Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors
Abstract
:1. Introduction
2. Applications of Nanomaterials in MIP Sensors
2.1. Carbon Nanomaterials-Based MIP Sensors
2.1.1. Carbon Nanotube-Based MIP Sensors
2.1.2. Graphene-Based MIP Sensors
Analyte | Functional Monomers | Electrode Modification | Linear Range | LOD | Refs |
---|---|---|---|---|---|
EGCG | beta-CD | MIP/GO | 3 × 10−8~1 × 10−5 M | 8.78 × 10−9 M | [34] |
Testosterone | o-PD | MIP/GO | 1 × 10−15~1 × 10−6 M | 4.0 × 10−16 M | [17] |
D-xylose | Phenol | MIP/rGO | 1.0 × 10−13~1.0 × 10−10 M | 8.0 × 10−14 M | [35] |
Fructose | PBA | MIP/rGO | 1.0 × 10−14~1.0 × 10−11 M | 1.1 × 10−14 M | [39] |
DCF | Polyaniline | MIP/rGO | 5~80 mg L−1 | 1.1 mg L−1 | [40] |
OLA | Py | MIP/DGr | 5 × 10−8~5 × 10−7 M | 7.5 × 10−9 M | [42] |
2.1.3. Carbon Quantum Dot-Based MIP Sensors
2.2. Metal Nanoparticles-Based MIP Sensors
2.2.1. Gold Nanoparticles-Based MIP Sensors
2.2.2. Silver Nanoparticles-Based MIP Sensors
2.2.3. Platinum Nanoparticles-Based MIP Sensors
Analyte | Functional Monomers | Electrode Modification | Linear Range | LOD | Refs |
---|---|---|---|---|---|
HSA | o-PD/HQ | MIP/AuNPs/ PTH-MB | 1 × 10−10~1 × 10−4 g L−1 | 3 × 10−11 g L−1 | [54] |
Glucose | o-PD | MIP/AuNPs | 1.25 × 10−9~2.56 × 10−6 M | 1.25 × 10−9 M | [55] |
MEL | DA/poly T | MIP/AuNPs | 1 × 10−12~1 × 10−4 M | 6.7 × 10−13 M | [56] |
Glycerol | Acrylamide | MIP/AuNPs | 20~227.81 μg mL−1 | 0.001 μg mL−1 | [57] |
BHA | CS | MIP/AuNPs | 0.01 ~20 μg mL−1 | 0.001 μg mL−1 | [58] |
MEB | PPy | MIP/AgNPs | 1 × 10−8~1 × 10−6, 1 × 10−5~1 × 10−3 M | 8.6 × 10−9 M | [61] |
IMI | EMIs | SD/MIP/AuNPs | 0.2~800 ng mL−1 | 0.028 ng mL−1 | [62] |
PSA | PAPTMS/ APBA | MIP/PtNPs | 5 × 10−10~2 × 10−5 M | 7.8 × 10−11 M | [63] |
Cocaine | PABA | MIP/PdNPs | 1 × 10−4~5 × 10−4 M | 5 × 10−5 M | [65] |
CHO | PDA | MIP/Pt/AuNPs | 1 × 10−12~5 × 10−11 M | 2 × 10−13 M | [66] |
6-MP | N-AAsp | MIP/N-HCNS@ PdNPs | 0.8~70.748 ng mL−1 | 0.11~0.22 ng mL−1 | [67] |
2.2.4. Palladium Nanoparticles-Based MIP Sensors
2.3. Metal Derivative Nanomaterials-Based MIP Sensors
2.3.1. Metal Oxide Nanomaterials-Based MIP Sensors
2.3.2. Metal Sulfide Nanomaterials-Based MIP Sensors
2.4. Nanocomposite-Based MIP Sensors
3. Conclusions and Prospects
Author Contributions
Funding
Conflicts of Interest
References
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; Jin, H.; Guo, H.; Wang, Z. Recent Advances and Future Prospects in Molecularly Imprinted Polymers-Based Electrochemical Biosensors. Biosens. Bioelectron. 2018, 100, 56–70. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.S.; Pietrzyk-Le, A.; D’Souza, F.; Kutner, W. Electrochemically Synthesized Polymers in Molecular Imprinting for Chemical Sensing. Anal. Bioanal. Chem. 2012, 402, 3177–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Li, L.; Ding, Y.; Ye, D.; Wang, Y.; Cui, S.; Liao, L. Molecularly Imprinted Electrochemical Sensor Based on Bioinspired Au Microflowers for Ultra-Trace Cholesterol Assay. Biosens. Bioelectron. 2017, 92, 748–754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blanco-López, M.C.; Gutiérrez-Fernández, S.; Lobo-Castañón, M.J.; Miranda-Ordieres, A.J.; Tuñón-Blanco, P. Electrochemical Sensing with Electrodes Modified with Molecularly Imprinted Polymer Films. Anal. Bioanal. Chem. 2004, 378, 1922–1928. [Google Scholar] [CrossRef]
- Karimian, N.; Stortini, A.M.; Moretto, L.M.; Costantino, C.; Bogialli, S.; Ugo, P. Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(o-Phenylenediamine) Polymer. ACS Sens. 2018, 3, 1291–1298. [Google Scholar] [CrossRef]
- Dar, K.K.; Shao, S.; Tan, T.; Lv, Y. Molecularly Imprinted Polymers for the Selective Recognition of Microorganisms. Biotechnol. Adv. 2020, 45, 107640. [Google Scholar] [CrossRef]
- Piletsky, S.; Canfarotta, F.; Poma, A.; Bossi, A.M.; Piletsky, S. Molecularly Imprinted Polymers for Cell Recognition. Trends Biotechnol. 2020, 38, 368–387. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly Imprinted Polymer-Based Sensor for Electrochemical Detection of Erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Kadhem, A.J.; Gentile, G.J.; Fidalgo de Cortalezzi, M.M. Molecularly Imprinted Polymers (MIPs) in Sensors for Environmental and Biomedical Applications: A Review. Molecules 2021, 26, 6233. [Google Scholar] [CrossRef]
- Saylan, Y.; Akgönüllü, S.; Yavuz, H.; Ünal, S.; Denizli, A. Molecularly Imprinted Polymer Based Sensors for Medical Applications. Sensors 2019, 19, E1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfadil, D.; Lamaoui, A.; Della Pelle, F.; Amine, A.; Compagnone, D. Molecularly Imprinted Polymers Combined with Electrochemical Sensors for Food Contaminants Analysis. Molecules 2021, 26, 4607. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Feng, T.; Xu, J.; Xue, C. Recent Advances of Molecularly Imprinted Polymer-Based Sensors in the Detection of Food Safety Hazard Factors. Biosens. Bioelectron. 2019, 141, 111447. [Google Scholar] [CrossRef] [PubMed]
- Sundhoro, M.; Agnihotra, S.R.; Amberger, B.; Augustus, K.; Khan, N.D.; Barnes, A.; BelBruno, J.; Mendecki, L. An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid and Selective Food Allergen Detection. Food Chem. 2021, 344, 128648. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, P.; Costa-Rama, E.; Seguro, I.; Pacheco, J.G.; Nouws, H.P.A.; Cordeiro, M.N.D.S.; Delerue-Matos, C. Molecularly Imprinted Polymer-Based Electrochemical Sensors for Environmental Analysis. Biosens. Bioelectron. 2021, 172, 112719. [Google Scholar] [CrossRef]
- Zhang, D.; Yu, D.; Zhao, W.; Yang, Q.; Kajiura, H.; Li, Y.; Zhou, T.; Shi, G. A Molecularly Imprinted Polymer Based on Functionalized Multiwalled Carbon Nanotubes for the Electrochemical Detection of Parathion-Methyl. Analyst 2012, 137, 2629–2636. [Google Scholar] [CrossRef]
- Liu, W.; Ma, Y.; Sun, G.; Wang, S.; Deng, J.; Wei, H. Molecularly Imprinted Polymers on Graphene Oxide Surface for EIS Sensing of Testosterone. Biosens. Bioelectron. 2017, 92, 305–312. [Google Scholar] [CrossRef]
- Slepičková Kasálková, N.; Slepička, P.; Švorčík, V. Carbon Nanostructures, Nanolayers, and Their Composites. Nanomaterials 2021, 11, 2368. [Google Scholar] [CrossRef]
- Loh, K.P.; Ho, D.; Chiu, G.N.C.; Leong, D.T.; Pastorin, G.; Chow, E.K.-H. Clinical Applications of Carbon Nanomaterials in Diagnostics and Therapy. Adv. Mater. 2018, 30, e1802368. [Google Scholar] [CrossRef]
- Yang, C.; Denno, M.E.; Pyakurel, P.; Venton, B.J. Recent Trends in Carbon Nanomaterial-Based Electrochemical Sensors for Biomolecules: A Review. Anal. Chim. Acta 2015, 887, 17–37. [Google Scholar] [CrossRef] [Green Version]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef] [PubMed]
- De Menezes, B.R.C.; Rodrigues, K.F.; da Fonseca, B.C.S.; Ribas, R.G.; do Montanheiro, T.L.A.; Thim, G.P. Recent Advances in the Use of Carbon Nanotubes as Smart Biomaterials. J. Mater. Chem. B 2019, 7, 1343–1360. [Google Scholar] [CrossRef] [PubMed]
- Shumyantseva, V.V.; Bulko, T.V.; Sigolaeva, L.V.; Kuzikov, A.V.; Pogodin, P.V.; Archakov, A.I. Molecular Imprinting Coupled with Electrochemical Analysis for Plasma Samples Classification in Acute Myocardial Infarction Diagnostic. Biosens. Bioelectron. 2018, 99, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Kandeil, A.; Gomaa, M.; Mohamed El Nashar, R.; El-Sherbiny, I.M.; Hassan, R.Y.A. SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sens. 2021, 6, 4098–4107. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, P.; Tian, Y.; Ding, Z.; Li, G.; Liu, J.; Zuberi, Z.; He, Q. Rapid Recognition and Determination of Tryptophan by Carbon Nanotubes and Molecularly Imprinted Polymer-Modified Glassy Carbon Electrode. Bioelectrochemistry 2020, 131, 107393. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, X.-L.; Zeng, Q.; Wang, H.-S.; Wang, L.-S. A Multi-Walled Carbon Nanotubes Based Molecularly Imprinted Polymers Electrochemical Sensor for the Sensitive Determination of HIV-P24. Talanta 2017, 164, 121–127. [Google Scholar] [CrossRef]
- Yu, W.; Tang, Y.; Sang, Y.; Liu, W.; Wang, S.; Wang, X. Preparation of a Carboxylated Single-Walled Carbon-Nanotube-Chitosan Functional Layer and Its Application to a Molecularly Imprinted Electrochemical Sensor to Quantify Semicarbazide. Food Chem. 2020, 333, 127524. [Google Scholar] [CrossRef]
- Shaabani, N.; Chan, N.W.C.; Jemere, A.B. A Molecularly Imprinted Sol-Gel Electrochemical Sensor for Naloxone Determination. Nanomaterials 2021, 11, 631. [Google Scholar] [CrossRef]
- Akhoundian, M.; Alizadeh, T.; Ganjali, M.R.; Rafiei, F. A New Carbon Paste Electrode Modified with MWCNTs and Nano-Structured Molecularly Imprinted Polymer for Ultratrace Determination of Trimipramine: The Crucial Effect of Electrode Components Mixing on Its Performance. Biosens. Bioelectron. 2018, 111, 27–33. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, X.; Sun, L.; Wei, Y.; Wei, X. Cellular Toxicity and Immunological Effects of Carbon-Based Nanomaterials. Part. Fibre Toxicol. 2019, 16, 18. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoller, M.D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R.S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Alwarappan, S.; Chen, Z.; Kong, X.; Li, C.-Z. Membraneless Enzymatic Biofuel Cells Based on Graphene Nanosheets. Biosens. Bioelectron. 2010, 25, 1829–1833. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, L.; Hu, Y.; Peng, X.; Du, J. A Novel Electrochemical Sensor Based on a Molecularly Imprinted Polymer for the Determination of Epigallocatechin Gallate. Food Chem. 2017, 221, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- Pompeu Prado Moreira, L.F.; Buffon, E.; Stradiotto, N.R. Electrochemical Sensor Based on Reduced Graphene Oxide and Molecularly Imprinted Poly(Phenol) for d-Xylose Determination. Talanta 2020, 208, 120379. [Google Scholar] [CrossRef]
- Pumera, M. Graphene-Based Nanomaterials and Their Electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef]
- Wu, S.; He, Q.; Tan, C.; Wang, Y.; Zhang, H. Graphene-Based Electrochemical Sensors. Small 2013, 9, 1160–1172. [Google Scholar] [CrossRef]
- Liu, B.; Lian, H.; Chen, L.; Wei, X.; Sun, X. Differential Potential Ratiometric Sensing Platform for Enantiorecognition of Chiral Drugs. Anal. Biochem. 2019, 574, 39–45. [Google Scholar] [CrossRef]
- Moreira, L.F.P.P.; Buffon, E.; de Sá, A.C.; Stradiotto, N.R. Fructose Determination in Fruit Juices Using an Electrosynthesized Molecularly Imprinted Polymer on Reduced Graphene Oxide Modified Electrode. Food Chem. 2021, 352, 129430. [Google Scholar] [CrossRef]
- Mostafavi, M.; Yaftian, M.R.; Piri, F.; Shayani-Jam, H. A New Diclofenac Molecularly Imprinted Electrochemical Sensor Based upon a Polyaniline/Reduced Graphene Oxide Nano-Composite. Biosens. Bioelectron. 2018, 122, 160–167. [Google Scholar] [CrossRef]
- Babamiri, B.; Salimi, A.; Hallaj, R.; Hasanzadeh, M. Nickel Nanoclusters as a Novel Emitter for Molecularly Imprinted Electrochemiluminescence Based Sensor toward Nanomolar Detection of Creatinine. Biosens. Bioelectron. 2018, 107, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Zhang, B.; Liu, M.; Hu, X.; Fang, G.; Wang, S. Molecularly Imprinted Electrochemical Sensor Based on Polypyrrole/Dopamine@graphene Incorporated with Surface Molecularly Imprinted Polymers Thin Film for Recognition of Olaquindox. Bioelectrochemistry 2020, 132, 107398. [Google Scholar] [CrossRef] [PubMed]
- Molaei, M.J. A Review on Nanostructured Carbon Quantum Dots and Their Applications in Biotechnology, Sensors, and Chemiluminescence. Talanta 2019, 196, 456–478. [Google Scholar] [CrossRef] [PubMed]
- Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. Carbon Dots and Graphene Quantum Dots in Electrochemical Biosensing. Nanomaterials 2019, 9, 634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansuriya, B.D.; Altintas, Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials 2019, 13, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Smith, T.; Banaszak, A.; Boeckl, J. Graphene Quantum Dots Electrochemistry and Sensitive Electrocatalytic Glucose Sensor Development. Nanomaterials 2017, 7, 301. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Wu, H.; Jiang, Y.; Xu, J.; Li, X.; Zhang, W.; Qiu, F. A Molecularly-Imprinted-Electrochemical-Sensor Modified with Nano-Carbon-Dots with High Sensitivity and Selectivity for Rapid Determination of Glucose. Anal. Biochem. 2018, 555, 42–49. [Google Scholar] [CrossRef]
- Rao, H.; Zhao, X.; Liu, X.; Zhong, J.; Zhang, Z.; Zou, P.; Jiang, Y.; Wang, X.; Wang, Y. A Novel Molecularly Imprinted Electrochemical Sensor Based on Graphene Quantum Dots Coated on Hollow Nickel Nanospheres with High Sensitivity and Selectivity for the Rapid Determination of Bisphenol S. Biosens. Bioelectron. 2018, 100, 341–347. [Google Scholar] [CrossRef]
- Yao, J.; Chen, M.; Li, N.; Liu, C.; Yang, M. Experimental and Theoretical Studies of a Novel Electrochemical Sensor Based on Molecularly Imprinted Polymer and B, N, F-CQDs/AgNPs for Enhanced Specific Identification and Dual Signal Amplification in Highly Selective and Ultra-Trace Bisphenol S Determination in Plastic Products. Anal. Chim. Acta 2019, 1066, 36–48. [Google Scholar] [CrossRef]
- Jalili, R.; Khataee, A.; Rashidi, M.-R.; Razmjou, A. Detection of Penicillin G Residues in Milk Based on Dual-Emission Carbon Dots and Molecularly Imprinted Polymers. Food Chem 2020, 314, 126172. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Applications of Graphene Quantum Dots in Biomedical Sensors. Sensors 2020, 20, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draz, M.S.; Shafiee, H. Applications of Gold Nanoparticles in Virus Detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [CrossRef]
- Tajik, S.; Beitollahi, H.; Nejad, F.G.; Zhang, K.; Le, Q.V.; Jang, H.W.; Kim, S.Y.; Shokouhimehr, M. Recent Advances in Electrochemical Sensors and Biosensors for Detecting Bisphenol A. Sensors 2020, 20, 3364. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Y.; Guo, M.; Lin, B.; Zhang, L. A Sensitive Determination of Albumin in Urine by Molecularly Imprinted Electrochemical Biosensor Based on Dual-Signal Strategy. Sens. Actuators B Chem. 2019, 288, 564–570. [Google Scholar] [CrossRef]
- Sehit, E.; Drzazgowska, J.; Buchenau, D.; Yesildag, C.; Lensen, M.; Altintas, Z. Ultrasensitive Nonenzymatic Electrochemical Glucose Sensor Based on Gold Nanoparticles and Molecularly Imprinted Polymers. Biosens. Bioelectron. 2020, 165, 112432. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Li, L.; Ding, Y.; Liu, H.; Cui, H.; Zhang, F.; Lin, J.; Duan, Y. A Sensitive Molecularly Imprinted Electrochemical Aptasensor for Highly Specific Determination of Melamine. Food Chem. 2021, 363, 130202. [Google Scholar] [CrossRef]
- Motia, S.; Bouchikhi, B.; Llobet, E.; El Bari, N. Synthesis and Characterization of a Highly Sensitive and Selective Electrochemical Sensor Based on Molecularly Imprinted Polymer with Gold Nanoparticles Modified Screen-Printed Electrode for Glycerol Determination in Wastewater. Talanta 2020, 216, 120953. [Google Scholar] [CrossRef] [PubMed]
- Motia, S.; Bouchikhi, B.; El Bari, N. An Electrochemical Molecularly Imprinted Sensor Based on Chitosan Capped with Gold Nanoparticles and Its Application for Highly Sensitive Butylated Hydroxyanisole Analysis in Foodstuff Products. Talanta 2021, 223, 121689. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhao, M.; Qiu, J.; Lai, W.-Y.; Pang, H.; Huang, W. One Dimensional Silver-Based Nanomaterials: Preparations and Electrochemical Applications. Small 2017, 13, 1701091. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.-H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Nezhadali, A.; Bonakdar, G.A. Multivariate Optimization of Mebeverine Analysis Using Molecularly Imprinted Polymer Electrochemical Sensor Based on Silver Nanoparticles. J. Food Drug Anal. 2019, 27, 305–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, P.; Liu, H.; Zhang, L.; Zhu, P.; Ge, S.; Yu, J. Paper-Based SERS Sensing Platform Based on 3D Silver Dendrites and Molecularly Imprinted Identifier Sandwich Hybrid for Neonicotinoid Quantification. ACS Appl. Mater. Interfaces 2020, 12, 8845–8854. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, J.; Zhang, J.; Sun, J.; Gan, T.; Liu, Y. A Disposable Molecularly Imprinted Electrochemical Sensor for the Ultra-Trace Detection of the Organophosphorus Insecticide Phosalone Employing Monodisperse Pt-Doped UiO-66 for Signal Amplification. Analyst 2020, 145, 3245–3256. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hu, X.; Xia, Y.; Zhao, F.; Zeng, B. A Novel Ratiometric Electrochemical Sensor Based on Dual-Monomer Molecularly Imprinted Polymer and Pt/Co3O4 for Sensitive Detection of Chlorpromazine Hydrochloride. Anal. Chim. Acta 2022, 1190, 339245. [Google Scholar] [CrossRef]
- Florea, A.; Cowen, T.; Piletsky, S.; De Wael, K. Electrochemical Sensing of Cocaine in Real Samples Based on Electrodeposited Biomimetic Affinity Ligands. Analyst 2019, 144, 4639–4646. [Google Scholar] [CrossRef]
- Jalalvand, A.R.; Zangeneh, M.M.; Jalili, F.; Soleimani, S.; Díaz-Cruz, J.M. An Elegant Technology for Ultrasensitive Impedimetric and Voltammetric Determination of Cholestanol Based on a Novel Molecularly Imprinted Electrochemical Sensor. Chem. Phys. Lipids 2020, 229, 104895. [Google Scholar] [CrossRef]
- Kumar, A.; Pathak, P.K.; Prasad, B.B. Electrocatalytic Imprinted Polymer of N-Doped Hollow Carbon Nanosphere-Palladium Nanocomposite for Ultratrace Detection of Anticancer Drug 6-Mercaptopurine. ACS Appl. Mater. Interfaces 2019, 11, 16065–16074. [Google Scholar] [CrossRef]
- George, J.M.; Antony, A.; Mathew, B. Metal Oxide Nanoparticles in Electrochemical Sensing and Biosensing: A Review. Microchim. Acta 2018, 185, 358. [Google Scholar] [CrossRef]
- Shetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. ZnO-Based Nanostructured Electrodes for Electrochemical Sensors and Biosensors in Biomedical Applications. Biosens. Bioelectron. 2019, 141, 111417. [Google Scholar] [CrossRef]
- Wang, H.-H.; Chen, X.-J.; Li, W.-T.; Zhou, W.-H.; Guo, X.-C.; Kang, W.-Y.; Kou, D.-X.; Zhou, Z.-J.; Meng, Y.-N.; Tian, Q.-W.; et al. ZnO Nanotubes Supported Molecularly Imprinted Polymers Arrays as Sensing Materials for Electrochemical Detection of Dopamine. Talanta 2018, 176, 573–581. [Google Scholar] [CrossRef]
- Yu, M.; Wu, L.; Miao, J.; Wei, W.; Liu, A.; Liu, S. Titanium Dioxide and Polypyrrole Molecularly Imprinted Polymer Nanocomposites Based Electrochemical Sensor for Highly Selective Detection of P-Nonylphenol. Anal. Chim. Acta 2019, 1080, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Kudr, J.; Adam, V.; Zitka, O. Fabrication of Graphene/Molybdenum Disulfide Composites and Their Usage as Actuators for Electrochemical Sensors and Biosensors. Molecules 2019, 24, 3374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Li, A.; Zhao, W.; Liu, J. Recent Advances in Functional Polymer Decorated Two-Dimensional Transition-Metal Dichalcogenides Nanomaterials for Chemo-Photothermal Therapy. Chemistry 2018, 24, 4215–4227. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, M.; Wang, Y.; Li, X.; Niu, Z.; Wang, X.; Song, J. Electrochemical Determination of 2,4-Dichlorophenol by Using a Glassy Carbon Electrode Modified with Molybdenum Disulfide, Ionic Liquid and Gold/Silver Nanorods. Microchim. Acta 2018, 185, 292. [Google Scholar] [CrossRef]
- Axin Liang, A.; Huipeng Hou, B.; Shanshan Tang, C.; Liquan Sun, D.; Aiqin Luo, E. An Advanced Molecularly Imprinted Electrochemical Sensor for the Highly Sensitive and Selective Detection and Determination of Human IgG. Bioelectrochemistry 2021, 137, 107671. [Google Scholar] [CrossRef]
- Wang, H.; Yao, S.; Liu, Y.; Wei, S.; Su, J.; Hu, G. Molecularly Imprinted Electrochemical Sensor Based on Au Nanoparticles in Carboxylated Multi-Walled Carbon Nanotubes for Sensitive Determination of Olaquindox in Food and Feedstuffs. Biosens. Bioelectron. 2017, 87, 417–421. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Liu, R.; Qin, Y.; Qiu, Q.-F.; Chen, Z.; Cheng, S.-B.; Huang, W.-H. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat. Anal. Chem. 2018, 90, 13081–13087. [Google Scholar] [CrossRef]
- Deng, P.; Xu, Z.; Kuang, Y. Electrochemical Determination of Bisphenol A in Plastic Bottled Drinking Water and Canned Beverages Using a Molecularly Imprinted Chitosan-Graphene Composite Film Modified Electrode. Food Chem. 2014, 157, 490–497. [Google Scholar] [CrossRef]
- Lian, W.; Liu, S.; Yu, J.; Li, J.; Cui, M.; Xu, W.; Huang, J. Electrochemical Sensor Using Neomycin-Imprinted Film as Recognition Element Based on Chitosan-Silver Nanoparticles/Graphene-Multiwalled Carbon Nanotubes Composites Modified Electrode. Biosens. Bioelectron. 2013, 44, 70–76. [Google Scholar] [CrossRef]
- Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A Novel Molecularly Imprinted Electrochemical Sensor Modified with Carbon Dots, Chitosan, Gold Nanoparticles for the Determination of Patulin. Biosens. Bioelectron. 2017, 98, 299–304. [Google Scholar] [CrossRef]
- Ma, X.; Li, X.; Zhang, W.; Meng, F.; Wang, X.; Qin, Y.; Zhang, M. Carbon-Based Nanocomposite Smart Sensors for the Rapid Detection of Mycotoxins. Nanomaterials 2021, 11, 2851. [Google Scholar] [CrossRef] [PubMed]
- Beluomini, M.A.; da Silva, J.L.; Sedenho, G.C.; Stradiotto, N.R. D-Mannitol Sensor Based on Molecularly Imprinted Polymer on Electrode Modified with Reduced Graphene Oxide Decorated with Gold Nanoparticles. Talanta 2017, 165, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Chen, S.; Ren, J.; Han, F.; Yu, X.; Tang, F.; Xue, F.; Chen, W.; Yang, J.; Jiang, Y.; et al. Facile Construction of a Molecularly Imprinted Polymer-Based Electrochemical Sensor for the Detection of Milk Amyloid A. Microchim. Acta 2020, 187, 642. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Hong, J.; Liu, C.; Zhu, L.; Jiang, L. An Electrochemical Molecularly Imprinted Polymer Sensor for Rapid β-Lactoglobulin Detection. Sensors 2021, 21, 8240. [Google Scholar] [CrossRef] [PubMed]
Analyte | Functional Monomers | Electrode Modification | Linear Range | LOD | Refs |
---|---|---|---|---|---|
Mb | o-PD | MIP/MWCNTs | 1 × 10−11~5 × 10−10, 5 × 10−10~5 × 10−8 M | 1 × 10−11 M | [23] |
SARS-CoV-2 | m-AP | MIP/CNTs/WO3 | 7~320 pg mL−1 | 57 pg mL−1 | [24] |
Trp | CS | MIP/MWCNTs | 2 × 10−7~1 × 10−5, 1 × 10−5~1 × 10−4 M | 1 × 10−9 M | [25] |
HIV-p24 | AAM | MIPs/MWCNTs/CS | 1 × 10−4~2 ng cm−3 | 0.083 pg cm−3 | [26] |
SEM | o-PD | MIP/SWNTs-COOH/CS | 0.040~7.6 ng mL−1 | 0.025 ng mL−1 | [27] |
NLX | TEPS/Py | Py@solgelMIP/ fMWCNTs | 0~1.2 × 10−5 M | 2 × 10−8 M | [28] |
TRI | MAA/VB | MIP/MWCNTs | 1 × 10−10~2.5 × 10−8 M | 4.52 × 10−11 M | [29] |
Analyte | Functional Monomers | Electrode Modification | Linear Range | LOD | Refs |
---|---|---|---|---|---|
OLA | o-PD | MIP/AuNPs/cMWCNTs | 1 × 10−8~2 × 10−7 M | 2.7 × 10−9 M | [76] |
Urea | EDOT | MIP/C-AuNTs | 1 × 10−3~0.1 M | 1 × 10−4 M | [77] |
Patulin | ρ-ATP | MIP/AuNPs/CS-CDs | 1 × 10−12 ~1 × 10−9 M | 7.57 × 10−13 M | [80] |
D-M | o-PD | MIP/AuNPs/rGO | 1 × 10−12~2 × 10−11, 2 × 10−11~3 × 10−10 M | 7.7 × 10−13 M | [82] |
MAA | Py | MIP/AuNPs@rGO | 0.01~200 ng mL−1 | 5 pg mL−1 | [83] |
CHO | ATP | MIP/AuNPs/PDA/DGr | 1 × 10−18~1 × 10−13 M | 3.3 × 10−19 M | [4] |
β-LAC | ChCl/AA | PEI-rGO-Au-NCs@MIP | 1 × 10−9~1 × 10−4 mg mL−1 | 1 × 10−9 mg mL−1 | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, X.; Zhang, C.; Du, X.; Zhang, Z. Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. Nanomaterials 2022, 12, 1913. https://doi.org/10.3390/nano12111913
Dong X, Zhang C, Du X, Zhang Z. Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. Nanomaterials. 2022; 12(11):1913. https://doi.org/10.3390/nano12111913
Chicago/Turabian StyleDong, Xinning, Congcong Zhang, Xin Du, and Zhenguo Zhang. 2022. "Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors" Nanomaterials 12, no. 11: 1913. https://doi.org/10.3390/nano12111913
APA StyleDong, X., Zhang, C., Du, X., & Zhang, Z. (2022). Recent Advances of Nanomaterials-Based Molecularly Imprinted Electrochemical Sensors. Nanomaterials, 12(11), 1913. https://doi.org/10.3390/nano12111913