Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of OACT@ASO
2.3. Release Performance Investigation
2.3.1. Release Performance of FA in Deionized Water from OACT@ASO
2.3.2. The Investigation of FA Release Kinetics
2.3.3. Release Behavior of FA from OACT@ASO in Silica Sand
2.4. Leaching Behavior Investigation of OACT@ASO for CCP in the Sand-Soil Mixture
2.5. Pot Experiment
2.6. Characterizations
3. Results and Discussion
3.1. Effect of ATP/CaO on the Water Content of TWL
3.2. Release Performance Investigation of FA from OACT@ASO
3.3. Leaching Behavior Investigation in the SSM
3.4. Mechanism Study
3.5. Pot Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Venkatraman, Y.; Priya, A.K. Removal of heavy metal ion concentrations from the wastewater using tobacco leaves coated with iron oxide nanoparticles. Int. J. Environ. Sci. Technol. 2022, 19, 2721–2736. [Google Scholar] [CrossRef]
- Jiang, X.; Yu, X. Study on contribution of tobacco manufacturing industry to relevant sectors of national economy. Acta Tab. Sin. 2015, 21, 1–12. [Google Scholar]
- Lukacova, Z.; Bokor, B.; Silvia, V.; Soltys, K.; Vaculik, M. Divergence of reactions to arsenic (As) toxicity in tobacco (Nicotiana benthamiana) plants: A lesson from peroxidase involvement. J. Hazard. Mater. 2021, 417, 126049. [Google Scholar] [CrossRef] [PubMed]
- Chen, X. Analysis of discharge standards of wastewater treatment plants in Yangtze River delta region and consideration of the measures for upgrading. Water Wastewater Eng. 2019, 45, 29–32. [Google Scholar]
- Preisner, M.; Neverova-Dziopak, E.; Kowalewski, Z. An analytical review of different approaches to wastewater discharge standards with particular emphasis on nutrients. Environ. Manag. 2020, 66, 694–708. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Li, C.B.; Li, G.T.; He, Y.; Yang, J.X.; Zhang, J.Q. Effects of biochar on heavy metal bioavailability and uptake by tobacco (Nicotiana tabacum) in two soils. Agric. Ecosyst. Environ. 2021, 317, 107453. [Google Scholar] [CrossRef]
- Okunola, A.A.; Babatunde, E.E.; Chinwe, D.; Pelumi, O.; Ramatu, S.G. Mutagenicity of automobile workshop soil leachate and tobacco industry wastewater using the Ames Salmonella fluctuation and the SOS chromotests. Toxicol. Ind. Health 2014, 6, 1086–1096. [Google Scholar] [CrossRef]
- Tscharke, B.J.; White, J.M.; Gerber, J.P. Estimates of tobacco use by wastewater analysis of anabasine and anatabine. Drug Test Anal. 2016, 7, 702–707. [Google Scholar] [CrossRef]
- Gracia-lor, E.; Rousis, N.I.; Zuccato, E.; Castiglioni, S. Monitoring caffeine and nicotine use in a nationwide study in Italy using wastewater-based epidemiology. Sci. Total Environ. 2020, 747, 141331. [Google Scholar] [CrossRef]
- Murphy, S.E. Biochemistry of nicotine metabolism and its relevance to lung cancer. J. Biol. Chem. 2021, 296, 100722. [Google Scholar] [CrossRef]
- Kang, L. Study on the preparation and application of organic fertilizer using tobacco waste-water. Master’s Thesis, Huazhong Normal University, Wuhan, China, 2020. [Google Scholar]
- Wu, Q.C.; Wang, D.F.; Zhang, J.; Chen, C.W.; Ge, H.J.; Xu, H.; Cai, D.Q.; Wu, Z.Y. Synthesis of iron-based carbon microspheres with tobacco waste liquid and waste iron residue for Cd(II) removal from water and soil. Langmuir 2022, 38, 5557–5567. [Google Scholar] [CrossRef] [PubMed]
- Bayat, H.; Shafie, F.; Aminifard, M.H.; Daghighi, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. 2021, 279, 109912. [Google Scholar] [CrossRef]
- Li, F.; Yu, H.Y.; Li, Y.; Wang, Y.; Resource Shen, J.W.; Hu, D.S.; Feng, B.; Han, Y.L. The quality of compost was improved by low concentrations of fulvic acid owing to its optimization of the exceptional microbial structure. Bioresour. Technol. 2021, 342, 125843. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, G.L.; Zhou, L.L.; Wang, D.F.; Zhong, N.Q.; Cai, D.Q.; Wu, Z.Y. Fabrication of pH-controlled-release ferrous foliar fertilizer with high adhesion capacity based on nano-biomaterial. ACS Sustain. Chem. Eng. 2016, 4, 6800–6808. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhang, G.L.; Zhou, L.L.; Cai, D.Q.; Wu, Z.Y. Immobilizing arsenic and copper ions in manure using a nanocomposite. J. Agric. Food Chem. 2017, 65, 8999–9005. [Google Scholar] [CrossRef]
- Xiang, Y.B.; Zhang, G.L.; Chen, C.W.; Liu, B.; Cai, D.Q.; Wu, Z.Y. Fabrication a pH-responsively controlled-release pesticide using an attapulgite-based hydrogel. ACS Sustain. Chem. Eng. 2018, 6, 1192–1201. [Google Scholar] [CrossRef]
- Gong, G.Q.; Zhao, Y.F.; Zhang, Y.J.; Deng, B.; Liu, W.X.; Wang, M.; Yuan, X.; Xu, L.W. Establishment of a molecular structure model for classified products of coal-based fulvic acid. Fuel 2020, 267, 117210. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Hu, X.; Zhang, A.; Ma, L.; Shi, Y.; Gong, G. Extraction and functional group characterization of fulvic acid from Hami lignite. ChemistrySelect 2019, 4, 1448–1455. [Google Scholar] [CrossRef]
- Gutwiński, P.; Cema, G.; Ziembińska-Buczyńska, A.; Wyszyńska, K.; Surmacz-Górska, J. Long-term effect of heavy metals Cr(III), Zn(II), Cd(II), Cu(II), Ni(II), Pb(II) on the anammox process performance-ScienceDirect. J. Water Process Eng. 2020, 39, 101668. [Google Scholar] [CrossRef]
- Li, G.; Zhang, J.L.; Li, Y.; Liu, J.; Yan, Z. Adsorption characteristics of Pb(II), Cd(II) and Cu(II) on carbon nanotube-hydroxyapatite. Environ. Technol. 2019, 42, 1560–1581. [Google Scholar] [CrossRef]
- Meng, X.; Hu, R. Nitrogen/phosphorus enriched biochar with enhanced porosity activated by guanidine phosphate for efficient passivation of Pb(II), Cu(II) and Cd(II). J. Mol. Liq. 2020, 323, 115071. [Google Scholar] [CrossRef]
- Zhang, L.H.; Ren, S.Y.; Chen, C.W.; Wang, D.F.; Liu, B.; Cai, D.Q.; Wu, Z.Y. Near infrared light-driven release of pesticide with magnetic collectability using gel-based nanocomposite. Chem. Eng. J. 2021, 411, 127881. [Google Scholar] [CrossRef]
- Chen, C.W.; Zhang, G.L.; Dai, Z.Y.; Xiang, Y.B.; Liu, B.; Bian, P.; Zheng, K.; Wu, Z.Y.; Cai, D.Q. Fabrication of light-responsively controlled-release herbicide using a nanocomposite. Chem. Eng. J. 2018, 349, 101–110. [Google Scholar] [CrossRef]
- Salome, A.C.; Godswill, C.O.; Ikechukwu, I.O. Kinetics and mechanisms of drug release from swellable and non swellable matrices: A review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 97–103. [Google Scholar]
- Chen, W.; Westerhoff, P.; Leenheer, J.; Booksh, K. Fluorescence Excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef]
- Li, T.T.; Wang, Z.K.; Ren, H.T.; Peng, H.K.; Zhang, X.; Jiang, Q.; Lou, C.W.; Lin, J.H. Recyclable and degradable nonwoven-based double-network composite hydrogel adsorbent for efficient removal of Pb(II) and Ni(II) from aqueous solution. Sci. Total Environ. 2020, 758, 143640. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhang, G.L.; Dai, Z.Y.; Zhou, L.L.; Bian, P.; Zheng, K.; Wu, Z.Y.; Cai, D.Q. Sandwich-like nano-system for simultaneous removal of Cr(VI) and Cd(II) from water and soil. ACS Appl. Mater. Interfaces 2018, 10, 18316–18326. [Google Scholar] [CrossRef]
- Wu, Q.C.; Wang, D.F.; Chen, C.W.; Peng, C.; Cai, D.Q.; Wu, Z.Y. Fabrication of Fe3O4/ZIF-8 nanocomposite for simultaneous removal of copper and arsenic from water/soil/swine urine. J. Environ. Manag. 2021, 290, 112626. [Google Scholar] [CrossRef]
- Wang, D.F.; Guo, W.; Zhang, G.L.; Zhou, L.L.; Wang, M.; Lu, Y.J.; Cai, D.Q.; Wu, Z.Y. Remediation of Cr(VI)-contaminated acid soil using a nanocomposite. ACS Sustain. Chem. Eng. 2017, 5, 2246–2254. [Google Scholar] [CrossRef]
- Wang, D.F.; Dai, Z.Y.; Shu, X.; Bian, P.; Wu, L.F.; Cai, D.Q.; Wu, Z.Y. Functionalized nanocomposite for simultaneous removal of antibiotics and As(III) in swine urine aqueous solution and soil. Environ. Sci. Nano 2018, 5, 2978–2992. [Google Scholar] [CrossRef]
- Wang, D.F.; Zhang, G.L.; Zhou, L.L.; Wang, M.; Cai, D.Q.; Wu, Z.Y. Synthesis of a multifunctional graphene oxide-based magnetic nanocomposite for efficient removal of Cr(VI). Langmuir 2017, 33, 7007–7014. [Google Scholar] [CrossRef] [PubMed]
k | n or b | R2 | |
---|---|---|---|
First-order | 0.0326 ± 0.0020 | - | 0.9659 |
Ritger-peppas | 0.1050 ± 0.0240 | 0.4951 ± 0.0573 | 0.9370 |
Parabolic Diffusion | −0.0025 ± 0.0003 | 0.0337 ± 0.0027 | 0.9476 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Li, J.; Yao, X.; Wu, Q.; Zhang, J.; Ye, J.; Xu, H.; Wu, Z.; Cai, D. Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil. Nanomaterials 2022, 12, 2056. https://doi.org/10.3390/nano12122056
Wang D, Li J, Yao X, Wu Q, Zhang J, Ye J, Xu H, Wu Z, Cai D. Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil. Nanomaterials. 2022; 12(12):2056. https://doi.org/10.3390/nano12122056
Chicago/Turabian StyleWang, Dongfang, Jiangshan Li, Xia Yao, Qingchuan Wu, Jing Zhang, Jinghong Ye, He Xu, Zhengyan Wu, and Dongqing Cai. 2022. "Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil" Nanomaterials 12, no. 12: 2056. https://doi.org/10.3390/nano12122056
APA StyleWang, D., Li, J., Yao, X., Wu, Q., Zhang, J., Ye, J., Xu, H., Wu, Z., & Cai, D. (2022). Tobacco Waste Liquid-Based Organic Fertilizer Particle for Controlled-Release Fulvic Acid and Immobilization of Heavy Metals in Soil. Nanomaterials, 12(12), 2056. https://doi.org/10.3390/nano12122056