Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Apparatuses
2.3. Preparation of SNA
2.4. Fluorescence Assay
2.5. Optimal Assay
2.6. Detection of PCB 77 in Water Samples
2.7. Detection of PCB 77 in Water Samples by HPLC
3. Results and Discussion
3.1. Principle of the Competition-Induction Detection System
3.2. Feasibility and Characterization
3.3. Optimization Assay
3.4. Quantitative Analysis
3.5. Selectivity Analysis
3.6. Water Sample Analysis
3.7. Water Sample Analysis by HPLC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hung, C.-M.; Huang, C.-P.; Chen, C.-W.; Dong, C.-D. The degradation of di-(2-ethylhexyl) phthalate, DEHP, in sediments using percarbonate activated by seaweed biochars and its effects on the benthic microbial community. J. Clean. Prod. 2021, 292, 126108. [Google Scholar] [CrossRef]
- How, C.M.; Yen, P.-L.; Wei, C.-C.; Li, S.-W.; Liao, V.H.-C. Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans. Environ. Pollut. 2019, 251, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Azevedo, R.; Oliveira, N.; Maia, C.; Verde, I. Effects of di(2-etilhexil) phthalate on human umbilical artery. Chemosphere 2019, 228, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Adamovsky, O.; Buerger, A.N.; Vespalcova, H.; Sohag, S.R.; Hanlon, A.T.; Ginn, P.E.; Craft, S.L.; Smatana, S.; Budinska, E.; Persico, M.; et al. Evaluation of Microbiome-Host Relationships in the Zebrafish Gastrointestinal System Reveals Adaptive Immunity Is a Target of Bis(2-ethylhexyl) Phthalate (DEHP) Exposure. Environ. Sci. Technol. 2020, 54, 5719–5728. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Wu, X.; Shen, G.; Du, Q.; Mo, C. Uptake of Di(2-ethylhexyl) Phthalate (DEHP) by the Plant Benincasa hispida and Its Use for Lowering DEHP Content of Intercropped Vegetables. J. Agric. Food Chem. 2013, 61, 5220–5225. [Google Scholar] [CrossRef]
- Li, Y.; Fei, F.; Zhang, K.; Chen, Q.; Li, Y. Migration analysis of DEHP from Inner Liner of Beer Bottle Caps by HPLC. Procedia Environ. Sci. 2012, 12, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Shailaja, S.; Mohan, S.V.; Krishna, M.R.; Sarma, P. Degradation of di-ethylhexyl phthalate (DEHP) in bioslurry phase reactor and identification of metabolites by HPLC and MS. Int. Biodeterior. Biodegrad. 2008, 62, 143–152. [Google Scholar] [CrossRef]
- Han, Y.; Diao, D.; Lu, Z.; Li, X.; Guo, Q.; Huo, Y.; Xu, Q.; Li, Y.; Cao, S.; Wang, J.; et al. Selection of Group-Specific Phthalic Acid Esters Binding DNA Aptamers via Rationally Designed Target Immobilization and Applications for Ultrasensitive and Highly Selective Detection of Phthalic Acid Esters. Anal. Chem. 2017, 89, 5270–5277. [Google Scholar] [CrossRef]
- Noh, H.-B.; Gurudatt, N.G.; Won, M.-S.; Shim, Y.-B. Analysis of Phthalate Esters in Mammalian Cell Culture Using a Microfluidic Channel Coupled with an Electrochemical Sensor. Anal. Chem. 2015, 87, 7069–7077. [Google Scholar] [CrossRef]
- Nuti, F.; Hildenbrand, S.; Chelli, M.; Wodarz, R.; Papini, A.M. Synthesis of DEHP metabolites as biomarkers for GC–MS evaluation of phthalates as endocrine disrupters. Bioorganic Med. Chem. 2005, 13, 3461–3465. [Google Scholar] [CrossRef]
- Lyu, C.; Khan, I.M.; Wang, Z. Capture-SELEX for aptamer selection: A short review. Talanta 2021, 229, 122274. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.J.; Kim, A.R.; Yoon, M.-Y.; You, Y.; Chua, B.; Son, A. Development of quantum dot aptasensor and its portable an-alyzer for the detection of di-2-ethylhexyl phthalate. Biosens. Bioelectron. 2018, 121, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, A.; Roci, I.; Gurbuz, Y.; Niazi, J.H. An aptamer based competition assay for protein detection using CNT activated gold-interdigitated capacitor arrays. Biosens. Bioelectron. 2012, 34, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Tan, T.; Fu, J.-J.; Zheng, T.; Zhu, J.-J. A novel aptamer-based competition strategy for ultrasensitive electrochemical detection of leukemia cells. Analyst 2013, 138, 6323–6330. [Google Scholar] [CrossRef]
- Mason, S.D.; Wang, G.A.; Yang, P.; Li, Y.; Li, F. Probing and Controlling Dynamic Interactions at Biomolecule–Nanoparticle Interfaces Using Stochastic DNA Walkers. ACS Nano 2019, 13, 8106–8113. [Google Scholar] [CrossRef]
- Wang, L.; Deng, Y.; Wei, J.; Huang, Y.; Wang, Z.; Li, G. Spherical nucleic acids-based cascade signal amplification for highly sensitive detection of exosomes. Biosens. Bioelectron. 2021, 191, 113465. [Google Scholar] [CrossRef]
- Gao, P.; Liu, B.; Pan, W.; Li, N.; Tang, B. A Spherical Nucleic Acid Probe Based on the Au–Se Bond. Anal. Chem. 2020, 92, 8459–8463. [Google Scholar] [CrossRef]
- Brandy, J.J.; Algar, W.R.; Anthony, P.M.; Mario, G.A.; Igor, L.M. Understanding enzymatic acceleration at nanoparticle interfaces: Approaches and challenges. Nanotoday 2014, 9, 102–131. [Google Scholar]
- Lu, J.; Liu, Y.; Hou, X.; Qingyun, Y.; Li, Y.-S.; Chen, Q. Selection of Aptamers Specific for DEHP Based on ssDNA Library Immobilized SELEX and Development of Electrochemical Impedance Spectroscopy Aptasensor. Molecules 2020, 25, 747. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xu, S.; He, T.; Li, J.; Liu, L.; Zhang, Y.; Ge, S.; Yan, M.; Liu, H.; Yu, J. Ultrasensitive and specific microRNA detection via dynamic light scattering of DNA network based on rolling circle amplification. Sens. Actuators B Chem. 2020, 324, 128693. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.; Lau, A.; Tang, Y.; Chen, J.; Le, X.C. Binding-Induced Molecular Amplifier as a Universal Detection Platform for Biomolecules and Biomolecular Interaction. Anal. Chem. 2018, 90, 8651–8657. [Google Scholar] [CrossRef] [PubMed]
- Aignasse, M.F.; Prognon, P.; Stachowicz, M.; Gheyouche, R.; Pradeau, D. A new simple and rapid HPLC method for deter-mination of DEHP in PVC packaging and releasing studies. Int. J. Pharm. 1995, 113, 241–246. [Google Scholar] [CrossRef]
- Deng, L.; Wu, F.; Deng, N.S.; Yang, Y. Determination of Trace DEHP in Aqueous Solution by Solid Phase Microextraction Coupled with High Performance Liquid Chromatography. Fresenius Environ. Bull. 2005, 14, 494–497. [Google Scholar]
- Bo-Pinga, L.I.; Lin, Q.B.; Song, H.; Li-Lia, L.I. Determination of DEHP and DNOP in PVC Film by ASE-RP-HPLC. Chin. J. Appl. Chem. 2008, 25, 63–66. [Google Scholar]
- Pinguet, J.; Kerckhove, N.; Eljezi, T.; Lambert, C.; Moreau, E.; Bernard, L.; Boeuf, B.; Decaudin, B.; Genay, S.; Masse, M.; et al. New SPE-LC-MS/MS method for the simultaneous determination in urine of 22 metabolites of DEHP and alternative plasticizers from PVC medical devices. Talanta 2019, 198, 377–389. [Google Scholar] [CrossRef]
- Zhang, M.; Hong, W.; Wu, X.; Zhang, Y.; Li, F.; Zhao, S.-Q. A highly sensitive and direct competitive enzyme-linked im-munosorbent assay for the detection of di-(2-ethylhexyl) phthalate (DEHP) in infant supplies. Anal. Methods 2015, 7, 5441–5446. [Google Scholar] [CrossRef]
Sequence (5′-3′) | |
---|---|
Aptamer-walker | CCTCAGCAACGCATAGGGTGCGACCACATACGCCCCATGTATGTCCCTTGGTTGTGCCCTATGCGTCCTCAGCA |
Track | SH-TTTTTTTTTTGC*TGAGGAT-TAMRA (* cleavage site) |
Detection Platform | LOD [mg/L] | Detection Range [mg/L] | Ref. | |
---|---|---|---|---|
HPLC | 1.00 × 10−2 | 2.50 × 10−1 | 5.00 × 100 | [22] |
HPLC | 6.20 × 10−1 | 6.20 × 10−1 | 1.56 × 101 | [23] |
HPLC | 1.00 × 101 | 1.00 × 10−1 | 1.00 × 102 | [24] |
HPLC-MS | 1.00 × 10−6 | 1.00 × 10−5 | 1.00 × 10−4 | [25] |
ELISA | 4.20 × 10−6 | 1.00 × 10−6 | 1.00 × 100 | [26] |
Electrochemical | 3.90 × 10−6 | 5.00 × 10−4 | 3.00 × 10−2 | [8] |
Electrochemical | 1.03 × 10−7 | 7.63 × 10−6 | 2.00 × 100 | [19] |
Fluorescence | 5.00 × 10−7 | 5.00 × 10−7 | 1.00 × 10−1 | [12] |
Fluorescence | 1.02 × 10−3 | 1.00 × 10−4 | 2.00 × 10−1 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Ji, D.; Fu, Q.; Hu, M. Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. Nanomaterials 2022, 12, 2196. https://doi.org/10.3390/nano12132196
Yuan L, Ji D, Fu Q, Hu M. Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. Nanomaterials. 2022; 12(13):2196. https://doi.org/10.3390/nano12132196
Chicago/Turabian StyleYuan, Lin, Dandan Ji, Qiang Fu, and Mingyang Hu. 2022. "Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment" Nanomaterials 12, no. 13: 2196. https://doi.org/10.3390/nano12132196
APA StyleYuan, L., Ji, D., Fu, Q., & Hu, M. (2022). Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. Nanomaterials, 12(13), 2196. https://doi.org/10.3390/nano12132196