Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks
Abstract
:1. Introduction
2. Studied Systems
3. Employed Methodology
3.1. Simulation Procedure
3.2. Parametrization of the Force Fields
3.3. Quantities of Interest
4. Results and Discussion
4.1. Assessing the Employed Force Fields
4.2. Trends in Thermal Conductivities
4.3. Thermal Resistance Contributions
4.4. Analyzing Instructive Model Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yaghi, O.M.; O’Keeffe, M.; Eddaoudi, M.; Li, H. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 1999, 402, 276–279. [Google Scholar]
- Rowsell, J.L.C.; Yaghi, O.M. Metal–organic frameworks: A new class of porous materials. Microporous Mesoporous Mater. 2004, 73, 3–14. [Google Scholar] [CrossRef]
- Safaei, M.; Foroughi, M.M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal–organic frameworks: Synthesis and applications. TrAC—Trends Anal. Chem. 2019, 118, 401–425. [Google Scholar] [CrossRef]
- Moghadam, P.Z.; Li, A.; Wiggin, S.B.; Tao, A.; Maloney, A.G.P.; Wood, P.A.; Ward, S.C.; Fairen-Jimenez, D. Development of a Cambridge Structural Database Subset: A Collection of Metal–Organic Frameworks for Past, Present, and Future. Chem. Mater. 2017, 29, 2618–2625. [Google Scholar] [CrossRef]
- Cambridge Crystallographic Data Centre. Available online: https://ccdc.cam.ac.uk/ (accessed on 8 May 2022).
- Millward, A.R.; Yaghi, O.M. Metal–organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, L.; Lin, R.-B.; Zhou, W.; Zhang, Z.; Xiang, S.; Chen, B. Porous metal–organic frameworks for gas storage and separation: Status and challenges. EnergyChem 2019, 1, 100006. [Google Scholar] [CrossRef]
- Wang, T.; Lin, E.; Peng, Y.L.; Chen, Y.; Cheng, P.; Zhang, Z. Rational design and synthesis of ultramicroporous metal–organic frameworks for gas separation. Coord. Chem. Rev. 2020, 423, 213485. [Google Scholar] [CrossRef]
- Lin, R.B.; Xiang, S.; Xing, H.; Zhou, W.; Chen, B. Exploration of porous metal–organic frameworks for gas separation and purification. Coord. Chem. Rev. 2019, 378, 87–103. [Google Scholar] [CrossRef]
- Candia-Onfray, C.; Rojas, S.; Zanoni, M.V.B.; Salazar, R. An updated review of metal–organic framework materials in photo(electro)catalytic applications: From CO2 reduction to wastewater treatments. Curr. Opin. Electrochem. 2021, 26, 100669. [Google Scholar] [CrossRef]
- Lee, J.; Farha, O.K.; Roberts, J.; Scheidt, K.A.; Nguyen, S.T.; Hupp, J.T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459. [Google Scholar] [CrossRef]
- Goetjen, T.A.; Liu, J.; Wu, Y.; Sui, J.; Zhang, X.; Hupp, J.T.; Farha, O.K. Metal–organic framework (MOF) materials as polymerization catalysts: A review and recent advances. Chem. Commun. 2020, 56, 10409–10418. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Pervaiz, E.; Noor, T.; Rabi, O.; Zahra, R.; Yang, M. Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: A review. Int. J. Energy Res. 2021, 45, 1190–1226. [Google Scholar] [CrossRef]
- Abánades Lázaro, I.; Forgan, R.S. Application of zirconium MOFs in drug delivery and biomedicine. Coord. Chem. Rev. 2019, 380, 230–259. [Google Scholar] [CrossRef] [Green Version]
- Velásquez-Hernández, M.d.J.; Linares-Moreau, M.; Astria, E.; Carraro, F.; Alyami, M.Z.; Khashab, N.M.; Sumby, C.J.; Doonan, C.J.; Falcaro, P. Towards applications of bioentities@MOFs in biomedicine. Coord. Chem. Rev. 2021, 429, 213651. [Google Scholar] [CrossRef]
- Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241. [Google Scholar] [CrossRef] [PubMed]
- Campbell, M.G.; Dincă, M. Metal–organic frameworks as active materials in electronic sensor devices. Sensors 2017, 17, 1108. [Google Scholar] [CrossRef] [PubMed]
- Olorunyomi, J.F.; Geh, S.T.; Caruso, R.A.; Doherty, C.M. Metal–organic frameworks for chemical sensing devices. Mater. Horiz. 2021, 8, 2387–2419. [Google Scholar] [CrossRef] [PubMed]
- Wieme, J.; Vandenbrande, S.; Lamaire, A.; Kapil, V.; Vanduyfhuys, L.; Van Speybroeck, V. Thermal Engineering of Metal–Organic Frameworks for Adsorption Applications: A Molecular Simulation Perspective. ACS Appl. Mater. Interfaces 2019, 11, 38697–38707. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.L.; McGaughey, A.J.H.; Kaviany, M. Thermal conductivity of metal–organic framework 5 (MOF-5): Part I. Molecular dynamics simulations. Int. J. Heat Mass Transf. 2007, 50, 393–404. [Google Scholar] [CrossRef]
- Huang, B.L.; Ni, Z.; Millward, A.; McGaughey, A.J.H.; Uher, C.; Kaviany, M.; Yaghi, O. Thermal conductivity of a metal–organic framework (MOF-5): Part II. Measurement. Int. J. Heat Mass Transf. 2007, 50, 405–411. [Google Scholar] [CrossRef]
- Ren, J.; Langmi, H.W.; North, B.C.; Mathe, M. Review on processing of metal–organic framework (MOF) materials towards system integration for hydrogen storage. Int. J. Energy Res. 2014, 39, 607–620. [Google Scholar] [CrossRef]
- Murray, L.J.; Dincǎ, M.; Long, J.R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314. [Google Scholar] [CrossRef] [PubMed]
- Gangu, K.K.; Maddila, S.; Mukkamala, S.B.; Jonnalagadda, S.B. Characteristics of MOF, MWCNT and graphene containing materials for hydrogen storage: A review. J. Energy Chem. 2019, 30, 132–144. [Google Scholar] [CrossRef] [Green Version]
- Purewal, J.; Liu, D.; Sudik, A.; Veenstra, M.; Yang, J.; Maurer, S.; Müller, U.; Siegel, D.J. Improved hydrogen storage and thermal conductivity in high-density MOF-5 composites. J. Phys. Chem. C 2012, 116, 20199–20212. [Google Scholar] [CrossRef]
- Zhang, J.; Fisher, T.S.; Ramachandran, P.V.; Gore, J.P.; Mudawar, I. A Review of Heat Transfer Issues in Hydrogen Storage Technologies. J. Heat Transf. 2005, 127, 1391. [Google Scholar] [CrossRef]
- Redel, E.; Baumgart, H. Thermoelectric porous MOF based hybrid materials. APL Mater. 2020, 8, 060902. [Google Scholar] [CrossRef]
- Khan, J.; Liu, Y.; Zhao, T.; Geng, H.; Xu, W.; Shuai, Z. High performance thermoelectric materials based on metal organic coordination polymers through first-principles band engineering. J. Comput. Chem. 2018, 39, 2582–2588. [Google Scholar] [CrossRef]
- Erickson, K.J.; Léonard, F.; Stavila, V.; Foster, M.E.; Spataru, C.D.; Jones, R.E.; Foley, B.M.; Hopkins, P.E.; Allendorf, M.D.; Talin, A.A. Thin film thermoelectric metal–organic framework with high seebeck coefficient and low thermal conductivity. Adv. Mater. 2015, 27, 3453–3459. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J. Thermal conductivity of zeolitic imidazolate framework-8: A molecular simulation study. J. Phys. Chem. C 2013, 117, 18441–18447. [Google Scholar] [CrossRef]
- Ming, Y.; Chi, H.; Blaser, R.; Xu, C.; Yang, J.; Veenstra, M.; Gaab, M.; Müller, U.; Uher, C.; Siegel, D.J. Anisotropic thermal transport in MOF-5 composites. Int. J. Heat Mass Transf. 2015, 82, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Xu, Y.; Gao, Y.; Volz, S. Origin of the weakly temperature-dependent thermal conductivity in ZIF-4 and ZIF-62. Phys. Rev. Mater. 2022, 6, 015403. [Google Scholar] [CrossRef]
- Islamov, M.; Babaei, H.; Wilmer, C.E. Influence of Missing Linker Defects on the Thermal Conductivity of Metal–Organic Framework HKUST-1. ACS Appl. Mater. Interfaces 2020, 12, 56172–56177. [Google Scholar] [CrossRef] [PubMed]
- Sezginel, K.B.; Asinger, P.A.; Babaei, H.; Wilmer, C.E. Thermal Transport in Interpenetrated Metal–Organic Frameworks. Chem. Mater. 2018, 30, 2281–2286. [Google Scholar] [CrossRef]
- Wang, X.; Guo, R.; Xu, D.; Chung, J.; Kaviany, M.; Huang, B. Anisotropic Lattice Thermal Conductivity and Suppressed Acoustic Phonons in MOF-74 from First Principles. J. Phys. Chem. C 2015, 119, 26000–26008. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Liu, L. Insights into the thermal conductivity of MOF-5 from first principles. RSC Adv. 2021, 11, 36928–36933. [Google Scholar] [CrossRef] [PubMed]
- Babaei, H.; Wilmer, C.E. Mechanisms of Heat Transfer in Porous Crystals Containing Adsorbed Gases: Applications to Metal–Organic Frameworks. Phys. Rev. Lett. 2016, 116, 025902. [Google Scholar] [CrossRef] [PubMed]
- Ying, P.; Zhang, J.; Zhang, X.; Zhong, Z. Impacts of Functional Group Substitution and Pressure on the Thermal Conductivity of ZIF-8. J. Phys. Chem. C 2020, 124, 6274–6283. [Google Scholar] [CrossRef]
- Babaei, H.; DeCoster, M.E.; Jeong, M.; Hassan, Z.M.; Islamoglu, T.; Baumgart, H.; Mcgaughey, A.J.H.; Redel, E.; Farha, O.K.; Hopkins, P.E.; et al. Observation of reduced thermal conductivity in a metal–organic framework due to the presence of adsorbates. Nat. Commun. 2020, 11, 4010. [Google Scholar] [CrossRef]
- Babaei, H.; Lee, J.H.; Dods, M.N.; Wilmer, C.E.; Long, J.R. Enhanced Thermal Conductivity in a Diamine-Appended Metal–Organic Framework as a Result of Cooperative CO2Adsorption. ACS Appl. Mater. Interfaces 2020, 12, 44617–44621. [Google Scholar] [CrossRef]
- DeCoster, M.E.; Babaei, H.; Jung, S.S.; Hassan, Z.M.; Gaskins, J.T.; Giri, A.; Tiernan, E.M.; Tomko, J.A.; Baumgart, H.; Norris, P.M.; et al. Hybridization from Guest–Host Interactions Reduces the Thermal Conductivity of Metal–Organic Frameworks. J. Am. Chem. Soc. 2022, 144, 3603–3613. [Google Scholar] [CrossRef]
- Cui, B.; Audu, C.O.; Liao, Y.; Nguyen, S.T.; Farha, O.K.; Hupp, J.T.; Grayson, M. Thermal Conductivity of ZIF-8 Thin-Film under Ambient Gas Pressure. ACS Appl. Mater. Interfaces 2017, 9, 28139–28143. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Li, W.; Wei, W.; Huang, J.; Li, S. Molecular Insights into the Correlation between Microstructure and Thermal Conductivity of Zeolitic Imidazolate Frameworks. ACS Appl. Mater. Interfaces 2021, 13, 14141–14149. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Budge, M.; Greaney, P.A. Relationship between thermal conductivity and framework architecture in MOF-5. Comput. Mater. Sci. 2014, 94, 292–297. [Google Scholar] [CrossRef]
- Babaei, H.; McGaughey, A.J.H.; Wilmer, C.E. Effect of pore size and shape on the thermal conductivity of metal–organic frameworks. Chem. Sci. 2016, 8, 583–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ying, P.; Zhang, J.; Zhong, Z. Effect of Phase Transition on the Thermal Transport in Isoreticular DUT Materials. J. Phys. Chem. C 2021, 125, 12991–13001. [Google Scholar] [CrossRef]
- Lamaire, A.; Wieme, J.; Hoffman, A.E.J.; Van Speybroeck, V. Atomistic insight in the flexibility and heat transport properties of the stimuli-responsive metal–organic framework MIL-53(Al) for water-adsorption applications using molecular simulations. Faraday Discuss. 2020, 225, 301–323. [Google Scholar] [CrossRef] [Green Version]
- Sezginel, K.B.; Lee, S.; Babaei, H.; Wilmer, C.E. Effect of Flexibility on Thermal Transport in Breathing Porous Crystals. J. Phys. Chem. C 2020, 124, 18604–18608. [Google Scholar] [CrossRef]
- Sørensen, S.S.; Østergaard, M.B.; Stepniewska, M.; Johra, H.; Yue, Y.; Smedskjaer, M.M. Metal–Organic Framework Glasses Possess Higher Thermal Conductivity than Their Crystalline Counterparts. ACS Appl. Mater. Interfaces 2020, 12, 18893–18903. [Google Scholar] [CrossRef]
- Wieser, S.; Kamencek, T.; Dürholt, J.P.; Schmid, R.; Bedoya-Martínez, N.; Zojer, E. Identifying the Bottleneck for Heat Transport in Metal–Organic Frameworks. Adv. Theory Simul. 2021, 4, 2000211. [Google Scholar] [CrossRef]
- Rahman, M.A.; Dionne, C.J.; Giri, A. Pore Size Dictates Anisotropic Thermal Conductivity of Two-Dimensional Covalent Organic Frameworks with Adsorbed Gases. ACS Appl. Mater. Interfaces 2022, 14, 18. [Google Scholar] [CrossRef]
- Tranchemontagne, D.J.; Hunt, J.R.; Yaghi, O.M. Room temperature synthesis of metal–organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron 2008, 64, 8553–8557. [Google Scholar] [CrossRef]
- Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe, M.; Yaghi, O.M. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 2002, 295, 469–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Steve Plimpton Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [CrossRef] [Green Version]
- Schelling, P.K.; Phillpot, S.R.; Keblinski, P. Comparison of atomic-level simulation methods for computing thermal conductivity. Phys. Rev. B Condens. Matter Mater. Phys. 2002, 65, 144306–144400. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xiong, S.; Sievers, C.; Hu, Y.; Fan, Z.; Wei, N.; Bao, H.; Chen, S.; Donadio, D.; Ala-Nissila, T. Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids. J. Chem. Phys. 2019, 151, 234105. [Google Scholar] [CrossRef] [Green Version]
- Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A.; Skiff, W.M. UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035. [Google Scholar] [CrossRef]
- Mayo, S.L.; Olafson, B.D.; Goddard, W.A. DREIDING: A generic force field for molecular simulations. J. Phys. Chem. 1990, 94, 8897–8909. [Google Scholar] [CrossRef]
- Boyd, P.G.; Moosavi, S.M.; Witman, M.; Smit, B. Force-Field Prediction of Materials Properties in Metal–Organic Frameworks. J. Phys. Chem. Lett. 2017, 8, 357–363. [Google Scholar] [CrossRef]
- Addicoat, M.A.; Vankova, N.; Akter, I.F.; Heine, T. Extension of the universal force field to metal–organic frameworks. J. Chem. Theory Comput. 2014, 10, 880–891. [Google Scholar] [CrossRef]
- McDaniel, J.G.; Li, S.; Tylianakis, E.; Snurr, R.Q.; Schmidt, J.R. Evaluation of force field performance for high-throughput screening of gas uptake in metal–organic frameworks. J. Phys. Chem. C 2015, 119, 3143–3152. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metalamorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Bureekaew, S.; Amirjalayer, S.; Tafipolsky, M.; Spickermann, C.; Roy, T.K.; Schmid, R. MOF-FF—A flexible first-principles derived force field for metal–organic frameworks. Phys. Status Solidi Basic Res. 2013, 250, 1128–1141. [Google Scholar] [CrossRef]
- Sun, H. COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B 2002, 102, 7338–7364. [Google Scholar] [CrossRef]
- Dürholt, J.P.; Fraux, G.; Coudert, F.X.; Schmid, R. Ab Initio Derived Force Fields for Zeolitic Imidazolate Frameworks: MOF-FF for ZIFs. J. Chem. Theory Comput. 2019, 15, 2420–2432. [Google Scholar] [CrossRef] [Green Version]
- Campañá, C.; Mussard, B.; Woo, T.K. Electrostatic potential derived atomic charges for periodic systems using a modified error functional. J. Chem. Theory Comput. 2009, 5, 2866–2878. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bristow, J.K.; Tiana, D.; Walsh, A. Transferable force field for metal–organic frameworks from first-principles: BTW-FF. J. Chem. Theory Comput. 2014, 10, 4644–4652. [Google Scholar] [CrossRef] [Green Version]
- Baxter, S.J.; Schneemann, A.; Ready, A.D.; Wijeratne, P.; Wilkinson, A.P.; Burtch, N.C. Tuning Thermal Expansion in Metal–Organic Frameworks Using a Mixed Linker Solid Solution Approach. J. Am. Chem. Soc. 2019, 141, 12849–12854. [Google Scholar] [CrossRef]
- Evans, J.D.; Dürholt, J.P.; Kaskel, S.; Schmid, R. Assessing negative thermal expansion in mesoporous metal–organic frameworks by molecular simulation. J. Mater. Chem. A 2019, 7, 24019–24026. [Google Scholar] [CrossRef] [Green Version]
- Han, S.S.; Goddard, W.A. Metal–organic frameworks provide large negative thermal expansion behavior. J. Phys. Chem. C 2007, 111, 15185–15191. [Google Scholar] [CrossRef] [Green Version]
- Lock, N.; Wu, Y.; Christensen, M.; Cameron, L.J.; Peterson, V.K.; Bridgeman, A.J.; Kepert, C.J.; Iversen, B.B. Elucidating negative thermal expansion in MOF-5. J. Phys. Chem. C 2010, 114, 16181–16186. [Google Scholar] [CrossRef]
- Lock, N.; Christensen, M.; Wu, Y.; Peterson, V.K.; Thomsen, M.K.; Piltz, R.O.; Ramirez-Cuesta, A.J.; McIntyre, G.J.; Norén, K.; Kutteh, R.; et al. Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. J. Chem. Soc. Dalt. Trans. 2013, 42, 1996–2007. [Google Scholar] [CrossRef] [PubMed]
- Wieme, J.; Van Speybroeck, V. Unravelling thermal stress due to thermal expansion mismatch in metal–organic frameworks for methane storage. J. Mater. Chem. A 2021, 9, 4898–4906. [Google Scholar] [CrossRef]
- Lamaire, A.; Wieme, J.; Rogge, S.M.J.; Waroquier, M.; Van Speybroeck, V. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5. J. Chem. Phys. 2019, 150, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Wu, X.; Luo, T. Polymer nanofibers with outstanding thermal conductivity and thermal stability: Fundamental linkage between molecular characteristics and macroscopic thermal properties. J. Phys. Chem. C 2014, 118, 21148–21159. [Google Scholar] [CrossRef] [Green Version]
- Almenningen, A.; Bastiansen, O.; Fernholt, L.; Cyvin, B.N.; Cyvin, S.J.; Samdal, S. Structure and barrier of internal rotation of biphenyl derivatives in the gaseous state. J. Mol. Struct. 1985, 128, 59–76. [Google Scholar] [CrossRef]
- Ju, S.; Liang, X.; Wang, S. Investigation of interfacial thermal resistance of bi-layer nanofilms by nonequilibrium molecular dynamics. J. Phys. D Appl. Phys. 2010, 43, 085407. [Google Scholar] [CrossRef]
- Ran, X.; Guo, Y.; Hu, Z.; Wang, M. Interfacial phonon transport through Si/Ge multilayer film using Monte Carlo scheme with spectral transmissivity. Front. Energy Res. 2018, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Kamencek, T.; Bedoya-Martínez, N.; Zojer, E. Understanding phonon properties in isoreticular metal–organic frameworks from first principles. Phys. Rev. Mater. 2019, 3, 116003. [Google Scholar] [CrossRef] [Green Version]
- Kamencek, T.; Wieser, S.; Kojima, H.; Bedoya-Martínez, N.; Dürholt, J.P.; Schmid, R.; Zojer, E. Evaluating Computational Shortcuts in Supercell-Based Phonon Calculations of Molecular Crystals: The Instructive Case of Naphthalene. J. Chem. Theory Comput. 2020, 16, 2716–2735. [Google Scholar] [CrossRef] [Green Version]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford Clarendon Press: Oxford, UK, 2001; ISBN1 0198507798. ISBN2 9780198507796. [Google Scholar]
- Allinger, N.L.; Yuh, Y.H.; Lii, J.H. Molecular Mechanics. The MM3 Force Field for Hydrocarbons. 1. J. Am. Chem. Soc. 1989, 111, 8551–8566. [Google Scholar] [CrossRef]
- Hansen, N. The CMA evolution strategy: A comparing review. Stud. Fuzziness Soft Comput. 2006, 192, 75–102. [Google Scholar] [CrossRef]
- lockhuang, L.H.N.; Dove, M.T.; Goodwin, A.L.; Palmer, D.C. Acoustic phonons and negative thermal expansion in MOF-5. Phys. Chem. Chem. Phys. 2014, 16, 21144–21152. [Google Scholar] [CrossRef]
- Hockney, R. Computer Simulation Using Particles; CRC Press: New York, NY, USA, 1989. [Google Scholar]
- Togo, A.; Chaput, L.; Tanaka, I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 094306. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Mingo, N. Ultralow lattice thermal conductivity of the fully filled skutterudite YbFe4Sb12 due to the flat avoided-crossing filler modes. Phys. Rev. B Condens. Matter Mater. Phys. 2015, 91, 144304. [Google Scholar] [CrossRef]
- Li, W.; Carrete, J.; Madsen, G.K.H.; Mingo, N. Influence of the optical-acoustic phonon hybridization on phonon scattering and thermal conductivity. Phys. Rev. B 2016, 93, 205203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wieser, S.; Kamencek, T.; Schmid, R.; Bedoya-Martínez, N.; Zojer, E. Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials 2022, 12, 2142. https://doi.org/10.3390/nano12132142
Wieser S, Kamencek T, Schmid R, Bedoya-Martínez N, Zojer E. Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials. 2022; 12(13):2142. https://doi.org/10.3390/nano12132142
Chicago/Turabian StyleWieser, Sandro, Tomas Kamencek, Rochus Schmid, Natalia Bedoya-Martínez, and Egbert Zojer. 2022. "Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks" Nanomaterials 12, no. 13: 2142. https://doi.org/10.3390/nano12132142
APA StyleWieser, S., Kamencek, T., Schmid, R., Bedoya-Martínez, N., & Zojer, E. (2022). Exploring the Impact of the Linker Length on Heat Transport in Metal–Organic Frameworks. Nanomaterials, 12(13), 2142. https://doi.org/10.3390/nano12132142