Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies
Abstract
:1. Introduction
2. The Effects of Disorderings
2.1. Ultra-Broadband Optical Absorbers
2.2. Designing Optical Waveguides and Cavities
2.2.1. Ultra-Narrow Straight and L-Shaped Optical Waveguides
2.2.2. Ultra-Small Cavities
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Ou, J.Y.; Xie, P.; Liang, Z.; Wang, W.; Wang, W.; Zhang, H.; Kuang, X. Spectroscopic study of gap-surface plasmons in a metallic convex groove array and their applications in nanofocusing and plasmonic sensing. Phys. Rev. B 2021, 103, 245404. [Google Scholar] [CrossRef]
- Sarkar, S.; Gupta, V.; Tsuda, T.; Gour, J.; Singh, A.; Aftenieva, O.; Steiner, A.M.; Hoffmann, M.; Kumar, S.; Fery, A.; et al. Plasmonic charge transfers in large-scale metallic and colloidal photonic crystal slabs. Adv. Funct. Mater. 2021, 31, 2011099. [Google Scholar] [CrossRef]
- Sugavaneshwar, R.P.; Ishii, S.; Dao, T.D.; Ohi, A.; Nabatame, T.; Nagao, T. Fabrication of highly metallic TiN films by pulsed laser deposition method for plasmonic applications. ACS Photonics 2017, 5, 814–819. [Google Scholar] [CrossRef]
- Honari-Latifpour, M.; Yousefi, L. Topological plasmonic edge states in a planar array of metallic nanoparticles. Nanophotonics 2019, 8, 799–806. [Google Scholar] [CrossRef]
- Garoli, D.; Mosconi, D.; Miele, E.; Maccaferri, N.; Ardini, M.; Giovannini, G.; Dipalo, M.; Agnoli, S.; De Angelis, F. Hybrid plasmonic nanostructures based on controlled integration of MoS2 flakes on metallic nanoholes. Nanoscale 2018, 10, 17105–17111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Kady, I.; Sigalas, M.; Biswas, R.; Ho, K.; Soukoulis, C. Metallic photonic crystals at optical wavelengths. Phys. Rev. B 2000, 62, 15299. [Google Scholar] [CrossRef] [Green Version]
- Fleming, J.; Lin, S.; El-Kady, I.; Biswas, R.; Ho, K. All-metallic three-dimensional photonic crystals with a large infrared bandgap. Nature 2002, 417, 52–55. [Google Scholar] [CrossRef]
- Vasilantonakis, N.; Terzaki, K.; Sakellari, I.; Purlys, V.; Gray, D.; Soukoulis, C.M.; Vamvakaki, M.; Kafesaki, M.; Farsari, M. Three-dimensional metallic photonic crystals with optical bandgaps. Adv. Mater. 2012, 24, 1101–1105. [Google Scholar] [CrossRef]
- Frank, B.; Kahl, P.; Podbiel, D.; Spektor, G.; Orenstein, M.; Fu, L.; Weiss, T.; Horn-von Hoegen, M.; Davis, T.J.; Zu Heringdorf, F.J.M.; et al. Short-range surface plasmonics: Localized electron emission dynamics from a 60-nm spot on an atomically flat single-crystalline gold surface. Sci. Adv. 2017, 3, e1700721. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hu, Z.; Kong, X.T.; Idrobo, J.C.; Nixon, A.G.; Rack, P.D.; Masiello, D.J.; Camden, J.P. Infrared plasmonics: STEM-EELS characterization of Fabry-Perot resonance damping in gold nanowires. Phys. Rev. B 2020, 101, 085409. [Google Scholar] [CrossRef]
- Karst, J.; Floess, M.; Ubl, M.; Dingler, C.; Malacrida, C.; Steinle, T.; Ludwigs, S.; Hentschel, M.; Giessen, H. Electrically switchable metallic polymer nanoantennas. Science 2021, 374, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Boltasseva, A.; Atwater, H.A. Low-loss plasmonic metamaterials. Science 2011, 331, 290–291. [Google Scholar] [CrossRef]
- Ma, J.; Ouyang, C.; Niu, L.; Wang, Q.; Zhao, J.; Liu, Y.; Liu, L.; Xu, Q.; Li, Y.; Gu, J.; et al. Topological edge state bandwidth tuned by multiple parameters in two-dimensional terahertz photonic crystals with metallic cross structures. Opt. Express 2021, 29, 32105–32113. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, X.; Li, S.; Zhang, W.; Hu, C.; Lu, W.; Hou, B. Flatness and boundness of photonic drumhead surface state in a metallic lattice. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, W.; Xu, J.; Gao, B.; Zhu, C.; Xie, S.; Yang, Y. Topological edge modes in one-dimensional photonic crystals containing metal. OSA Contin. 2021, 4, 1626–1639. [Google Scholar] [CrossRef]
- Chau, Y.F.C.; Chao, C.T.C.; Chiang, H.P. Ultra-broad bandgap metal-insulator-metal waveguide filter with symmetrical stubs and defects. Results Phys. 2020, 17, 103116. [Google Scholar] [CrossRef]
- Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J.Y.; Park, I.; Rho, J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Adv. Opt. Mater. 2020, 8, 1901932. [Google Scholar] [CrossRef]
- Zheng, K.; Song, J.; Qu, J. Hybrid low-permittivity slot-rib plasmonic waveguide based on monolayer two dimensional transition metal dichalcogenide with ultra-high energy confinement. Opt. Express 2018, 26, 15819–15824. [Google Scholar] [CrossRef]
- Gosciniak, J.; Atar, F.B.; Corbett, B.; Rasras, M. Plasmonic Schottky photodetector with metal stripe embedded into semiconductor and with a CMOS-compatible titanium nitride. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Hugall, J.T.; Singh, A.; van Hulst, N.F. Plasmonic cavity coupling. ACS Photonics 2018, 5, 43–53. [Google Scholar] [CrossRef]
- Kwon, J.A.; Jin, C.M.; Shin, Y.; Kim, H.Y.; Kim, Y.; Kang, T.; Choi, I. Tunable plasmonic cavity for label-free detection of small molecules. ACS Appl. Mater. Interfaces 2018, 10, 13226–13235. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, K.; Alhabeb, M.; Wang, Z.; Shalaev, V.M.; Gogotsi, Y.; Boltasseva, A. Highly broadband absorber using plasmonic titanium carbide (MXene). Acs Photonics 2018, 5, 1115–1122. [Google Scholar] [CrossRef]
- Lei, L.; Li, S.; Huang, H.; Tao, K.; Xu, P. Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt. Express 2018, 26, 5686–5693. [Google Scholar] [CrossRef] [PubMed]
- Bonin, G.O.; Barrow, S.J.; Connell, T.U.; Roberts, A.; Chesman, A.S.; Gomez, D.E. Self-assembly of plasmonic near-perfect absorbers of light: The effect of particle size. J. Phys. Chem. Lett. 2020, 11, 8378–8385. [Google Scholar] [CrossRef]
- Dai, W.H.; Lin, F.C.; Huang, C.B.; Huang, J.S. Mode conversion in high-definition plasmonic optical nanocircuits. Nano Lett. 2014, 14, 3881–3886. [Google Scholar] [CrossRef]
- Gan, F.; Sun, C.; Wang, Y.; Li, H.; Gong, Q.; Chen, J. Multimode metallic double-strip waveguides for polarization manipulation. Adv. Mater. Technol. 2017, 2, 1600248. [Google Scholar] [CrossRef]
- Rewitz, C.; Razinskas, G.; Geisler, P.; Krauss, E.; Goetz, S.; Pawlowska, M.; Hecht, B.; Brixner, T. Coherent control of plasmon propagation in a nanocircuit. Phys. Rev. Appl. 2014, 1, 014007. [Google Scholar] [CrossRef] [Green Version]
- Schorner, C.; Adhikari, S.; Lippitz, M. A single-crystalline silver plasmonic circuit for visible quantum emitters. Nano Lett. 2019, 19, 3238–3243. [Google Scholar] [CrossRef] [Green Version]
- Noginov, M.; Zhu, G.; Belgrave, A.; Bakker, R.; Shalaev, V.; Narimanov, E.; Stout, S.; Herz, E.; Suteewong, T.; Wiesner, U. Demonstration of a spaser-based nanolaser. Nature 2009, 460, 1110–1112. [Google Scholar] [CrossRef]
- Aellen, M.; Rossinelli, A.A.; Keitel, R.C.; Brechbuhler, R.; Antolinez, F.V.; Rodrigo, S.G.; Cui, J.; Norris, D.J. Role of gain in Fabry–Pérot surface plasmon polariton lasers. ACS Photonics 2022, 9, 630–640. [Google Scholar] [CrossRef]
- Xu, W.H.; Chou, Y.H.; Yang, Z.Y.; Liu, Y.Y.; Yu, M.W.; Huang, C.H.; Chang, C.T.; Huang, C.Y.; Lu, T.C.; Lin, T.R.; et al. Tamm plasmon-polariton ultraviolet lasers. Adv. Photonics Res. 2022, 3, 2100120. [Google Scholar] [CrossRef]
- Duan, R.; Zhang, Z.; Xiao, L.; Zhao, X.; Thung, Y.T.; Ding, L.; Liu, Z.; Yang, J.; Ta, V.D.; Sun, H. Ultralow-threshold and high-quality whispering-gallery-mode lasing from colloidal core/hybrid-shell quantum wells. Adv. Mater. 2022, 34, 2108884. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Zhang, J.; Ning, C.; Zhuo, N.; Zhai, S.; Liu, J.; Wang, L.; Liu, S.; Jia, Z.; Liu, F. Continuous-wave operation of microcavity quantum cascade lasers in whispering-gallery mode. ACS Photonics 2022, 9, 1172–1179. [Google Scholar] [CrossRef]
- Price, M.B.; Lewellen, K.; Hardy, J.; Lockwood, S.M.; Zemke-Smith, C.; Wagner, I.; Gao, M.; Grand, J.; Chen, K.; Hodgkiss, J.M.; et al. Whispering-gallery mode lasing in perovskite nanocrystals chemically bound to silicon dioxide microspheres. J. Phys. Chem. Lett. 2020, 11, 7009–7014. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Lee, Y.J.; Furstenberg, R.; White, J.O.; Braun, P.V. Filling fraction dependent properties of inverse opal metallic photonic crystals. Adv. Mater. 2007, 19, 1689–1692. [Google Scholar] [CrossRef]
- Goudarzi, K.; Lee, M. Super strong wide TM Mie bandgaps tolerating disorders. Sci. Rep. 2022, 12, 1–12. [Google Scholar] [CrossRef]
- Goudarzi, K.; Lee, M. Inverse design of a binary waveguide crossing by the particle swarm optimization algorithm. Results Phys. 2022, 34, 105268. [Google Scholar] [CrossRef]
- Goudarzi, K. Ultra-narrow, highly efficient power splitters and waveguides that exploit the TE01 Mie-resonant bandgap. Opt. Express 2021, 29, 32951–32965. [Google Scholar] [CrossRef]
- Liu, C.; Rybin, M.V.; Mao, P.; Zhang, S.; Kivshar, Y. Disorder-immune photonics based on Mie-resonant dielectric metamaterials. Phys. Rev. Lett. 2019, 123, 163901. [Google Scholar] [CrossRef] [Green Version]
- Babar, S.; Weaver, J. Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 2015, 54, 477–481. [Google Scholar] [CrossRef]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370. [Google Scholar] [CrossRef]
- Derkachova, A.; Kolwas, K.; Demchenko, I. Dielectric function for gold in plasmonics applications: Size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 2016, 11, 941–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butt, M.; Khonina, S.; Kazanskiy, N.; Piramidowicz, R. Hybrid metasurface perfect absorbers for temperature and biosensing applications. Opt. Mater. 2022, 123, 111906. [Google Scholar] [CrossRef]
- Tao, H.; Landy, N.I.; Bingham, C.M.; Zhang, X.; Averitt, R.D.; Padilla, W.J. A metamaterial absorber for the terahertz regime: Design, fabrication and characterization. Opt. Express 2008, 16, 7181–7188. [Google Scholar] [CrossRef]
- Charola, S.; Patel, S.K.; Dalsaniya, K.; Jadeja, R.; Nguyen, T.K.; Dhasarathan, V. Numerical investigation of wideband L-shaped metasurface based solar absorber for visible and ultraviolet region. Phys. B Condens. Matter 2021, 601, 412503. [Google Scholar] [CrossRef]
- Hakim, M.L.; Alam, T.; Islam, M.S.; Salaheldeen M, M.; Almalki, S.H.; Baharuddin, M.H.; Alsaif, H.; Islam, M.T. Wide-oblique-incident-angle stable polarization-insensitive ultra-wideband metamaterial perfect absorber for visible optical wavelength applications. Materials 2022, 15, 2201. [Google Scholar] [CrossRef]
- Musa, A.; Hakim, M.L.; Alam, T.; Islam, M.T.; Alshammari, A.S.; Mat, K.; Almalki, S.H.; Islam, M.S. Polarization independent metamaterial absorber with anti-reflection coating nanoarchitectonics for visible and infrared window applications. Materials 2022, 15, 3733. [Google Scholar] [CrossRef]
- Ran, Y.; Jiang, Z.; Wang, Z. All-nitride broadband metamaterial absorbers. Results Phys. 2022, 38, 105657. [Google Scholar] [CrossRef]
- Mahmud, S.; Karim, M.; Islam, S.S.; Shuvo, M.M.K.; Akter, T.; Almutairi, A.F.; Islam, M.T. A multi-band near perfect polarization and angular insensitive metamaterial absorber with a simple octagonal resonator for visible wavelength. IEEE Access 2021, 9, 117746–117760. [Google Scholar] [CrossRef]
- Roostaei, N.; Mbarak, H.; Monfared, S.A.; Hamidi, S. Plasmonic wideband and tunable absorber based on semi etalon nano structure in the visible region. Phys. Scr. 2021, 96, 035805. [Google Scholar] [CrossRef]
References | Working Wavelength (nm) | Average Absorption (%) | Material |
---|---|---|---|
[45] | 280–700 | 90 | Tungsten, Silicon Dioxide |
[46] | 300–700 | 92.2 | Tungsten, Silicon Dioxide |
[47] | 350–1250 | 95.3 | Tungsten, Silicon Dioxide |
[49] | 450–650 | 65 | Aluminum, Gallium Arsenide |
[50] | 500–700 | 55 | Etalon |
[48] | 200–500 | 60 | Titanium Nitride |
Proposed absorber | 200–530 | 95 | Gold |
Waveguide Type | ||||||||
---|---|---|---|---|---|---|---|---|
A | 1 | 0.87 | 0.78 | 0.77 | 1 | 0.98 | 0.9 | 0.78 |
B | 1 | 0.87 | 0.78 | 0.75 | 1 | 0.94 | 0.85 | 0.76 |
C | 0.75 | 0.47 | 0.38 | 0.27 | 0.75 | 0.67 | 0.7 | 0.38 |
Waveguide Type | ||||||||
---|---|---|---|---|---|---|---|---|
A | 1 | 0.84 | 0.82 | 0.8 | 1 | 0.96 | 0.92 | 0.79 |
B | 1 | 0.83 | 0.8 | 0.79 | 1 | 0.96 | 0.92 | 0.62 |
C | 0.79 | 0.59 | 0.41 | 0.33 | 0.79 | 0.68 | 0.64 | 0.4 |
Cavity Type | ||||||||
---|---|---|---|---|---|---|---|---|
A | 1 | 1.1 | 1.17 | 1 | 1 | 0.9 | 1.1 | 0.7 |
B | 0.92 | 0.7 | 0.5 | 0.84 | 0.92 | 0.89 | 0.78 | 0.8 |
C | 0.3 | 0.23 | 0.2 | 0.19 | 0.3 | 0.28 | 0.19 | 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goudarzi, K.; Lee, M. Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies. Nanomaterials 2022, 12, 2132. https://doi.org/10.3390/nano12132132
Goudarzi K, Lee M. Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies. Nanomaterials. 2022; 12(13):2132. https://doi.org/10.3390/nano12132132
Chicago/Turabian StyleGoudarzi, Kiyanoush, and Moonjoo Lee. 2022. "Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies" Nanomaterials 12, no. 13: 2132. https://doi.org/10.3390/nano12132132
APA StyleGoudarzi, K., & Lee, M. (2022). Towards Perfect Ultra-Broadband Absorbers, Ultra-Narrow Waveguides, and Ultra-Small Cavities at Optical Frequencies. Nanomaterials, 12(13), 2132. https://doi.org/10.3390/nano12132132