yu, H.Y.; Lu, J.P.; Zhou, O.; Kan, L.J.; He, J.Q.; Cao, G.H. Interior tomographic imaging of mouse heart in a carbon nanotube micro-CT. J. X-ray Sci. Technol. 2016, 24, 549–563. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, W.H.; Yang, G.; Qian, X.; Lu, J.P.; Zhou, O. Breast tomosynthesis reconstruction with a multi-beam X-ray source. Med. Imaging 2009 Phys. Med. Imaging 2009, 7258, 725859. [Google Scholar]
- Park, S.; Jeong, J.W.; Kim, J.W.; Kang, J.T.; Yun, K.N.; Yeon, J.H.; Kim, S.; Jeon, H.; Go, E.; Lee, J.W.; et al. A fully vacuum-sealed, miniature X-ray tube with carbon nanotube field emitters for compact portable dental X-ray system. Med. Imaging 2018 Phys. Med. Imaging 2018, 10573, 105732G-1-6. [Google Scholar]
- Yue, G.Z.; Qiu, Q.; Gao, B.; Cheng, Y.; Zhang, J.; Shimoda, H.; Chang, S.; Lu, J.P.; Zhou, O. Generation of continuous and pulsed diagnostic imaging X-ray radiation using a carbon-nanotube-based field-emission cathode. Appl. Phys. Lett. 2002, 81, 355–357. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.J.; Yang, G.; Lee, Y.Z.; Bordelon, D.; Lu, J.P.; Zhou, O. Carbon nanotube based microfocus field emission X-ray source for microcomputed tomography. Appl. Phys. Lett. 2006, 89, 103111. [Google Scholar] [CrossRef]
- Cao, G.H.; Calderon-Colon, X.; Wang, P.; Burk, L.; Lee, Y.Z.; Rajaram, R.; Sultana, S.; Lalush, D.; Lu, J.P.; Zhou, O. A dynamic micro-CT scanner with a stationary mouse bed using a compact carbon nanotube field emission X-ray tube. Proc. SPIE-Int. Soc. Opt. Eng. 2009, 7258, 72585Q. [Google Scholar]
- Hadsell, M.; Cao, G.H.; Zhang, J.; Burk, L.; Schreiber, T.; Schreiber, E.; Chang, S.; Lu, J.P.; Zhou, O. Pilot study for compact microbeam radiation therapy using a carbon nanotube field emission micro-CT scanner. Med. Phys. 2014, 41, 061710. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Lee, Y.Z.; Cheng, Y.; Gao, B.; Qiu, Q.; Lu, J.P.; Zhou, O. A multi-beam X-ray imaging system based on carbon nanotube field emitters. Med. Imaging 2006 Phys. Med. Imaging 2006, 6142, 14204. [Google Scholar]
- Cheng, Y.; Zhang, J.; Lee, Y.Z.; Gao, B.; Dike, S.; Lin, W.; Lu, J.P.; Zhou, O. Dynamic radiography using a carbon-nanotube-based field-emission X-ray source. Rev. Sci. Instrum. 2004, 75, 3264–3267. [Google Scholar] [CrossRef]
- Giubileo, F.; Di Bartolomeo, A.; Scarfato, A.; Iemmo, L.; Bobba, F.; Passacantando, M.; Santucci, S.; Cucolo, A.M. Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon 2009, 47, 1074–1080. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.B.; Xu, Y.; Cao, X.Q.; Huang, J.; Deng, S.Z.; Xu, N.S.; Chen, J. Diagonal 4-in ZnO Nanowire Cold Cathode Flat-Panel X-Ray Source: Preparation and Projection Imaging Properties. IEEE Trans. Nucl. Sci. 2021, 68, 338–345. [Google Scholar] [CrossRef]
- Lin, Z.F.; Xie, P.B.; Zhan, R.Z.; Chen, D.K.; She, J.C.; Deng, S.Z.; Xu, N.S.; Chen, J. Defect-Enhanced Field Emission from WO3 Nanowires for Flat-Panel X-ray Sources. ACS Appl. Nano. Mater. 2019, 2, 5206–5213. [Google Scholar] [CrossRef]
- Aubin, J.S.; Santos, D.M.; Steciw, S.; Fallone, B.G. Effect of longitudinal magnetic fields on a simulated in-line 6 MV linac. Med. Phys. 2010, 37, 4916–4923. [Google Scholar] [CrossRef]
- Calderon-Colon, X.; Geng, H.Z.; Gao, B.; An, L.; Cao, G.H.; Zhou, O. A carbon nanotube field emission cathode with high current density and long-term stability. Nanotechnology 2009, 20, 325707. [Google Scholar] [CrossRef]
- Hong, J.H.; Kang, J.S.; Park, K.C. Fabrication of a compact glass-sealed x-ray tube with carbon nanotube cold cathode for high-resolution imaging. J. Vac. Sci. Technol. B 2018, 36, 02C109. [Google Scholar] [CrossRef]
- Sun, Y.H.; Jaffray, D.A.; Yeow, J.T.W. The design and fabrication of carbon-nanotube-based field emission X-ray cathode with ballast resistor. IEEE Trans. Electron Devices 2013, 60, 464–470. [Google Scholar] [CrossRef]
- Kang, J.T.; Lee, H.R.; Jeong, J.W.; Kim, J.W.; Park, S.; Shin, M.S.; Yeon, J.H.; Jeon, H.; Kim, S.H.; Choi, Y.C.; et al. Fast and stable operation of carbon nanotube field-emission X-Ray tubes achieved using an advanced active-current control. IEEE Electron Device Lett. 2015, 36, 1209–1211. [Google Scholar] [CrossRef]
- Sheng, K.; Williams, B.W.; Finney, S.J. A review of IGBT models. IEEE Trans. Power Electron. 2000, 15, 1250–1266. [Google Scholar] [CrossRef]
- Dettmer, H.; Fichtner, W.; Bauer, F.; Stockmeier, T. Punch-through IGBTs with homogeneous n-base operating at 4 kV line voltage. In Proceedings of the International Symposium on Power Semiconductor Devices and IC’s: ISPSD ’95, Yokohama, Japan, 23–25 May 1995; pp. 492–496. [Google Scholar]
- Zhang, Y.; Tan, Y.M.; Wang, L.Z.; Li, B.H.; Ke, Y.L.; Liao, M.X.; Xu, N.S.; Chen, J.; Deng, S.Z. Electron emission and structure stability of carbon nanotube cold cathode driven by millisecond pulsed voltage. Vacuum 2020, 172, 109071. [Google Scholar] [CrossRef]
- Cao, X.Q.; Zhang, G.F.; Zhao, Y.Y.; Xu, Y.; She, J.C.; Deng, S.Z.; Xu, N.S.; Chen, J. Fully vacuum-sealed addressable nanowire cold cathode flat-panel X-ray source. Appl. Phys. Lett. 2021, 119, 053501. [Google Scholar] [CrossRef]
- Seidel, R.; Duesberg, G.S.; Unger, E.; Graham, A.P.; Liebau, M.; Kreupl, F. Chemical vapor deposition growth of single-walled carbon nanotubes at 600 degrees C and a simple growth model. J. Phys. Chem. B 2004, 108, 1888–1893. [Google Scholar] [CrossRef]
- Cardenas, J.F. Protonation and sonication effects on aggregation sensitive Raman features of single wall carbon nanotubes. Carbon 2008, 46, 1327–1330. [Google Scholar] [CrossRef]
- Nordheim, L.W. The effect of the image force on the emission and reflexion of electrons by metals. Proc. R. Soc. A Math. Phys. Eng. Sci. 1928, 121, 626–639. [Google Scholar]
- Chen, Y.C.; Li, Z.B.; She, J.C.; Deng, S.Z.; Xu, N.S.; Chen, J. Field emission characteristics of individual ZnO nanowire before vacuum breakdown. In Proceedings of the 2018 31st International Vacuum Nanoelectronics Conference (IVNC), Kyoto, Japan, 9–13 July 2018; p. 18243896. [Google Scholar]
- Rokhlenko, A.; Jensen, K.L.; Lebowitz, J.L. Space charge effects in field emission: One dimensional theory. J. Appl. Phys. 2010, 107, 014904. [Google Scholar] [CrossRef] [Green Version]
- Lush, G.J. Probability theory. Nature 1978, 272, 107. [Google Scholar] [CrossRef]
- Yeong, K.S.; Thong, J.T.L. Effects of adsorbates on the field emission current from carbon nanotubes. Appl. Surf. Sci. 2004, 233, 20–23. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhang, J.; Yang, G.; Cheng, Y.; Zhou, O.; Lu, J.P. Development of a carbon nanotube based microfocus X-ray tube with single focusing electrode. J. Vac. Sci. Technol. B. 2011, 29, 02B106. [Google Scholar] [CrossRef]
- Cheng, H.C.; Hong, W.K.; Tarntair, F.G.; Chen, K.J.; Lin, J.B.; Chen, K.H.; Chen, L.C. Integration of thin film transistor controlled carbon nanotubes for field emission devices. Electrochem. Solid-State Lett. 2001, 4, H5–H7. [Google Scholar] [CrossRef]
- Hsu, D.S.Y.; Shaw, J. Integrally gated carbon nanotube-on-post field emitter arrays. Appl. Phys. Lett. 2002, 80, 118–120. [Google Scholar] [CrossRef] [Green Version]
- Bae, N.Y.; Bae, W.M.; Ha, A.N.; Nakamoto, M.; Jang, J.; Park, K.C. Low-voltage driven carbon nanotube field emission lamp. Curr. Appl. Phys. 2011, 11, S86–S89. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Chen, Y.C.; Zhang, G.F.; Zhan, R.Z.; She, J.C.; Deng, S.Z.; Chen, J. High Current Field Emission from Large-Area Indium Doped ZnO Nanowire Field Emitter Arrays for Flat-Panel X-ray Source Application. Nanomaterials 2021, 11, 240. [Google Scholar] [CrossRef]
CNT Preparation Method | Device Structure and Current Modulation Method | Gate Voltage | Cathode Current | Current Fluctuation | Ref. |
---|---|---|---|---|---|
Plasma enhanced CVD; Resist-assisted patterning | Gated structure without current modulation | 1400 V | ~6000 µA | 2.4% | [30] |
Electrophoretic deposition | Gated structure without current modulation | 800 V | ~600 µA | ~1% | [44] |
Microwave Plasma CVD | Diode structure with thin film transistor | N/A | ~11 µA | <2% | [45] |
Thermal CVD | Gated structure with CNTs on silicon posts as resistor ballast | 60 V | ~120 µA | <5% | [46] |
Plasma Enhanced CVD; Resist-assisted patterning | Diode structure with MOSFET | N/A | ~77 µA | ~0.45% | [47] |
Thermal CVD | Gated structure without current modulation | 1200 V | ~30 µA | 3.91% | this work |
Thermal CVD | Gated structure with IGBT | 1200 V | 15.3 µA | 0.22% | this work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, J.; Li, B.; Zhang, Y.; Deng, S.; Chen, J. Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application. Nanomaterials 2022, 12, 1882. https://doi.org/10.3390/nano12111882
Guo Y, Wang J, Li B, Zhang Y, Deng S, Chen J. Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application. Nanomaterials. 2022; 12(11):1882. https://doi.org/10.3390/nano12111882
Chicago/Turabian StyleGuo, Yajie, Junfan Wang, Baohong Li, Yu Zhang, Shaozhi Deng, and Jun Chen. 2022. "Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application" Nanomaterials 12, no. 11: 1882. https://doi.org/10.3390/nano12111882
APA StyleGuo, Y., Wang, J., Li, B., Zhang, Y., Deng, S., & Chen, J. (2022). Achieving High Current Stability of Gated Carbon Nanotube Cold Cathode Electron Source Using IGBT Modulation for X-ray Source Application. Nanomaterials, 12(11), 1882. https://doi.org/10.3390/nano12111882